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Abstract 

The paper presents a new application of Hedge Algebra in Type 2 (HAT2) Fuzzy System (FS) for 
electrocardiographical signal recognition and classification. The HAT2 integrates the capability of fuzzy logic 
in modeling uncertainties of data and the linguistic variables to describe and manipulate the knowledge in a 
way closer to the way humans describe facts and rules. An adaptive learning algorithm will be also proposed 
to train the system’s parameters for better fitting to the data samples. The proposed approach will be tested 
with the heart beat classification problem with different types of arrhythmias in the ECG signals taken from the 
Arrhythmia Databases of Massachusetts Institute of Technology and Boston's Beth Israel Hospital. The 
numerical results will be compared with other methods to show the high quality of proposed solution. The 
proposed solution is also shown being simple with low complexity of computation, which makes it suitable for 
use in IoT or portable devices for intelligent solutions used in modern healthcare systems. 

Keywords: Type-2 fuzzy logic, hedge algebra, arrhythmia recognition. 

 

1. Introduction 

An*electrocardiogram (ECG) is a simple way to 
track the patients’ conditions. The most difficult 
problem in ECG signal analysis are the noises, which 
cause sometimes very large variation in the 
morphologies of waveforms. ECG signals themselves 
are non-stationary but there are different types of 
noises, for example, the power line interference (50 Hz 
or 60 Hz), the electrode contact noise, the patient's 
body movements, or even the mental conditions. The 
situation is even worse when the patients have cardiac 
arrhythmias. Due to this need, despite there are already 
many works related to the problem of heart beat 
recognition and classification, the interest in new 
models of arrhythmia recognition is still high. 

 
Fig. 1. The typical ECG signal and its characteristic 
peaks P-Q-R-S-T.  

The research on high quality ECG signals 
recognition should be performed on various aspects 
including good feature extraction, effective noise 
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filtering, training recognition model,... For a single 
patient and one type of arrhythmia the accuracy could 
be very high, even 98-99% was achieved, but for 
different patients and more than one type of 
arrhythmia, it's much more difficult to reach that level 
of accuracy [1, 2]. Also, another popular approach in 
many research is to classify all the arrhythmia beats as 
non-normal in a binary classification problem. This 
type of simplified approach usually allows to achieve 
high accuracy results [3-6]. 

For feature extraction, the models can use simple 
features based on characteristic points Q, R, S, T,. . . , 
which are seen in Fig. 1 [6], or may use some more 
sophisticated ones. Different ‘good’ features were 
proposed, such as based on Karhunen - Loeve 
functions, based on Hermite functions [6], based on 
wavelet transform and independent component 
analysis [7], or using the Kalman filter,... As classifier, 
various mathematical models were proposed like the 
Learning Vector Quantization, Support Vector 
Machine, Bayesian model [7],... In recent years, with 
the development of so-called deep learning networks, 
many works have been performed to test these new 
tools with the classic problems of ECG recognition. 
The main problems for deep learning-based networks 
are the big structures of the networks, which are 
capable to capture more features from the data, but at 
the same time require much more data to train them 
efficiently when ECG databases have not enough 
samples for all the types of arrythmias. Among these 
deep learning networks we can mention the more 
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popular ones such as the Convolutional Neural 
Network (CNN), Deep Belief Network (DBN), and the 
Long Short-Term Memory (LSTM). The CNN 
networks were used in [1, 3] for individual class-based 
detection with accuracy as high as 99.95%, but for  
4-class recognition, the F1 score was dropped to 79% 
with testing data sets. In [4], DBN was applied for 
recognizing SVEB or VEB rhythms with accuracies of 
97.5% for SVEB and 98.6% for VEB. In [2], the 
authors tested 3 different deep learning networks 
(CNN, SincNet, and CNN with entropy features) to 
recognize 5 classes of rhythms: normal, myocardial 
infarction, ST/T change, conduction disturbance, and 
hypertrophy beats. With the recognition of 5 classes, 
the CNN achieved 72.0%, SincNet achieved 73.0%, 
CNN with entropy features achieved 76.5% of 
accuracy. Another work [5] using CNN network for  
5-class recognition could achieve the 97.41% of 
accuracy. More detailed reviews of ECG recognition 
solutions can be found in [7, 8]. 

There are different approaches to deal with the 
noises, from statistical-based techniques as the hidden 
Markov model to soft computing methods such as 
artificial neural networks and fuzzy rule-based 
classification systems. Among them, the contributions 
of fuzzy logic systems for the problem are highly 
recommended [9] because of many advantages, 
including the ability to flexibly represent objects by 
fuzzy sets, and the interpretability of the results. 

The fuzzy logic was first presented by Zadeh in 
[10] to model human reasoning processes. In 1975, 
Zadeh extended the ideas of the original fuzzy logic 
theory and proposed the Type-2 fuzzy sets (T2-FS). 
T2-FS is a fuzzy set, whose membership grade for each 
element is a Type-1 fuzzy sets (T1-FS) in the interval 
[0,1] [10]. Recently, a new class of T2-FS, the so-
called hedge algebraic T2-FS (HAT2-FS) has been 
proposed in [11]. HAT2-FS is a fuzzy set with 
linguistic membership grades, the calculation and 
inference on HAT2-FS are based on the characteristics 
of the linguistic truth values in hedge algebra. The 
HAT2-FS not only is closer to the human way of 
reasoning, but its set operations and inferring process 
are not too complicated; hence, the amount of 
calculation is manageable [11]. In this paper, we will 
present a new method of ECG signal classification 
using a HAT2-FS. The model will be tested with the 
same data from the MIT-BIH database [6] similar to 
some previous works [6, 12] for easier comparison of 
the performances. 

2. Type-2 Fuzzy Logic Systems and Hedge Algebra 

2.1. Type-2 Fuzzy Logic Systems 

In most fuzzy logic systems [10, 13] (also known 
as the Type-1 fuzzy sets - T1-FS), the membership 
functions are crisp numbers. For example, to describe 
the truthfulness of "x is around 4" we define a 

membership grade function 4 ( )xµ≈  and use a bell-type 

membership function like ( )24
4 ( ) .xx eµ − −

≈ =  In this 
case for a given x there will be an exact (crisp) number 
to be the value of the membership function. For 
example, for x equal 3, the value of the membership is 

( )23 4
4 (3) 0.37.eµ − −

≈ = =  But in reality, we usually 
have a situation in which we say “the truthfulness of 
3 4≈  is about 0.37” rather than “the truthfulness of 
3 4≈  is exact 0.37”. Despite having a name which 
carries the connotation of uncertainty, research has 
shown that there are limitations in the ability of T1-FS 
to model the effect of uncertainties [9]. In order to 
extend the capability of a fuzzy system to deal with 
uncertain membership functions, Zadeh introduced 
Type-2 fuzzy sets (or T2-FS) as an expansion of  
T1-FS. Type-2 fuzzy sets are fuzzy sets whose 
membership function of an element is T1-FS, not a 
crisp number. For example instead of 4 (3) 0.37µ≈ =  
we have 4 (3) 0.37,µ≈ ≈  which in turn can be modeled 
by a bell-type function around the point 0.37 like 

( )20.37
4 (3) ( ) uf u eµ − −

≈ = =  for [ ]0,1 .u∈  There are 
different ways to define the second fuzzy membership 
function 4 (3) ( )f uµ≈ = . Among these ways, the 
Interval Type-2 (IT2) FS [9], a special case of T2-FS, 
is currently the most widely used for its reduced 
computational cost. As given by name, in the IT2 
model, the 2nd  membership function is an interval, for 
example  

[ ]
[ ]4

1 0.14;0.61
(3) ( )

0 0.14;0.61
for u

f u
for u

µ≈

 ∈= =  ∉
 (1) 

With those intervals, we can see that an IT2-FS is 
bounded from the above and below by two T1-FS, X  
and X , which are called upper MF (UMF) and lower 
MF (LMF), respectively as presented in Fig. 2.  

 
Fig. 2. Example of Type-1 membership function and 
its UMF and LMF in Type-2 fuzzy logic 

 



  
JST: Smart Systems and Devices 

Volume 33, Issue 1, January 2023, 025-033 

27 

Let an IT2-FLS work with vectors of N inputs,  
M rules and (for simplification) 1K =  output. For an 
input [ ]1 2, , , ,Nx x x= …x  a T2 rule of the system has 
the form: 

( )
( )

( )

1 ,1

2 ,2

,

 

 

m

m

N m N

m

x is X and

x is X and

x is X

y is Y

…

if

then









 (2) 

(for 1, 2, ,m M= … ) where , , ,, ,m n m n m nX X X =  
  

( 1, 2, , )n N= …  are IT2-FSs, and mY  is an interval 

,m m mY y y =  
 . We can have a crisp output by setting 

m my y= . For each rule, the crisp output and the firing 
interval of the output are calculated as in [9].  

If the IT2 rule in Eq. (2) is in training mode, the 
parameters of two functions UMF and LMF and the 
two interval limits ,my  my  are adapted [13]. 

2.2. Hedge Algebra 

Hedge algebra is one of the approaches to 
manipulate on words both qualitatively and 
quantitatively [9]. Recently, a new class of T2-FS, the 
Hedge algebraic Type-2 fuzzy set (HaT2-FS) has been 
proposed in [11, 13]. In appearance, HaT2-FS is a 
fuzzy set with linguistic membership grades; however, 
the approach of HaT2-FS is radically different. Instead 
of traditional processing, the calculation and inference 
on HaT2-FS are operated based on the characteristics 
of the linguistic truth values in hedge algebra. Hedge 
algebra is an algebraic approach to represent and 
handle values of a linguistic variable based on their 
semantic order obtained by acting hedges into other 
elements of linguistic variables.  

Formally a hedge algebra is a quatre 
( , , , ' ')AX G H ≤ , in which AX  is the set of linguistic 
values, G  is the set of generators, H  is the set of 
hedges, and ' '≤  is the ordered relationship among 
elements of hedge algebra. For example, with 2 basic 
terms ‘High’ and ‘Low’, let's define 4 so-called hedge 
operators (or hedges) ‘Very’, ‘More’, ‘Approximately’, 
‘Less’. By applying the hedges into the base terms we 
can generate new linguistic values, such as ‘Very Very 
High’, ‘Approximately Very Low’, etc. In this paper we 
will consider the linear symmetrical hedge algebra 
[11], in which: 

- G  has only two opposite generators, one of 
which has the “stronger” meaning, e.g., High, 
True, Big,... as a positive generator (denoted by  
c+ ), and the other e.g. Low, False, Small,... as a 
negative generator (denoted by c− ).  

- All the hedges in H are also ordered related to the 
operator ' '≤ . 

Each hedge operator from H  weakens or 
strengthens the meaning of generators from G  and 
weakens or strengthens the meaning of other hedges. 
We use the SIG relation to represent the application of 
a hedge to other hedges or generators, 

( ) { }: 1,1SIG H H G× ∪ → − : 

- ( , ) 1,SIG h k =  if the hedge h  strengthens the 
meaning of the term k ,  

- ( , ) 1SIG h k = − , if h  weakens the meaning of the 
term k .  

Table 1 is an example of SIG relation for the 
above algebra. 

Table 1. An example of SIG relation 

SIG Very More Approx. Less c 

Very 1 1 -1 1 1 

More 1 1 -1 1 1 

Approx. -1 -1 1 -1 -1 

Less -1 -1 1 -1 -1 

 
For the above example, we can have the 

following linguistic values and their orders: Very Low 
< More Low < Low < Approximately Low < Less Low 
< Less High < Approximately High < High < More 
High < Very High. In linear symmetrical hedge 
algebras all elements are comparable, then we can 
construct a function which maps them onto values in 
the interval [0,1] without changing their orders. In [11] 
the notion of fuzziness measure and semantically 
quantifying mapping of linguistic values were 
proposed. For calculating these measures of each 
linguistic value we have to determine fuzziness 
measure fm(c) for all c ∈ G and fuzziness measure 
fm(h) for all h ∈ H. The parameters fm(c) and fm(h) are 
called fuzziness parameters of the hedge algebra. 

Naturally, we can apply more than one hedge to 
the generator, for example, we have the value ‘Very 
Very High’. The number of hedges in a linguistic value 
will be called the level of the given linguistic value. 
The higher the level, the more linguistic values (and 
the associated intervals). With an HA of 2 generators 
(‘High’ and ‘Low’) and 4 hedges (‘Very’, ‘More’, 
‘Approximately’, ‘Less’) and the maximum level equal 
L we may have  

( )122 2 4 2 4 4 1
3

L L++ ⋅ + + ⋅ = −  

different hedged linguistic values. If all the basic terms 
and hedges are ordered then all the general linguistic 
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terms are also ordered. For example from ‘Low’ > 
‘Less Low’ it follows that ‘Very Possible Low’ > ‘Very 
Possible Less Low’,... 

Hence, each linguistic value x̂  is represented by 

a triple ( ) ( ) ( )( )ˆ ˆ ˆ, ,fm x fm x v x    in which 

( ) ( ) [ ]ˆ ˆ, 0,1fm x fm x  ⊆   and ( ) [ ]ˆ 0,1v x ∈  are the 

fuzziness interval of x̂  and the semantically 
quantifying value respectively [13]. In this paper the 
( )ˆv x  is calculated using formula: 

( )
( ) ( )ˆ ˆ

ˆ
2

fm x fm x
v x

+
=   (3) 

With the interval ( ) ( ) [ ]ˆ ˆ, 0,1fm x fm x  ⊆  , the 

fuzziness of x̂  is defined as the width of the interval:  

ˆ ˆ ˆ( ) ( ) ( )fm x fm x fm x= −  (4) 

The fuzziness measure [ ]: 0,1fm X →  has 
following properties: 

1. fm is a full measure, i.e.: 

- : ( ) 1;
c

c G fm c∀ ∈ =∑  in case of symmetrical 

algebra, such that { },G c c+ −= , we have 

( ) ( ) 1;fm c fm c+ −+ =  

- : ( ) 1;
h

h H fm h∀ ∈ =∑  

2. , : ( · ) ( )· ( ).c G h H fm h c fm h fm c∀ ∈ ∈ =  

3. If x̂  is crisp term, i.e. ( ) { }ˆ ˆ:h H h x x∀ ∈ =   

then ( )ˆ 0.fm x =  

Example: Consider hedge algebra (AX, {High, 
Low}, {Very, More, Approximately, Less}, ≤) with the 
fuzziness parameters  

fm(High) = 0.7,  

fm(Low) = 0.3,  

fm(Very) = 0.3,  

fm(More) = 0.3,  

fm(Approximately) = 0.2,  

fm (Less) = 0.2.  
The fuzziness measures satisfy condition 1:  

( ) ( ) 1fm True fm False+ =  
and 

( ) ( )
( ) ( )

1

     

fm Very fm More

fm Approximately fm Less

= + +

+
 

 
Fig. 3. An example of intervals for level 0 and level 1 
hedged linguistic values. 

In Fig. 3 there are the example intervals for 
linguistic values of basic terms and 1st level terms for 
the example algebra given above. 

When using the average semantically quantifying 
value defined in (3), we can complete the triple for the 
linguistic values as: 

- True → ([0.3, 1], 0.65),  

- Very True → ([0.79, 1], 0.895),  

- More True → ([0.58, 0.79], 0.685), 

- Approximate True → ([0.44, 0.58], 0.51), 

- Less True → ([0.3, 0.44], 0.37), 

- False → ([0, 0.3], 0.15),...  

When the intervals are disjointed then the 
average semantical quantifying operator is enough, but 
when intervals are not disjointed we usually use the 
“round to the nearest interval centre” method to 
quantify the linguistic values, and we can convert a 
crisp number to the nearest linguistic value. For the 
example in Fig. 3, all crisp value bigger than: 

0.895 0.685 0.79
2
+

=  

will be converted to ‘Very High’ (or ‘VH’). And for the 
defuzzification process, a linguistic value would be 
converted into its semantical quantifying crisp value. 

2.3. Hedge Algebra Type-2 Fuzzy Logic Rule 

From the ideas of hedge algebra described above, 
in comparison with T2 reasoning rule given in (2), a 
set of M  HAT2 reasoning rules can be defined with 
the form: 

( )
( )

( )

,1 1 1

,2 2 2

,

( )

( )

( )

m

m

m N N N

H c x and

H c x and

H c x

y is Y

…

then

if



 (5) 

where 1,2, ,m M= …  - rule number, 1, 2, ,n N= …  - 
the input dimension index, nc  - basic terms, nx  - input 
variables, L  - the level (or the maximum length) of 
applied hedges, y  - response of the rule and ,m nH  - 
the chain of hedges applied to the basic terms 

, ,m n lh H∈ : 
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, , , , , 1 , ,1

, ,
1

m n m n L m n L m n

L

m n l
l

H h h h

h

−

=

= ⋅ ⋅ ⋅

=∏



  (6) 

As it can be seen when comparing with (2), for 
each dimension nx , the fuzzifier was changed from the 

form ( ),n m nx is X  with the interval membership 

grades equal , ,,m n m nX X    to the form 

( ), , , , 1 , ,1 ( )m n L m n L m n n nh h h c x−   with the inverval 
membership equal 

( ), , , ,
1

( ) ( ) ( )·
L

m n n m n n n m n l
l

H x H x fm c fm h
=

− = ∏  (7) 

The antecedent of HAT2 reasoning rule can be 
adapted during the training process by changing the 
fuzziness measure of the basic term ic  or the fuzziness 
of the hedges. In this paper for simplification we use 
the constant, equal fuzziness measure for all the 
hedges (if we use 4 hedges, their fuzziness measure 
will be equal to 0.25).  

As it can be easily seen in Fig. 3, for the positive 
basic term c+, if we increase its fuzziness, all the 
intervals will be shifted to the left, which in turn 
decreases the semantical values of the variables. 
Analogically, for the negative basic term c−, increasing 
its fuzziness will shift all the intervals to the right, 
which in turn increases the semantical values of the 
variables. We can also change the fuzziness measure 
of a term by changing the hedges. For example, if we 
want to have something smaller than ‘Approximate 
High’, we can use ‘Less High’ or ‘Approximate 
Approximate High’ instead. If we want to have 
something smaller than ‘Less High’, we can use ‘Less 
Low’ for example. 

3. Building a HAT2-FLS from a Data Set 

The described above HAT2-FLS is a strongly 
nonlinear reasoning system. The parameters of this 
system will be estimated from a given set of data 
samples during a typical supervised learning process. 
In this paper, we propose the below scheme to initiate 
and tune a HAT2-FLS based on given data samples. 
The scheme contains two main phases:  

- Phase 1 (steps 1 and 2): construct Type-1 
reasoning rules as described in (2); 

- Phase 2 (steps 3 and 4): convert Type-1 rules into 
HAT2 based rules as in (5). 

The rules will be divided into a set of ‘good’ 
rules, which correctly classify some learning data, and 
a set of ‘conflicted’ rules, which incorrectly classify 
some learning data. The ‘conflicted’ rules are later 
further tuned to remove the conflicts. 

Input: A data sets with p sample pairs { }, ,i idx  
1, 2, ,i p= … , where ,N

i ∈x 
 ;id ∈  

- Preselected maxC  - number of membership 
functions to be generated for each input; 

- Preselected L  - maximum level of hedges. 

- An empty initial set of rules and an empty initial 
set of ‘conflicted’ rules. 

Output: Sets of rules HAT2-FLS  

Step 1: For each input dimension number 
1, 2, , ,n N= …  find the maxC  rule centres 

max,1 ,2 ,, , ,n n n CC C C…  of fuzzy membership functions 
using K-means algorithm [14]. Let these centres be 
sorted in ascending order. Generate the membership 
functions based on those centres as shown in Fig. 4 (the 
leftmost centre is associated with a left-open 
membership function, the rightmost centre is 
associated with a right-open membership function, and 
middle centres are associated with triangle 
membership functions). We also limit that for all 
centres max1, 2, , ,r C= …  the non-zero domain of 
membership function of centre ,n rC  should be limited 
between , 1n rC −  and , 1n rC + . This condition will help us 
to have that for all x, there would be a maximum of two 
consecutive membership functions, which are non-
zero only. 

 
Fig. 4. The initial membership functions 

Step 2: For each sample { }, , 1, 2, , ,i id i p= …x   

- Construct a temporary rule  

( )
( )

( )

1 ,1

2 ,2

,

     

i temp

i temp

iN temp N

i

x is X and

x is X and

x is X

y is d

…

if

then







 (8) 

whose the fuzzy sets ,temp nX  for each dimension n  of 
the input ( 1, 2, , ),n N= …  is around the centre ,n rC , 
which has the highest membership degree for the input 

, .i nx  The firing membership of the rule is equal to the 
product of membership grades of all components 
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( )
, ,

1

( )
temp temp n

N

i i nX
n

xµ µ
=

=∏X x
 

 (9) 

- If the antecedent of the just-generated temporary 
rule is not found then it's new and will be added 
to the working set. If there is already a rule 
previously generated with the same antecedent 
but a different consequent then the two rules 
(with the same antecedent part) are moved to the 
set of ‘conflicted rules’.  

When all the p sample pairs were considered, we 
check the conflicted rules, and for each antecedent 
part, among the conflicted rules we select the one with 
the highest membership grade and move this rule back 
to the set of 'good' rules. The others will be further 
tuned and updated in Step 4. 

Step 3: Convert the set of rules of Type-1 to the rules 
of Type-2 format. 

With an HA of 2 generators (‘High’ and ‘Low’), 
the hedges and the maximum level equal L, we have 
different hedged linguistic values, which have 
corresponding semantically quantifying values. For 
each rule, for each dimension, convert the membership 
degree (calculated in Step 2) of that dimension into the 
hedged linguistic value, which has the closest 
corresponding semantically quantifying value to the 
membership degree (as described in subsection 2.2). 

Step 4: Adapt the rules set to improve the performance 
of the data samples set.  

After Steps 2 and 3, we have two sets of rules: the 
set of correct rules and the set of ‘conflicted’ rules. The 
main purpose of Step 4 is to train and adapt the 
parameters of rules (from both sets) to improve the 
total performance on the learning set and the testing set 
(the number of misclassifications should be as low as 
possible). As mentioned earlier, a conflicted rule 
means there is a ‘good’ rule with the same antecedent 
but different consequent parts and the ‘good’ rule has 
a higher firing membership function.  

In this paper, our proposed solution is to correct 
a conflicted rule to create a new, non-conflicted one, 
which can be used to classify the associated sample. 
The idea is presented in Fig. 5. Let the samples jx  and 

kx  belongs to the same rule number m , i.e. for all 
dimension n  we have jnx  and knx  belong to the same 
cluster ,n rX . It would be enough if we change the 
cluster's parameters, such that now there is one 
dimenesion jnx  and knx  don't belong to the same 
cluster. We consider the dimension n , in which the 
differences between membership grades of jx  and kx  
are the biggest (it means it would be easiest to separate 
the samples using that dimension): 

( ) ( )
( ) ( )
, , , ,

, , , ,1,
    max

l l

jn m n r kn m n r

jl m l r kl m l rl N

x c x c

x c x c

µ µ

µ µ
=

≈ − ≈ =

 ≈ − ≈ 
 (10) 

The shapes of the membership function would be 
updated, such that after adaptation, the samples don't 
belong to the same rule as before. In order to achieve 
that, for the examples in Fig. 5b, the right border of the 
cluster number r  and the left border of the cluster 
number 1r +  would be “shifted left” so now the 
sample jx  belongs to cluster r , the sample kx  belongs 
to cluster 1r + . This, in turn, will assign the two 
samples to two different rules. 

The “shift left” operation in HAT2 FS can be 
done in two ways:  

1. If the actual rule uses the positive basic term 
then increase the fuzzy measure of that basic 
term. If the actual rule uses the negative basic 
term then decrease the fuzzy measure of that 
basic term. 

2. Use a weakening hedge if the maximum 
number of hedges was not reached. 

 

 
Fig. 5. Shifting the membership functions to move 
sample kx  from cluster , ,m n rC  (in (a)) to cluster 

, , 1m n rC +  (in (b)) while keeping sample jx  belong to 
cluster , ,m n rC  

This “shifting” operation is simple, but it may 
cause problems because a changed rule may no longer 
work well with old samples. To deal with that, in this 
paper we also use the idea of the RPROP (Resilient 
backPROPagation) learning method [14]. The 
learning is done in batch mode, which means for each 
conflicted sample we count the decisions on which 
fuzzy measure (or borders) should be changed and 
how. When all the conflicted samples were considered, 
for all fuzzy measures (or borders), the final decision 
is the majority of the counted decisions. If there were 
more counts to move left, then we move the given 
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linguistic term to the left once, if there are more counts 
to move right, then we move it to the right once. The 
step change was set to 1% of the actual given length of 
the intervals (the actual fuzziness of the linguistic 
value under training).  

The batch mode is repeated many times (or so-
called many epochs) until the number of conflicted 
samples cannot be decreased. 

4. The ECG Signals and the Feature Extraction 
Method 

In this paper, the above described HAT2-FLS is 
used as a classifier to analyse and recognize the ECG 
signals. This task is very popular and numerous works 
have been performed. However only a few models use 
Type-2 fuzzy logic like in [13] and we have not found 
any works using HA. In order to have an easy and 
dỉrect comparison with previous works, we used the 
same data sets as in [6, 12] and for the detailed 
generations of features, use the description in [6]. In 
this paper, we just briefly describe the feature 
generation process. 

The important step in building an efficient 
classifier system is diagnostic feature extraction. In our 
approach to the problem, we have applied the QRS 
complex decomposition into Hermite basis functions 
and used the decomposition coefficients as the features 
of the ECG signals.  

The signals were taken from the popular MIT-
BIH Arrhythmia Database [12]. The recognition of 
arrhythmia proceeded on the basis of the QRS 
segments of the registered ECG waveforms (only lead 
number 1 was used) of 19 patients [12] with six types 
of arrhythmia:  

- left bundle branch block (L),  

- right bundle branch block (R),  

- atrial premature beat (A),  

- ventricular premature beat (V),  

- ventricular flutter wave (I),  

- ventricular escape beat (E),  

- and the waveforms corresponding to the normal 
sinus rhythm (N).  

From a total of 6679 beats, an iterative method 
was used to split 3611 samples to the learning set and 
3068 to the testing set. Table 2 presents the number of 
beat types used in learning and testing. 

For each beat, we use the method described in [6] 
to extract the QRS complexes, whose lengths were 91 
data points around the R peak (45 points before and 45 
ones after). At the data sample rate of 360 Hz, this 
gives a window of 250ms.  

The data has been also additionally zero-padded 
by adding 45 zeros to each end of the QRS segment to 
make the data look more similar to the Hermite basis 
functions. After that, we performed the decomposition 
by minimizing the approximation error: 

21

0
( ) ( , )N

i n n ii n
E s t c tφ σ−

=
 = − ∑ ∑  (11) 

where nc  are the expansion coefficients, ( )n itφ  - the 
Hermite basis functions of n-th order. These 16 
coefficients nc  together with 2 classical time-based 
features: the instantaneous R-R interval of the beat (the 
time span between two consecutive R peaks) and the 
average R-R interval of 10 preceding beats, form the 
feature vector x applied to the input of the classifier.  

Table 2. The number of learning and testing samples 
of each beat types 

Beat type Learn samples Test samples 

N 1065 935 

L 639 561 

R 515 485 

A 504 398 

V 549 451 

I 271 201 

E 68 37 

 
5. The Numerical Experiments and Results 

With the algorithm described in section 3, we 
have built the HAT2-FS for the data sets presented in 
section 4.  

In step 1: For each of the 18 input dimensions, we 
generated only 3 clusters using the K-mean algorithm.  

In step 2: From the 3611 learning samples, there 
were a total of 1697 rules generated, among which 
1667 were 'good', and 30 'conflicted' rules.  

In step 3, converting from Type-1 to HAT2: We 
used maximum length of hedges equal only 3, which 
means there are 170 intervals corresponded to 170 
logic terms. 

In step 4: After adapting the rules using the 
algorithm described in section 3, the number of 
conflicted rules was reduced to 3. After that, we test 
the trained HAT2-FLS with the new 3068 data 
samples. 

Table 3 presents the confusion matrix for the 
testing data divided into beat types. The column 
presents the correct (desired) types, the row presents 
the classifier’s results. 
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There were 65 samples wrongly classified, i.e. 
the classification testing error was 

65 100% 2.12%
3068testE = ⋅ =  (12) 

Table 3. The detailed classifying results for 7 types of 
rhythms of testing data 

 N L R A V I E 

N 920 1 1 18 0 0 0 

L 3 559 0 1 0 0 0 

R 0 0 483 25 0 0 0 

A 12 1 1 354 1 0 0 

V 0 0 0 0 450 1 0 

I 0 0 0 0 0 200 0 

E 0 0 0 0 0 0 37 

Total 935 561 485 398 451 201 37 
 

Table 4. The testing errors of the proposed HAT2 and 
other neural networks MLP [12], TSK [12] and SVM 
[6] on the same training and testing data sets 

Classifier system Number of 
errors 

% of errors 

MLP 148 4.82% 

TSK 100 3.26% 

SVM 60 1.96% 

HAT2 65 2.12% 
 
To compare with other works, we selected the 

individual neural and fuzzy neural classifiers from [6, 
12] because all these classifier networks have been 
first learned on the same learning data set and then 
tested on the same testing data set. The results are 
listed in Table 4. As can be seen, the HAT2 classifier 
shows better performance than the popular MLP and 
the type-I based TSK. Only the SVM networks 
achieved better performance with an error of 1.96%, 
but in fact, the SVM networks worked in the one-
against-one mode [6], which means there were 21 
subnets needed to train. 

As mentioned in Section I, it’s hard to compare 
the performance of a classifier with others when they 
are not trained and tested on the same data sets, but 
comparatively, we can note that the proposed method 
was tested with a 7-class recognition problem, 
including the types of ventricular flutter wave (denoted 
as type I) and ventricular escape beats (denoted as              
type E) with only 472 and 105 beats respectively. 

These types with a small number of samples available 
were usually skipped especially when deep learning 
networks were used. But our error of 2.12% for 7-class 
recognition problem is still very good compared with 
other works mentioned in Section I.  

Table 5. The results of classifying ECG beats into 
normal and abnormal classes 

 Normal Abnormal 

Normal (classified) 920 20 

Abnormal (classified) 15 2113 
 

We checked also the quality of the combined 
classifiers with the sensitivity and specificity statistics 
for binary classifiers. In order to do that we let all 6 
types of arrhythmia be the “abnormal” type, so now 
the classifier task is to differ the normal beats from the 
abnormal ones. Also, let the abnormal beats be the 
positive cases and the normal beats be the negative 
cases. Table 5 presents the results of classifying beats 
into normal vs. abnormal class. 

From the Table 5 we have 

2113 99.06%
2113 20

920 98.40%
920 15

TPSens
TP FN

TNSpec
TN FP

= = =
+ +

= = =
+ +

 (13) 

The above results, when compared to previous 
works mentioned in Section I, help to confirm the high 
quality of the proposed solution as an individual ECG 
signal classifier with high accuracy and simplicity to 
train. 

6. Conclusion 

An application of the hedge algebra type-2 fuzzy 
system to analyze and classify the ECG signal was 
presented in this paper. This tool combines the 
capability of fuzzy logic in modeling the noises as 
uncertainties of the data and the capability of hedge 
algebra in manipulating the linguistic terms to present 
knowledge. As a nonlinear classifier, the HAT2 FS is 
easy to initiate and train.  

The classifier used the features consisted of 
coefficient of ECG signals decompositions using 
Hermite basis functions and the R-R peak-to-peak 
periods. The experiments performed for data from 
MIT-BIH AD with 7 arrhythmia types showed very 
good quality, where the classification error was 2.12%. 
It's expected that when combining this classifier with 
others using integration techniques, we could achieve 
better results, but we need simple classifier, especially 
for hardware implementation, then the HAT2 FS is a 
very good choice. 
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