

JST: Smart Systems and Devices

Volume 34, Issue 1, January 2024, 001-008

1

 An Efficient Face Recognition System
Based on Edge Processing Using GPUs

Ha Xuan Nguyen1*, Dong Nhu Hoang2, Hung Trung Nguyen2,

Hai Ngo Minh2, Tuan Minh Dang2,3,4
 1Hanoi University of Science and Technology, Ha Noi, Vietnam

2CMC Applied Technology Institute, CMC Corporation, Ha Noi, Vietnam
3CMC University, CMC Corporation, Ha Noi, Vietnam

4Posts and Telecommunication Institute of Technology, Ha Noi, Vietnam
*Corresponding author email: ha.nguyenxuan@hust.edu.vn

Abstract

In this work, an efficient and accurate face recognition system based on edge processing using GPUs was
completely developed. A complete pipeline that contains a sequence of processing steps, including
pre-processing, face feature extraction, and matching, is proposed. For processing steps, lightweight deep
neural models were developed and optimized so that they could be computationally accelerated on an
embedded hardware of Nvidia’s Jetson Nano. Besides the core processing pipeline, a database, as well as a
user application server were also developed to fully meet the requirements of readily commercialized
applications. The experimental evaluation results show that our system has a very high accuracy based on
the BLUFR benchmark, with a precision of 98.642%. Also, the system is very computationally efficient, as the
computing time to recognize an ID in a dataset of 1171IDs with 10141 images on the Jetson Nano is only
165ms. For the critical case, the system can process 4 camera streams and simultaneously recognize a
maximum of 40 IDs within a computing time of 458ms for each ID. With its high-speed and accuracy
characteristics, the developed system has a high potential for practical applications.

Keywords: Face recognition, deep learning, GPUs, edge processing.

1. Introduction*

The rapid development and advancement of deep
learning and computing hardware have shown many
advantages for the image processing problem. The face
recognition issue has received much attention in recent
years due to its very high potential for practical
applications in access/check-in/check-out control
systems, public security surveillance systems, and
electronic commercial transactions [1]. As illustrated
in Fig. 1, face recognition, like any other image
processing problem, has three main modules: i) the
pre-processing module, which includes processes such
as face detection, anti-spoofing, alignment, and quality
checking; ii) the face feature extraction module, which
employs a deep neural network and typically yields
face-feature vectors (FFVs); and iii) the face feature
matching module, which calculates cosine distances
between FFVs to obtain the final identification of a
face. Each module requires much of research effort to
improve the accuracy and performance of the system
[2-4]. This processing pipeline requires a lot of
computational effort, and as a result, high-performance
computing hardware is needed. Thus, the need for
developing and optimizing lightweight models that

ISSN: 2734-9373
https://doi.org/10.51316/jst.171.ssad.2024.34.1.1
Received: February 15, 2023; accepted: September 27, 2023

satisfy both high accuracy and computational
efficiency is a current research trend [1].

For many applications of face recognition,
systems have plenty of cameras, which generate a
large amount of data to be processed. If all the
generated data is sent to the central server to be
processed, the system will confront a problem of very
high throughput and bandwidth. This will make the
system very difficult to deploy, even for real-time
applications. Thus, the solution to this problem is the
deployment of the hybrid edge-central computing
architecture.

There have been many efforts to deploy deep face
recognition techniques on embedded hardware using
GPUs as edge computing [5-9]. The use of GPUs at the
edge can help accelerate the computation of the
processing pipeline. It has been demonstrated that the
use of GPUs can significantly accelerate computation.
However, due to the limited hardware resources of
embedded hardware, the processing pipeline as well as
deep neural network models for face recognition
should continue to be optimized in such a way that they
are lightweight and have high accuracy.

JST: Smart Systems and Devices

Volume 34, Issue 1, January 2024, 001-008

2

Fig. 1. General processing steps of the whole face recognition system Jetson Nano

Fig. 2. A whole description of Nvidia’s DeepStream platform

A key goal has been set that the system should be

optimized so that the lightweight embedded hardware
can process as many camera streams as possible. In
conventional methods, a processing pipeline using the
so-called Gstreamer [10] is often used. Each camera
stream is attached to a Gstreamer-based pipeline,
which contains a set of deep learning models. This
approach has the disadvantage that the utilization of
hardware for deep learning models is repeated through
all camera streams. This limits the number of camera
streams that can be processed on lightweight
embedded hardware. Fortunately, Nvidia has released
the DeepStream SDK [11], which allows you to mux

multiple camera streams into a single processing
pipeline. This new approach is quite impressive and
thus should be further optimized and evaluated.

DeepStream SDK from Nvidia is a complete
streaming analytics toolkit based on GStreamer for AI-
based multi-sensor processing, video, audio, and
image understanding. DeepStream’s multi-platform
support gives us a faster, easier way to develop vision
AI applications and services. We can even deploy
them on-premises, on the edge, and in the cloud. Fig. 2
depicts a description of the entire platform. It is ideal
for vision AI developers, software partners, startups,

JST: Smart Systems and Devices

Volume 34, Issue 1, January 2024, 001-008

3

and OEMs who are developing IVA apps and services.
Stream processing pipelines incorporating neural
networks and other complex processing tasks such as
tracking, video encoding/decoding, and video
rendering can be created by developers. DeepStream
pipelines enable real-time video, image, and sensor
data analytics. This platform provides extremely
powerful tools with numerous advantages, including:

a) DeepStream SDK is powerful and flexible,
making it suitable for a wide range of use-cases across
a wide range of industries.

b) Multiple Programming Options: The
platform uses the simple and intuitive UI of C/C++,
Python, or Graph Composer, you can create powerful
vision AI applications.

c) Real-Time Insights: The platform can gain an
understanding of rich, multimodal real-time sensor
data at the edge.

d) Managed AI Services: The platform can
deploy AI services in Kubernetes-managed cloud
native containers.

e) Lower total cost of ownership: The platform
increases stream density by training, adapting, and
optimizing models with TAO toolkit and deploying
models with DeepStream.

In this work, an efficient and accurate face
recognition system based on GPU-based embedded
hardware is developed. The system has a complete
processing pipeline that contains pre- and post-
processing algorithms as well as deep convolutional
neural models. The DeepStream SDK is exploited for
the video processing, which includes the decoder and
the mux. The decoder of DeepStream is already
optimized for hardware by Nvidia, so it is more
efficient than building the Gstreamer pipeline from
scratch. The mux allows for batching camera frames
from several cameras into only one processing pipeline
to reduce the utilization of the hardware resource. Our
contribution is that, instead of using the already-
available plugins of deep models for face recognition
issues, we develop and optimize models ourselves.
These models are developed so that they are
lightweight while maintaining high accuracy
characteristics. For this reason, pretrained models with
the backbones of VIT-T [12], Retina Mnet [13], and
MobileNetV2 [14] were fine-tuned using transfer
learning techniques with a public dataset [15]. These
models are then optimized and quantized so that they
can be implemented and computationally accelerated
on the Jetson Nano from Nvidia [16]. The accuracy of
the system is evaluated via the benchmark BLUFR
[17], and the computational efficiency is verified via
several critical scenarios. For a complete system, a
database that contains data for recognizing people and
a user application server were developed.

2. System Description

The overall processing pipeline of the design
system is shown in Fig. 3. There are four main
modules, each of which is responsible for a specific
task. The first module is the face recognition pipeline,
which contains a sequence of several processing steps.
Video frames captured from cameras are streamed to
the processing unit via the RTSP protocol. The video
streams are decoded by the NVDEC. The decoded
frames are converted to the RGBA format. These
frames are routed to the batching system for further
processing on the Jetson Nano's hardware CPU. All
decoded frames from different cameras are pushed to
a meta data patch and then sent to our self-developed
plug-in, which performs the following processes:

a) Attaching the tracking identification (ID) for
each camera stream to be managed.

b) Resizing image frames to 640x360 and
converting them to BGR format in order to satisfy the
input requirement of the face detection model.

c) Performing the face detection inference to get
the bounding box and landmarks of the detecting face,
which are consequently used for the tracking and
alignment process. Each detected face in video frames
is assigned a tracking ID. Face tracking enables us to
avoid duplication of a person's faces to be processed
and reduce processing efforts.

d) Using face anti-spoofing to eliminate fake
cases in which someone intentionally generates the
face image of an interested person using images from
smart phones, tablets, printed paper, or even wearing a
mask [2].

e) Using the detected landmarks and the affine
transformation to align the face. In sequence, the face
feature vector extraction model is performed.
Extracted vectors are then matched with vectors from
the database to find a person's ID [3-4].

Deep neural networks used for this processing are
listed in Table 1. Most of these processes are
implemented on the deep learning processing unit
(GPU) of the Jetson Nano. To meet the requirements
of real-time applications, we can use the GPU to
accelerate the computation of deep learning models by
using parallel computing.

Table 1. Technical detail of the developed models.

Model Back-bone/specification

Face anti-spoofing Mobilenet V2 [14]

Face and landmark
detection

Retina mnet [13]

Face feature extraction VIT-T [12]

Face alignment Affine transformation [18]

JST: Smart Systems and Devices

Volume 34, Issue 1, January 2024, 001-008

4

Fig. 3. Processing pipeline of the whole face recognition system based on Jetson Nano

The second module is the database using Postgre

SQL, which contains the face feature vectors of the
corresponding images of the person's identification.
This database is created by the third module, namely
the server updater. This module also has full deep
learning models for face detection and face feature
vector extraction. The extracted face feature vectors
are then updated in the Feature Vector DB. Inputs to
this module are the face images of interested persons
and the corresponding record of information such as
their name, age, company, and email. These inputs can
be imported from the so-called CIVAMS Web Server
or from the image database. When a person is required
to be queried, its face feature vectors are matched with
feature vectors in the database to find the best-matched
vector, which has a maximum cosine similarity larger
than a threshold. This process is handled by the
system's ARM CPU, which is housed on a Jetson Nano
chip. The fourth module is the user application, which

contains the CIVAMS Web Server and CIVAMS
Application Servers and other display devices and
actuators for user-specific applications.

Fig. 4 describes a block diagram of the
development and deployment of a deep learning model
on the Jetson Nano platform. First, a deep neural
network is trained based on the so-called PyTorch
framework and a given dataset. After the training and
testing process, a weight file “model.weight” is
obtained. This model is then converted to ONNX
format to get "model.onnx". These files are then
quantized and combined via the tool Nvidia TensorRT
from the hardware provider to obtain "model.engine",
which is stored on the SD card. For the hardware
platform creation, several software frameworks are
installed on the Jetson Nano, including Nvidia Cuda,
Python, TensorRT, and OpenCV.

JST: Smart Systems and Devices

Volume 34, Issue 1, January 2024, 001-008

5

Fig. 4. Development and deployment pipeline of deep learning models on Jetson Nano

The detailed technical specifications of the Jetson

Nano from Nvidia can be found in [16]. This hardware
is intended for the edge processing of deep neural
networks. The hardware is a completed multi-process
system on chip (MP-SOC), which can be used for
image processing. The hardware includes a 128-core
Maxwell processor, a quad-core ARM A57 CPU
running at 1.43 GHz, and 4 GB of 64-bit LPDDR4
memory (25.6 GB/s), 4K at 30 fps, 4x 1080p at 30 fps,
9x 720p at 30 fps (H.264/H.265), 4K at 60 fps, 2x 4K
at 30 fps, 8x 1080p at 30 fps, 18x 720p at 30 fps
(H.264/H.265); The computational benchmark for this
hardware can be found on the homepage of
Nvidia [16].

3. Results and Discussion

The face feature vector extraction model was
developed based on the backbone of VIT-T [12] with
a pretrained model. This model was fine-tuned based
on a public dataset, namely the MS1M-ArcFace [15],
which contains a set of 5.8M images of a total of 85k
IDs. This dataset is additionally enriched by our self-
collected dataset, which contains 200k images of 13k
IDs. It is important that these 200k images have
challenging characteristics including blur, side-view,
light-mode (IR), and long-hair and glasses, as
illustrated in Fig. 5. The dataset is divided into two
parts: 80% for the training set and 20% for the testing
set. The fine-tuned model is then evaluated using a
standard benchmark, namely the BLUFR [17]. The
evaluation results show that the developed model has
an impressive accuracy of 98.642% and a true positive
rate of 97.9%, with a false acceptance rate of only

0.0001. The obtained accuracy is high enough for
practical applications. The VIT-T is a miniature
version of the VIT. This will help to reduce the
computational requirements of the inference process,
allowing the system to be deployed on Jetson Nano's
lightweight hardware.

Aside from accuracy, the system's computational
efficiency is the most important factor. Evaluation
results of the computational performance of the Jetson
Nano are shown in Table 2. The evaluation was
performed on a test dataset containing 10141 images
representing 1171 IDs that are collected on our real-
life deployment systems. In this evaluation, the total
processing time for the overall proposed pipeline is
calculated under different scenarios. The number of
camera streams and the number of IDs are varied to
test the computing time for each processing step,
including the detection time, the recognition time, the
matching time, and, as a result, the total processing
time for one ID. Critical cases are considered. It is seen
that for the fastest case, one ID on only one camera
stream, the total processing time is only 165 ms. For
the critical case, where a total of 40 IDs from
10 camera streams can be recognized in a total
processing time of 458 ms for each ID, it can be
concluded that the designed system has very high
computational efficiency on the Jetson Nano since the
overall processing pipeline was optimized and only
lightweight models were developed. This shows a high
potential for practical applications.

Table 2. Computational performance evaluation results.

No. of
IDs

No. of
streams

fps Detection
time (ms)

Recognition
time (ms)

Matching
time (ms)

Total time for 1
ID (ms)

Total no. of
processed ID

1

1 9 111 44 10 165 1
2 5 150 67 12 229 2
3 4 194 82 13 289 3
4 3 294 117 14 425 4

5

1 7 146 63 11 220 5
2 4 206 96 14 316 10
3 3 269 108 14 391 15
4 2 324 120 15 459 20

10

1 6 162 69 12 243 10
2 4 207 93 13 313 20
3 3 268 106 14 388 30
4 2 324 119 15 458 40

JST: Smart Systems and Devices

Volume 34, Issue 1, January 2024, 001-008

6

Fig. 5. Types of challenging conditions in the dataset

Several discussions are given as following:

1) Based on the test results, it is suggested that in
practical applications, the hardware Jetson Nano
can be efficiently used for the edge processing of
four camera streams with full HD resolution. In
this scenario, the processing consists only of face
detection, anti-spoofing, and tracking. The
detected face is then sent to the central computing
server for further inference and matching. This
can be called "hybrid edge-central computing."

2) If we want to perform a full processing pipeline,
only two camera streams with a maximal frame
rate of 5 fps should be used.

3) The computational workload can be reduced if
we truncate several frames in the frame stream

because the times for face feature extraction and
matching are reduced. The number of frames to
be truncated depends on the number of faces
appearing in each camera frame. In fact, we use a
queue for detected faces. At the same time, the
recognition will be prioritized for the closest-
appearing face images to optimize real-time
recognition. The old face images are piling up in
the queue. If the queue is full, it will be deleted to
ensure that there is no RAM overflow that
crashes the app.

The obtained results are compared to that of other
published works [6-9]. Our results outperform others.
For example, in [8], the authors also used the hardware
Jetson Nano, the highest accuracy for face recognition
is only 86.41% while our system reaches 98.642% of
accuracy. In [9], evaluations on Movidus NCS2 are
reported. It is shown that the performance of the
system reaches only 7.031 fps within accuracy of 93%.
It is seen that our system has higher accuracy.
Importantly, this is the first system which has a
complete processing pipeline also including the face
anti-spoofing. The optimization of a series of deep
learning models in order to be able to run on Jetson
Nano is a significant contribution.

For user applications, a web server was
developed to manage the results of the system. The
graphical user interface is shown in Fig. 5. The web
server contains both a back-end and a front-end. The
back-end has a user database and modules to allow
administration as well as let the normal user manage
the results. This back-end can communicate with other
functional systems via APIs. The front-end contains
several tabs for statistics, dashboard, timeline, access
control, device configuration, and import and export
data tools

Fig. 6. User application web server

JST: Smart Systems and Devices

Volume 34, Issue 1, January 2024, 001-008

7

4. Conclusions and Outlook

In this work, a complete, efficient, and accurate
face recognition system has been successfully
developed. For an accurate system, the processing
pipeline must contain a certain number of processing
units, where the preprocessing is of the greatest
importance. Our system is computationally efficient
since only lightweight models were developed and
optimized. Furthermore, the computation of these
models can be accelerated using the Jetson Nano. The
application of Jetson Nano, on the one hand, allows for
higher computational performance, with a maximum
processing ability of 4 camera streams for 40 IDs in
only 458 ms. On the other hand, the SDK DeepStream
has the advantage of mixing several camera streams
into a batch, which reduces the utilization of hardware
resources and thus improves processing capacity. It
can be concluded that the system is efficient and can
be used for edge-processing applications.

Several application guidelines can be developed
based on the obtained results. First, the Jetson Nano
can be efficiently used for the processing of two
camera streams with full steps. In this case, the
hardware can work independently without connecting
to a central server for further processing, which allows
for the high availability of the hybrid edge-central
system. When the connection between the edge and the
center is interrupted, the Jetson Nano can work in
offline mode. Second, in case more camera streams
need to be processed on site, the Jetson Nano should
be used just for the detection, tracking, and anti-
spoofing steps. The metadata is then sent to the center
for further processing. With this concept, the jetson
can be used for a maximum of six camera streams.
Also, the use of the hybrid edge-center computing
architecture allows us to deploy a more accurate and
powerful face feature extraction model at the center.
This will lead to the ability to perform face recognition
on very large-scale datasets with maximal accuracy
and computational performance.

In the future, the system will be extended in some
directions. The use of the Jetson Nano has
demonstrated that it has a high potential for use as an
edge processing device. Thus, a thorough evaluation of
the device in the concept of hybrid edge-central
computing should be investigated.

Acknowledgement

This research is funded by the CMC Applied
Technology Institute, CMC Corporation, Hanoi,
Vietnam.
References

[1] Wang, Mei, and Weihong Deng, Deep face
recognition: A survey. Neurocomputing, 429, 2021,
pp. 215-244.
https://doi.org/10.1016/j.neucom.2020.10.081

[2] Nguyen-Xuan H, Hoang-Nhu D, Nguyen-Duy A, and
Dang-Minh T, A New Method for IP camera based
face anti-spoofing systems, in Proc. Intelligent
Systems and Networks: Selected Articles from ICISN
2022, Vietnam (pp. 445-454). Singapore: Springer
Nature Singapore.
https://doi.org/10.1007/978-981-19-3394-3_48

[3] Nguyen-Xuan H, Hoang-Nhu D, and Dang-Minh T,
An evaluation of the multi-probe locality sensitive
hashing for large-scale face feature matching. In Proc.
Intelligent Systems and Networks: Selected Articles
from ICISN 2022, Vietnam (pp. 445-454). Singapore:
Springer Nature Singapore.
https://doi.org/10.1007/978-981-19-3394-3_51

[4] Dong HN, Ha NX, Tuan DM, A new approach for
large-scale face-feature matching based on LSH and
FPGA for edge processing. in Proc. Intelligent
Systems and Networks ICISN2021: Lecture Notes in
Networks and Systems, vol 243. Springer, Singapore.
https://doi.org/10.1007/978-981-16-2094-2_42

[5] Cheng KT, Wang YC, Using mobile GPU for general-
purpose computing-a case study of face recognition on
smartphones, in Proc. VLSI-DAT, Apr. 25, 2011, pp.
1-4.

[6] Aleksandrova O, Bashkov Y, Face recognition
systems based on Neural Compute Stick 2, CPU, GPU
comparison, presented at the 2nd Int. Conf. on
Advanced Trends in Information Theory, Nov. 25,
2020, pp. 104-107.
https://doi.org/10.1109/ATIT50783.2020.9349313

[7] Saypadith S, Aramvith S, Real-time multiple face
recognition using deep learning on embedded GPU
system, in Proc. APSIPA ASC, Nov. 12, 2018, pp.
1318-1324.
https://doi.org/10.23919/APSIPA.2018.8659751

[8] Sati V., Sánchez S. M., Shoeibi N., Arora A.,
Corchado J. M., Face detection and recognition, face
emotion recognition through Nivida Jetson Nano,
ISAml, 2021, pp. 177-185.
 https://doi.org/10.1007/978-3-030-58356-9_18

[9] Xie, Y., Ding, L., Zhou, A. and Chen, G., An
optimized face recognition for edge computing,
presented at the 13th Int. Conf. on ASIC, Oct, 2019,
pp. 1-4.
https://doi.org/10.1109/ASICON47005.2019.8983596

[10] GStreamer Plugin Overview - DeepStream 6.2 Release
Documentation. [Online] Available:
docs.nvidia.com/metropolis/deepstream/dev-
guide/text/DS_plugin_Intro.html.

[11] Nvidia DeepStream SDK. Nvidia Developer, 3 Feb.
2023, [Online] Available:
developer.nvidia.com/deepstream-sdk.

[12] Wu, K., Zhang, J., Peng, H., Liu, M., Xiao, B., Fu, J.
and Yuan, L., Tinyvit: Fast pretraining distillation for
small vision transformers, in Proc. ECCV, Tel Aviv,
Israel, October 23-27, 2022, Part XXI, pp. 68-85.
https://doi.org/10.1007/978-3-031-19803-8_5

JST: Smart Systems and Devices

Volume 34, Issue 1, January 2024, 001-008

8

[13] Deng, J., Guo, J., Ververas, E., Kotsia, I. and
Zafeiriou, S., Retinaface: Single-shot multi-level face
localisation in the wild, in Proc. CVPR, Seattle, WA,
USA, 2020, pp. 5202-5211.
https://doi.org/10.1109/CVPR42600.2020.00525

[14] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and
Chen, L. C., Mobilenetv2: Inverted residuals and linear
bottlenecks, in Proc. CVPR, Salt Lake City, UT, USA,
2018, pp. 4510-4520.
https://doi.org/10.1109/CVPR.2018.00474

[15] Guo, Y., Zhang, L., Hu, Y., He, X. and Gao, J.,
Ms-celeb-1m: A dataset and benchmark for large-scale
face recognition, in Proc. ECCV, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part
III 14, pp. 87-102.
https://doi.org/10.1007/978-3-319-46487-9_6

[16] Nvidia Jetson Nano Developer Kit. Nvidia Developer,
28 Sept. 2022, [Online] Available:
developer.nvidia.com/embedded/jetson-nano-
developer-kit.

[17] Liao, S., Lei, Z., Yi, D. and Li, S. Z., A benchmark
study of large-scale unconstrained face recognition,
presented at Int. Conf. on biometrics, September, 2014,
pp. 1-8.
https://doi.org/10.1109/BTAS.2014.6996301

[18] Weisstein, Eric W. Affine Transformation. From
MathWorld - A Wolfram Web Resource. [Online]
Available:
https://mathworld.wolfram.com/AffineTransformatio
n.html

	1. Introduction0F
	2. System Description

