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Abstract 

Tower cranes are widely used for moving heavy goods, materials, or tools around a site. They help to speed 
up construction and save time and manpower in a process. However, a significant problem of tower cranes is 
oscillatory behavior, which can adversely impact safety and delivery accuracy. This paper proposes sliding 
mode control (SMC) combined with Input Shaping (IS) for controlling tower cranes. Sliding mode control itself 
can be used to control a tower crane to obtain position precision and vibration suppression. However, the 
selection of controller parameters may be difficult and the required control effort is high. In addition, chattering 
may occur.  With the combination of input shaping, these problems can be overcome. The control parameter 
range is extended and the required control effort is reduced when input shaping is applied. In addition, input 
shaping also helps to reduce load vibration and chattering.  Simulations in Matlab-Simulink have been done 
and the simulation results show the effectiveness of the proposed control algorithm. 

Keywords: Tower crane, sliding mode control, input shaping, vibration suppression control. 

 

1. Introduction1 

Tower crane control is difficult to do 
satisfactorily. It is challenging to obtain accurate 
positioning with little payload swing since tower 
cranes often operate in challenging situations (high 
altitude, severe interference, etc.). Tower crane 
systems, on the other hand, have extremely complex 
dynamics due to their high nonlinearity and significant 
state coupling. Tower cranes, in contrast to commonly 
used overhead cranes, also incorporate jib slew 
motion, which increases the likelihood that the cargo 
may swing in space and creates far more challenging 
control issues. Tower cranes' primary control 
responsibility is to precisely regulate the cargo to the 
appropriate position with swing suppression. 

The tower crane is a flexible system's control 
may suffer as a result of modeling errors. To deal with 
the undesirable dynamic response resulting from both 
intentional motion and unexpected disturbances, 
several control systems have been developed. The 
capacity of sliding mode control to reject perturbations 
and pursue a planned trajectory has drawn a lot of 
interest. Methods for generating commands have 
gained popularity recently because of the way they can 
eliminate motion-induced vibration. 

Sliding mode control is primarily used to reject 
disturbances and maintain insensitivity to parameter 
perturbations [1]. Even in the presence of parameter 
uncertainty, sliding mode control may deliver flawless 
trajectory tracking, according to [2]. Sliding mode 
control has been applied to control tower crane 
systems [3-6]. However, high actuator effort is the 
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price to pay for flawless trajectory monitoring. The 
actuator is compelled to quickly change directions, 
which causes chatter, in order to maintain the system 
response along the required trajectory. The actuator's 
chattering may cause the system to experience certain 
high frequencies that weren't modeled. As the number 
of states rises, it becomes increasingly challenging to 
construct a sliding mode controller. It becomes even 
more challenging when these extra states are linked to 
ambiguous flexible modes.  

Input shaping [7] is one type of command 
generation that has proven successful in many types of 
applications. Implementing input shaping involves 
convolving a desired system command with an 
impulse sequence known as the input shaper. The 
shaped input will not generate any residual vibration 
Many different systems have applied input shaping 
techniques for vibration suppression [8].  

The combination of input shaping and other 
closed-loop control techniques has been considered in 
recent years to improve the system’s performance. The 
combination of Input Shaping (IS) and  Proportional - 
Derivative (PD) controllers has been implemented for 
overhead cranes to reduce the settling time in [9]. The 
combination of IS and Linear Quadratic Regulator 
(LQR) control is also studied in [10]. It is found that 
IS can improve the closed-loop system’s performance.  

From these combination suggestions, in this 
paper, the combination of IS and sliding mode control 
is proposed to control a tower crane. The sliding mode 
control first is applied to control the tower crane. Then, 
IS is used to improve the tower crane’s performance.  
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The rest of this paper is organized as follows: 
Section 2 introduces a dynamic model of a tower crane 
together with the SMC formulation. Experimental 
implementation and results are shown in Section 3. 
Finally, Section 4 concludes the contribution of the 
paper and the future works. 

2. Modeling and Controller Design 

2.1. Tower Crane Model 

The coordinate definitions that are used in this 
thesis are shown in Fig. 1. The three concentrated 
masses in the crane system are the trolley mass 𝑚𝑚𝑡𝑡 , 
the cargo mass 𝑚𝑚𝑐𝑐 ,  and the equivalent rotating mass 
𝐽𝐽 of the tower. Correspondingly, three types of motion 
are determined, namely, translating motion of trolley 
𝑥𝑥, rotating motion of tower 𝛾𝛾, and sway motion of 
suspended cargo on cable characterized by swing 
angles 𝜑𝜑 and 𝜃𝜃 that describe how the load vibrates 
when the tower crane is in operation. To derive the 
tower crane's equations of motion, the Euler-Lagrange 
method is applied. 

 
Fig. 1. Coordinate frames of a tower crane 

The kinetic energy of the tower crane is 
determined by the sum of the kinetic energy of the 
load, the trolley, and the rotational kinetic energy of 
the tower body: 

𝐾𝐾 =
1
2
𝑚𝑚𝑡𝑡𝑥𝑥𝑡𝑡2 +

1
2
𝑚𝑚𝑐𝑐𝑥𝑥𝑐𝑐2 +

1
2
𝐽𝐽�̇�𝛾2 (1) 

The potential energy of the tower crane is: 

𝑃𝑃 = −𝑚𝑚𝑚𝑚𝑚𝑚 cos𝜃𝜃 cos𝜑𝜑  (2) 

The Lagrange function is determined according 
to the kinetic and potential energy expressions of the 
system: 

𝐿𝐿 = 𝐾𝐾 − 𝑃𝑃 =
1
2
𝑚𝑚𝑡𝑡𝑥𝑥𝑡𝑡2 +

1
2
𝑚𝑚𝑐𝑐𝑥𝑥𝑐𝑐2 +

1
2
𝐽𝐽�̇�𝛾2

+ 𝑚𝑚𝑡𝑡𝑚𝑚 cos 𝜃𝜃 cos𝜑𝜑 
(3) 

Since the internal load does not exert any force. 
The following is the given Lagrange’s equation for the 
load-vibration motions: 

⎩
⎨

⎧
𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝜕𝜕𝑚𝑚
𝜕𝜕�̇�𝜃
� −

𝜕𝜕𝑚𝑚
𝜕𝜕θ

= 0 

𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝜕𝜕𝑚𝑚
𝜕𝜕�̇�𝜑

� −
𝜕𝜕𝑚𝑚
𝜕𝜕φ

= 0
 (4) 

Assume the rotation angles are very small and 
ignore the change in cable length during the operation 
of the tower crane. For control design, the nonlinear 
components are ignored. Mathematical model of tower 
crane is obtained in matrix form as follows [11]: 

�̈�𝑅 +
𝑚𝑚𝑐𝑐

𝑚𝑚𝑡𝑡
𝑚𝑚𝜑𝜑 =

𝑢𝑢𝑡𝑡
𝑚𝑚𝑡𝑡

 (5) 

�1 +
𝑚𝑚𝑡𝑡

𝐽𝐽
𝑅𝑅2�  �̈�𝛾 −

𝑚𝑚𝑐𝑐

𝐽𝐽
𝑚𝑚𝑅𝑅𝜑𝜑 =

𝑢𝑢𝑟𝑟
𝑚𝑚𝑡𝑡

 (6) 

𝑚𝑚 �̈�𝜃 + 𝑚𝑚𝜃𝜃 + 𝑅𝑅 �̈�𝛾 = 0 (7) 

𝑚𝑚 �̈�𝜑 + 𝑚𝑚𝜑𝜑 + �̈�𝑅 = 0 (8) 

2.2. Sliding Mode Control 

Position regulation and anti-swing control are the 
two objectives of the proposed control strategy. As a 
result, we create a controller that pushes the girder, 
trolley, and load into the desired positions. 
Additionally, by acting as an anti-swing control, the 
designed controller forces the 𝜑𝜑 and 𝜃𝜃 components of 
the swing angle to zero. 

The sliding mode controller's purpose is to drive 
actuated to reach desired values and cargo swing 
angles to approach zero. Assume that all state variables 
are quantifiable. First, a first-order sliding surface is 
defined to draw all state trajectories, and then a control 
scheme is built to force all system states to their 
reference values on the sliding surface. 

To facilitate the controller design process, it is 
necessary to set the following variables: 

𝑥𝑥1 = 𝑅𝑅;      𝑥𝑥3 = 𝛾𝛾;       𝑥𝑥5 = 𝜙𝜙;        𝑥𝑥7 = 𝜃𝜃 

 �̇�𝑥1 = 𝑥𝑥2;     �̇�𝑥3 = 𝑥𝑥4;     �̇�𝑥5 = 𝑥𝑥6;       �̇�𝑥7 = 𝑥𝑥8 

Then the mathematical equation of the model 
will include the following equations: 

�̇�𝑥1 = 𝑥𝑥2 

�̇�𝑥2 =
𝑢𝑢𝑡𝑡
𝑚𝑚𝑡𝑡

+
𝑚𝑚𝑐𝑐

𝑚𝑚𝑡𝑡
𝑚𝑚𝑥𝑥5 

�̇�𝑥3 = 𝑥𝑥4 

�̇�𝑥4 =
𝑢𝑢𝑟𝑟𝐽𝐽

𝑚𝑚𝑡𝑡(𝐽𝐽 + 𝑚𝑚𝑡𝑡𝑥𝑥12) +
𝑚𝑚𝑚𝑚𝑥𝑥1𝑥𝑥7
𝐽𝐽 + 𝑚𝑚𝑡𝑡𝑥𝑥12

 

�̇�𝑥5 = 𝑥𝑥6 

�̇�𝑥6 = �̇�𝑥2
𝑙𝑙
− 𝑔𝑔𝑥𝑥5

𝑙𝑙
  

�̇�𝑥7 = 𝑥𝑥8 

�̇�𝑥8 = −𝑥𝑥1
�̇�𝑥4
𝑚𝑚
−
𝑚𝑚𝑥𝑥7
𝑚𝑚

 

(9) 
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To satisfy the trolley control and the angle of 
rotation of the tower crane shaft to the desired position, 
set the values for the position to 𝑥𝑥1𝑑𝑑 = 𝑅𝑅𝑑𝑑, for the 
angle to be 𝑥𝑥3𝑑𝑑 = 𝛾𝛾𝑑𝑑. 

Define the following regulation error vectors, as 
follows: 

𝑒𝑒1 = 𝑥𝑥1𝑑𝑑 − 𝑥𝑥1 

𝑒𝑒3 = 𝑥𝑥3𝑑𝑑 − 𝑥𝑥3 

𝑒𝑒5 = −𝑥𝑥5 

𝑒𝑒7 = −𝑥𝑥7 

(10) 

Define the positive defined matrices 𝜇𝜇1, 𝜇𝜇2 and 
𝛼𝛼 such that 

𝜇𝜇1 = �𝜇𝜇11 0
0 𝜇𝜇12

� ;  𝜇𝜇2 = �𝜇𝜇21 0
0 𝜇𝜇22

� ;  𝛼𝛼 = � 𝛼𝛼1 0
0 𝛼𝛼2

� 

Choose the following sliding surface: 

𝑠𝑠1 = 𝑒𝑒1̇ + 𝜇𝜇11𝑒𝑒1 + 𝛼𝛼1𝑒𝑒5̇ + 𝜇𝜇21𝑒𝑒5 (11) 

𝑠𝑠2 = 𝑒𝑒3̇ + 𝜇𝜇12𝑒𝑒3 + 𝛼𝛼2𝑒𝑒7̇ + 𝜇𝜇22𝑒𝑒7 (12) 

The task of control design is to determine the 
control signal 𝑢𝑢𝑡𝑡, 𝑢𝑢𝑟𝑟 to move the system towards the 
sliding surface and keep it on it. 

We will denote the control signal 𝑢𝑢𝑡𝑡, 𝑢𝑢𝑟𝑟 as 
follows: 

𝑢𝑢𝑡𝑡 = �
𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡 when 𝑠𝑠1(𝑥𝑥, 𝑑𝑑) = 0
𝑢𝑢𝑡𝑡𝑡𝑡  when 𝑠𝑠1(𝑥𝑥, 𝑑𝑑) ≠ 0 

(13) 

𝑢𝑢𝑟𝑟 = �
𝑢𝑢𝑟𝑟𝑡𝑡𝑡𝑡 when 𝑠𝑠2(𝑥𝑥, 𝑑𝑑) = 0
𝑢𝑢𝑟𝑟𝑡𝑡 when 𝑠𝑠2(𝑥𝑥, 𝑑𝑑) ≠ 0  (14) 

where 𝑢𝑢𝑖𝑖𝑡𝑡𝑡𝑡  is the signal component that keeps x(t) on 
the slide (equivalence principle), 𝑢𝑢𝑖𝑖𝑡𝑡 is the component 
that causes the signal x(t) to move towards the slip 
surface (i = t, r). Differentiating the sliding surface 
with respect to time, one can obtain: 

𝑠𝑠1̇ = 𝑒𝑒1̈ + 𝜇𝜇11𝑒𝑒1̇ + 𝛼𝛼1𝑒𝑒5̈ + 𝜇𝜇21𝑒𝑒5̇ (15) 

𝑠𝑠2̇ = 𝑒𝑒3̈ + 𝜇𝜇12𝑒𝑒3̇ + 𝛼𝛼2𝑒𝑒7̈ + 𝜇𝜇22𝑒𝑒7̇ (16) 

By setting 𝑠𝑠1̇ = 0 and 𝑠𝑠1̇ = 0 we obtain the 
following results. 

𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑚𝑚𝑡𝑡𝑙𝑙
𝛼𝛼1+𝑙𝑙

��̈�𝑥1𝑑𝑑 + �̇�𝑥1𝑑𝑑 − 𝜇𝜇11𝑥𝑥2 + 𝛼𝛼1𝑔𝑔
𝑙𝑙
𝑥𝑥5 −

                 𝜇𝜇21𝑥𝑥6� − 𝑚𝑚𝑐𝑐𝑚𝑚𝑥𝑥5  
(17) 

𝑢𝑢𝑟𝑟𝑡𝑡𝑡𝑡 = �𝐽𝐽+𝑚𝑚𝑡𝑡𝑥𝑥1
2�𝑙𝑙𝑚𝑚𝑡𝑡

𝐽𝐽(𝑙𝑙−𝛼𝛼2𝑥𝑥1)
��̈�𝑥3𝑑𝑑 + 𝜇𝜇12�̇�𝑥3𝑑𝑑 −

                𝜇𝜇12𝑥𝑥4 + 𝛼𝛼2𝑔𝑔
𝑙𝑙
𝑥𝑥7� −

𝑚𝑚𝑡𝑡𝑚𝑚𝑔𝑔
𝐽𝐽

𝑥𝑥1𝑥𝑥7  
(18) 

To control the system to move towards the 
sliding surface, the control signal is chosen as: 

𝑢𝑢𝑡𝑡𝑡𝑡 = −𝐾𝐾1𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠(𝑠𝑠1) (19) 

𝑢𝑢𝑟𝑟𝑡𝑡 = −𝐾𝐾2𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠(𝑠𝑠2) (20) 

Therefore, the overall SMC scheme composed of 
approximated control and switching action is written 
by: 

𝑢𝑢𝑡𝑡 = 𝑚𝑚𝑡𝑡𝑙𝑙
𝛼𝛼1+𝑙𝑙

��̈�𝑥1𝑑𝑑 + �̇�𝑥1𝑑𝑑 − 𝜇𝜇11𝑥𝑥2 + 𝛼𝛼1𝑔𝑔
𝑙𝑙
𝑥𝑥5 −

               𝜇𝜇21𝑥𝑥6� − 𝑚𝑚𝑐𝑐𝑚𝑚𝑥𝑥5 − 𝐾𝐾1𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠(𝑠𝑠1)  
(21) 

𝑢𝑢𝑟𝑟 = �𝐽𝐽+𝑚𝑚𝑡𝑡𝑥𝑥1
2�𝑙𝑙𝑚𝑚𝑡𝑡

𝐽𝐽(𝑙𝑙−𝛼𝛼2𝑥𝑥1)
��̈�𝑥3𝑑𝑑 + 𝜇𝜇12�̇�𝑥3𝑑𝑑 − 𝜇𝜇12𝑥𝑥4 +

             𝛼𝛼2𝑔𝑔
𝑙𝑙
𝑥𝑥7� −

𝑚𝑚𝑡𝑡𝑚𝑚𝑔𝑔
𝐽𝐽

𝑥𝑥1𝑥𝑥7  − 𝐾𝐾2𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠(𝑠𝑠2)  
(22) 

Controller coefficients 𝐾𝐾1,𝐾𝐾2, 𝜇𝜇1, 𝜇𝜇2,𝛼𝛼 are 
selected so that the sliding surface is stable, and the 
state trajectories slide to desired values on surface as 
quickly as possible. 

2.3. Stability Analysis 

Two requirements must be met by the SMC 
scheme: (1) Control scheme forces state trajectories to 
reach sliding surface (reaching condition); and (2) 
After entering the sliding surface, the control scheme 
pulls state trajectories there to the desired values 
(sufficient condition). 

To analyze stability condition of the system, one 
can consider a Lyapunov candidate function: 

𝑉𝑉 = 𝑉𝑉1 + 𝑉𝑉2 = 1
2
𝑠𝑠12 + 1

2
𝑠𝑠22 ≥ 0  (23) 

where 𝑉𝑉1 = 1
2
𝑠𝑠12 and 𝑉𝑉2 = 1

2
𝑠𝑠22  

Then: 

𝑉𝑉1̇ = 𝑠𝑠1𝑠𝑠1̇ (24) 

𝑉𝑉2̇ = 𝑠𝑠2𝑠𝑠2̇ (25) 

Substitute (11)-(22) into (24) and (25) we get: 

𝑉𝑉1̇ = −𝐾𝐾1
𝛼𝛼1 + 𝑚𝑚
𝑚𝑚𝑡𝑡𝑚𝑚

𝑠𝑠1𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠(𝑠𝑠1) = −𝑐𝑐1|𝑠𝑠1|; (26) 

𝑉𝑉2̇ = −𝐾𝐾2
𝐽𝐽(𝑙𝑙−𝛼𝛼2𝑥𝑥1)

𝑙𝑙𝑚𝑚𝑡𝑡�𝐽𝐽+𝑚𝑚𝑡𝑡𝑥𝑥12�
𝑠𝑠2𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠(𝑠𝑠2) = −𝑐𝑐2|𝑠𝑠2|  (27) 

where  𝑐𝑐1 = 𝐾𝐾1
𝛼𝛼1+𝑙𝑙
𝑚𝑚𝑡𝑡𝑙𝑙

 and 𝑐𝑐2 = 𝐾𝐾2
𝐽𝐽(𝑙𝑙−𝛼𝛼2𝑥𝑥1)

𝑙𝑙𝑚𝑚𝑡𝑡�𝐽𝐽+𝑚𝑚𝑡𝑡𝑥𝑥1
2�

. 

It is easy to see that 𝑉𝑉1̇ ≤ 0 for all positive define 
𝐾𝐾1,𝐾𝐾2,𝛼𝛼1. In order to obtain 𝑉𝑉2̇ ≤ 0, the following 
condition must hold:  

 𝑚𝑚 − 𝛼𝛼2𝑥𝑥1 > 0  (28) 

Since 𝑥𝑥1 is the translation of the trolley, it is 
bound, i.e., 𝑥𝑥1 ≤ 𝑀𝑀𝑚𝑚. By choosing 𝛼𝛼2 < 𝑙𝑙

𝑀𝑀𝑚𝑚
, the 

condition (28) is held. Thus, �̇�𝑉 = �̇�𝑉1 + �̇�𝑉2 ≤ 0, the 
system is stable at  𝑠𝑠1 = 0 and 𝑠𝑠2 = 0.  
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In addition, 

(|𝑠𝑠1| + |𝑠𝑠2|)2 = 𝑠𝑠12 + 𝑠𝑠22 + 2|𝑠𝑠1||𝑠𝑠2|
≥ 𝑠𝑠12 + 𝑠𝑠22 (29) 

Thus, 

where 𝑐𝑐 = min(𝑐𝑐1, 𝑐𝑐2) > 0. 

According to [12], the function 𝑉𝑉(𝑑𝑑), 𝑠𝑠1(𝑑𝑑)  
and 𝑠𝑠2(𝑑𝑑) converge to zero in a finite time. In addition 
according to [4], 𝑠𝑠1 = 0 and 𝑠𝑠2 = 0 can lead to  
𝑒𝑒1 = 0, 𝑒𝑒3 = 0, 𝑒𝑒5 = 0, 𝑒𝑒7 = 0, i.e., the system is 
stable at 𝑅𝑅 = 𝑅𝑅𝑑𝑑 , 𝛾𝛾 = 𝛾𝛾𝑑𝑑 ,φ = 0, 𝜃𝜃 = 0. 

2.4. Simulations of the Sliding Mode Controller 

To verify the effectiveness of the sliding mode 
controllers, the simulation is done with the following 
conditions. In the first case, the trolley is controlled to 
translate 2 [m]. In the second case, the tower is driven 
to rotate to 0.7 [rad] (a desired angle) in the first  
20 seconds and continuously to rotate to 0.5 rad 
(reference) in the next 30 seconds. 

Table 1. Simulation parameter 

Parameters Value 

𝑚𝑚 9.81 [m/𝑠𝑠2] 

𝑚𝑚 3 [m] 

𝑚𝑚𝑡𝑡 50 [kg] 

𝑚𝑚𝑐𝑐 5 [kg] 

𝐽𝐽0 30 [kg.𝑚𝑚2] 

 The value of the input control signal of the 
system shown in Fig. 2, includes two signals, pulling 
force and rotation torque. It can be seen that the two 
input control values are quite large. 

Fig. 3 shows the response of the system 
following the shaped trajectory. The blue solid line is 
the reference value, and the red dashed curve is the 
output trajectory using the controller. Although there 
is fluctuation, it is not significant, follows quite closely 
to the initial set value, the system is relatively stable. 

Fig. 4 shows the oscillation angle. Both 
oscillation angles, are relatively small oscillations and 
the oscillation suppression time does not take too long. 

 

 

 
Fig. 2. The input control signal value (SMC) 

 
Fig. 3. System response (SMC) 

 

 
Fig. 4. Cargo swing angle (SMC) 

Realize that with although the controller has 
stability, the input control signal is relatively large. 
Thus, we proceed to change the parameters to reduce 
the control input. Set 𝜇𝜇 =  𝜇𝜇𝑚𝑚𝑖𝑖𝑚𝑚 = (0.2;−9; 0.2; 1), 
the control input in this case is shown in Fig. 5, and the 
system response in two cases 𝜇𝜇 = 𝜇𝜇𝑚𝑚𝑚𝑚𝑥𝑥  and 𝜇𝜇 = 𝜇𝜇𝑚𝑚𝑖𝑖𝑚𝑚  
are compared in Fig. 6 and Fig. 7. When 𝜇𝜇 is reduced, 
the system already has a control signal significantly 
smaller than a larger value of 𝜇𝜇. 

 

 

�̇�𝑉 = �̇�𝑉1 + �̇�𝑉2 = −𝑐𝑐1|𝑠𝑠1| − 𝑐𝑐2|𝑠𝑠2|
≤ −𝑐𝑐(|𝑠𝑠1| + |𝑠𝑠2|)

≤ −𝑐𝑐(𝑠𝑠12 + 𝑠𝑠22)
1
2

= −𝑐𝑐𝑉𝑉1/2 

(30) 
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Fig. 5. The input control signal value (SMC) 

 

 
Fig. 7. Cargo swing angle (SMC) 

 

 
Fig. 6. System response (SMC) 

 

 
Fig. 8. Tracking Error (SMC) 

 

Although tracking to the reference value, there 
are still fluctuations, especially in the rotation angle 
component. In addition, the response time is also 
relatively slow. Similar to the response of the system, 
the two oscillation angles of the system both fluctuate 
largerly. The time for the system to stop oscillation is 
relatively long. The moving trajectory of the load 
fluctuates quite a bit, especially when approaching the 
second set point.  

Fig. 8 shows the decrease in the error 
corresponding to the higher values of μ. The higher the 
value of μ, the lower the error, indicating that the 
higher the μ-factor, the better the controller responds. 
To address the drawbacks identified in both of the 
aforementioned cases, an improvement can be made 
by incorporating Input Shaping into the controller. 

3. Input Shaping and Input Shaping-Sliding Mode 
Controller. 

In order to minimize oscillations and enhance the 
performance of the controller, including response time, 
stability, trajectories, and oscillation angles, it is 
proposed to integrate an Input Shaping into the 
existing controller.  

3.1. Input Shaping Technique 

A vibratory system can be considered as a second 
order underdamped system of the form: 

𝐺𝐺(𝑠𝑠) =
𝜔𝜔𝑚𝑚2

𝑠𝑠2 + 2𝜉𝜉𝜔𝜔𝑚𝑚𝑠𝑠 + 𝜔𝜔𝑚𝑚2
 (31) 

where 𝜔𝜔𝑚𝑚 is the natural frequency and 𝜉𝜉 is the damping 
ratio of the system in the time domain. The response 
of the system with amplitude 𝐴𝐴𝑖𝑖 at time 𝑑𝑑𝑖𝑖can be 
expressed as 

𝑦𝑦(𝑑𝑑) = 𝐴𝐴𝑖𝑖
𝜔𝜔𝑛𝑛

�1−𝜉𝜉2
𝑒𝑒−𝜉𝜉𝜔𝜔𝑛𝑛(𝑡𝑡−𝑡𝑡𝑖𝑖) ×   

 𝑠𝑠𝑠𝑠𝑠𝑠 �𝜔𝜔𝑚𝑚 �1 − 𝜉𝜉2(𝑑𝑑 − 𝑑𝑑𝑖𝑖)� 
(32) 

To suppress the vibration of an impulse, a series 
of impulses is input to the system. The amplitude and 
time of these impulses are determined by setting the 
total system response after the last impulse equal to 
zero. From this, the following results are obtained. For 
the case of 2 impulses, it is Zero Vibration (ZV) the 
impulse parameters are as follows: 
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�
𝑑𝑑𝑖𝑖
𝐴𝐴𝑖𝑖
� = �

0
𝜋𝜋
𝜔𝜔𝑑𝑑

𝐾𝐾
1 + 𝐾𝐾

1
1 + 𝐾𝐾

�  

𝐾𝐾 = 𝑒𝑒
𝜉𝜉𝜉𝜉

�1−𝜉𝜉2  

(33) 

For the case of 3 impulses, it is Zero Vibration 
Derivative (ZVD), the impulse parameters are as 
follows: 

�
𝑑𝑑𝑖𝑖
𝐴𝐴𝑖𝑖
� =

⎣
⎢
⎢
⎢
⎡ 0

𝜋𝜋
𝜔𝜔𝑑𝑑

2𝜋𝜋
𝜔𝜔𝑑𝑑

𝐾𝐾2

(1 + 𝐾𝐾)2
2𝐾𝐾

(1 + 𝐾𝐾)2
1

(1 + 𝐾𝐾)2⎦
⎥
⎥
⎥
⎤
 

𝐾𝐾 = 𝑒𝑒
𝜉𝜉𝜉𝜉

�1−𝜉𝜉2 

(34) 

3.2. Input Shaping-Sliding Mode Control for Tower 
Crane 

To combine input shaper and sliding mode 
control, the tower crane is controlled by a sliding mode 
controller as in Section 2. In addition, the input shaper 
is added as feedforward controller to the system. The 
input shaper plays a role in shaping the reference 
trajectory before it is put into the system with sliding 
mode controller. 

The input shaping with 2 impulses is considered 
in this paper. In order to calculate the input shaper, the 
natural frequency of the tower crane model is chosen. 
With  𝜔𝜔𝑚𝑚 = �𝑚𝑚/𝑚𝑚 = 1.81 (rad/s), 𝜉𝜉 = 0 we can calculate 
the amplitude and time of the input pulses: 

𝐾𝐾 = 𝑒𝑒

𝜉𝜉𝜉𝜉

�1−𝜉𝜉2 = 1; ∆𝑇𝑇 = 𝜉𝜉 
𝜔𝜔𝑛𝑛

= 1.74 (s) (35) 

𝐴𝐴1 =
𝐾𝐾

1 + 𝐾𝐾
=

1
2

, 𝑑𝑑1 = 0 

𝐴𝐴2 =
𝐾𝐾

1 + 𝐾𝐾
=

1
2

, 𝑑𝑑2 = ∆𝑇𝑇 

With the same simulation parameters as in 
Section 2, we get the results as shown in figures from 
Fig. 9 to Fig. 12. The value of the input control signal 
of the system shown in Fig. 9, includes two signals, 
pulling force and rotation torque. Both values are 
equivalent to the value of SMC which is not too large. 

Fig. 10 shows the response of the system 
following the shaped trajectory. The system is more 
stable, both the angle and position values of the trolley 
are closer to the set value, the oscillations have been 
significantly reduced compared to using SMC 
controller alone. 

Fig. 11 shows that the oscillation angle was 
significantly reduced when adding IS to the sliding 
mode controller. The value can be considered as 
relatively small and the oscillation time is also short, 
thereby determining that the IS-SMC is more stable 
during migration. 

Fig. 12 shows the decrease in the error 
corresponding to the higher values of 𝜇𝜇. The error for 
the IS-SMC system is significantly smaller than the 
error for the system using the SMC with the same 
value of μ. 

It is found that when adding IS, the oscillation is 
significantly reduced compared to using conventional 
SMC and gives an equivalent position. This means that 
the proposed control algorithm can reduce the 
chattering phenomenon, in comparison to the 
conventional SMC controller. The reason is the 
proposed controller can accept the higher value of μ 
that reduces the chattering effect.

 

 

 
Fig. 9. The input control signal value (IS-SMC) 

 

 
Fig. 10. System response (IS-SMC) 
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Fig. 11. Cargo swing angle (IS-SMC) 

 

 
Fig. 12. Tracking Error (IS-SMC) 

4. Conclusion 

In this paper, it has been demonstrated that a 
tower crane system's tracking performance can be 
improved by a control strategy that combines an input 
shaping and a sliding mode controller. Compared to 
the same system following an unshaped path, the 
overall error for the system following the shaped path 
is significantly lower. An increase in the system's rise 
time is the cost of enhancing tracking performance. 
The increase in rise time, however, might not be 
noticeable if the system's rise time is very brief in 
comparison to the entire maneuver length. The kind of 
shaper being used directly affects how long the rise 
time takes to increase. Based on the simulation results, 
the application of the IS-SMC practical model 
demonstrates promising outcomes, providing 
favorable and stable results. Furthermore, the 
integration of IS into the SMC system leads to a 
reduced adverse effect on the load during operation. 

In the future, the proposed control algorithm will 
undergo practical implementation to validate its 
effectiveness. Furthermore, there is also consideration 
for extending the control algorithm to include tower 
crane systems with varying rope lengths. This 
expansion aims to address the specific challenges 
associated with such systems and further enhance the 
control capabilities. 
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