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Abstract 

The reduction of noises, vibration, and mechanical waves transmitting through water from the shells of 
submarines is essential to their safe operation and travelling. Vibrations from the rotors of the engines are 
widely deemed as one of the main sources to which engineers have tried to attenuate with various designs. 
Squeeze-film dampers can be easily integrated into rotor-bearing structures in order to lower the level of 
vibrations caused by rotors out of balance. For this advantage, squeeze-film dampers are widely used in air-
turbine engines. This paper presents preliminary results of a numerical simulation of a shaft running on a 
journal bearing integrated with a squeeze-film damper and evaluates the capacity in reducing vibrations 
concerning the stability of static equilibrium of the shaft journal center. The proposed damper is designed in 
spherical shape with self-aligning capacity. The results were obtained using finite difference method and 
numerical integration of the full nonlinear equations of motion. 
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Tóm tắt 

Giảm rung động, tiếng ồn và sóng cơ học truyền từ vỏ tàu ngầm truyền ra môi trường nước có vai trò quan 
trọng đối với sự an toàn trong vận hành và di chuyển của tàu. Các rung động từ trục quay của các động cơ 
thường được xem là một trong những nguyên nhân chính, cái mà các nhà thiết kế đã tìm nhiều giải pháp khác 
nhau để khống chế. Giảm chấn màng-ép (SFD) có kết cấu đơn giản nên có thể dễ dàng tích hợp vào kết cấu 
các gối đỡ trục để hạn chế rung động gây ra từ sự mất cân bằng trục. Giảm chấn SFD được sử dụng phổ biến 
trong các kết cấu động cơ máy bay kiểu tuốc bin khí. Bài báo này trình bày những kết quả mô phỏng động 
lực học của hệ trục-ổ trượt-giảm chấn màng ép-gối đỡ và đánh giá sơ bộ về khả năng giảm rung và tiếng ồn 
trên vỏ tàu ngầm cỡ nhỏ, với giảm chấn màng ép có kết cấu kiểu lòng cầu để tăng tính tự lựa khi tích hợp với 
ổ trượt. Kết quả tính toán mô phỏng thu được nhờ sử dụng phương pháp sai phân hữu hạn và giải các phương 
trình vi phân chuyển động phi tuyến bằng phương pháp số. 

Từ khóa: Rung động, tiếng ồn, giảm chấn SFD, động lực học trục, ổ đỡ phi tuyến, tàu ngầm. 
 
1. Introduction* 

Squeeze film damper (SFD) is widely used in gas 
turbine engines to protect the machine against the 
effects of vibrations caused by shaft unbalance and 
other causes. With a simple structure and easy 
integration with bearings in aircraft engines [1-3], air 
compressors, etc., SFDs have been used to reduce 
vibrations when engines run through their resonant 
regions and at the same time limit the force transmitted 
through the body [4-7]. 

The research and manufacture of small 
submarines in Vietnam have been attracting the 
attention and efforts of researchers, scientists, etc. For 
submarines, the design requirements in minimizing the 
noise and sound waves propagating into the aquatic 
environment [8-9] are necessary. One of the measures 
that designers can think of is to suppress or reduce the 
source of vibration.  
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SFDs have normally been integrated into rolling-
element bearings instead of journal bearings. One of 
the reasons is that journal bearings provide a certain 
amount of damping capacity to prevent shocks and 
dissipate external sources of vibrations. However, 
journal bearings can become the source of self-excited 
stimulation leading to instability of the whole system. 

This paper aims to use the advantages of SFDs to 
reduce vibration for shafts such as used in submarines 
which are supported by journal bearings. 

2. Modelling of Shaft-Bearing Systems 

2.1. Shaft-Conventional Journal Bearing 

The first rotor-bearing system being considered 
is a rotor running on conventional journal bearing. The 
shaft journal and the housing surfaces are cylindrical. 
The small gap between the two surfaces is filled with 
pressurized lubricating oil by a pump. The diagram of 
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a shaft support system using a journal bearing can be 
shown in Fig. 1. 

The equation of motion of the rotordynamic 
system shown in Fig. 1 can be written as follows: 
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where xt and yt are the displacements of the shaft center 
relative to the center of the bearing which is fixed on 
the machine body; mt is the effective mass of the shaft 
at the center of the journal; St =gmt is the static external 
force acting on the shaft in the y direction; ( )

b
xf  and 

( )
b

yf  are the total oil film pressure acting on the journal 
in the x and y directions, respectively (see 2.3). 

2.2. Shaft-Journal Bearing-Spherical SFD 

Fig. 2 depicts the shaft system supported by a 
journal bearing which is integrated with a spherical 
SFD. In this diagram, the journal bearing housing is 
separated from the main body of the machine by a 
clearance between the inner sphere (on the body) and 
the outer sphere (on the housing of the journal 
bearing). This gap is filled with lubricating oil to act as 
a shock absorber. The bearing housing is suspended on 
an elastic structure (centering/retainer spring). The two 
side ends of the damper are unsealed.  

The equation of motion for the system depicted 
in Fig. 2 can be written as follows:  
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in which r t gx x x= −  and r t gy y y= −  the 
displacements of the shaft center relative to the center 

of the bearing housing; gx  and  gy  are the 
displacements of the bearing housing center relative to 
the center of the SFD housing; mg is the mass of the 
journal bearing housing; gk  is the effective stiffness of 

the centering springs that support the SFD; Sg = gmg 
is the gravitational force acting on the SFD housing; 

( )
d

xf  and ( )
d

yf  the reaction forces from the SFD oil film 
acting on the bearing housing in the x and y directions, 
respectively (see 2.3). 

 
Fig. 1. Shaft-journal bearing diagram 

 
Fig. 2. Shaft-journal bearing-spherical SFD diagram 

2.3. Calculation of Oil Film Forces 

The Reynolds equation governing the pressure 
distribution within the spherical SFD incompressible 
oil film (Fig. 3) can be written as follows [10]: 
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( ) ( )( )x
d d d1 cos sin cosyh ε θ ε θ β= − +     (7) 
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Fig. 3. A schematic diagram of a spherical SFD 

The Reynolds equation governing the pressure 
distribution in the oil film of a conventional journal 
bearing (Fig. 1 and Fig. 2) can be written as follows 
[10]: 
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in which: 

- bp  and dp  are oil film pressure in the journal 
bearing and the SFD, respectively. 

- bc  and dc  are the radial clearance of the journal 
bearing and the SFD, respectively. 

- µ  is the dynamic viscosity of the lubricating oil. 

- Ω  is the rotational speed of the shaft. 

Equations (6) and (9) are discretised over the 
bearing lands using a central finite difference scheme. 
After that, the pressure distributions in the journal 
bearing and in the damper are adapted with the 
cavitation condition, as follows: 

( ) cav

cav cav
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with cavp  being the cavitation pressure of the oil film. 

 With the calculated pressure obtained from 
formula (13), the reactions at the oil films are 
integrated over the bearing surfaces as follows: 
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2.4. Static Equilibrium and Self-Excited Vibrations  

In this paper, to evaluate the efficiency of SFD in 
reducing vibration of the shaft, shaft unbalance is not 
considered. The whole system is now not subjected to 
external stimulation and reaches equilibrium at each 
speed in a certain range, presumably. In these static 
equilibrium states, there is no movement at the center 
of the shaft journal and the bearing housing, therefore: 

¨
0 q =          (16) 

0q =           (17) 

Combining (16), (17) with (1) and (2), the 
locations of the center of the shaft journal ( ),t tx y  and 

the center of the bearing housing ( ),g gx y  can be 
determined by: 
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The Jacobian matrices of the systems are defined 
as follows: 

1) For the system without SFD: 
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2) For the system with SFD: 
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According to the theory of dynamical non-linear 
systems, the static equilibrium states exist only if none 
of the eigenvalues of the Jacobian matrices (20) and 
(21) has a positive real part [13]. When this condition 
is not satisfied, the equilibrium states become unstable 
and the shaft starts vibrating even with no external 
source of excitation. The following parts of this paper 
will investigate the range of the rotational speeds in 
which the stability of the shaft center is maintained.  

3. Simulation and Discussions 

Equations (1) and (2) are integrated with the time 
domain to obtain the responses of the state variables 
using the ode23s solver, a Rosenbrock-type scheme 
for stiff ordinary differential equations [11], provided 

by Matlab  [12]. The Jacobian matrices (20) and (21) 
are approximated numerically [12]. 

The bearing and damper are supplied with oil at 
a pressure of ps=10000Pa at the inlet. Due to the deep 
grooves, the oil pressures in the bearing and the 
damper at the groove edges are assumed to be constant 
and equal to ps. Since the oil is supplied sufficiently 
and continuously, the cavitation pressure in the oil film 
is now assumed to be the absolute zero pressure.  

The finite difference grids and the boundary 
conditions for the pressure meshes in journal bearing 
and the SFD are shown in Fig.s 4a and 4b. The size of 
the grids are chosen as 51Nθ =  , 13N Nβ ζ= = . The 
reaction forces of the oil films are integrated 
numerically using Simpson’s rule. Other system 
parameters are listed in Table 1. 

Fig. 5 shows the transition from static equilibria 
to unstable states in two cases: with SFD (square) and 
without SFD (dot). At each rotational speed, the 
equation (8) is solved using a Newton-Raphson 
technique to obtain the presumably stable static 
equilibria for both systems. For each equilibrium state, 
the Jacobian matrices (9) and (10) are computed 
numerically and, from which, the real parts of the 
leading eigenvalues are extracted.

Table 1. Parameters of systems for simulation 

Parameters Nomenclature Value Unit of measurement 

Radial of the shaft journal  Rb 15 mm 

Radial clearance of the journal bearing  cb 0.15 mm 

Radial of the spherical SFD  Rd 45 mm 

Radial clearance of the spherical SFD cd 0.1 mm 

Axial half bearing length  L 15 mm 

Dynamic viscosity of the lubricating oil μ 0.005  kg/(m.s) 

Effective mass of the rotor  mt 3.9 kg 

Effective stiffness of the centering spring kg 600000  N/m 

Mass of the journal bearing housing  mg 1 Kg 

Number of bearing lands nL 2  

  
(a) (b) 

Fig. 4. FD grids and the boundary conditions 
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Fig. 5. The stability of the static equilibria 
 

  
Fig. 6. Shaft orbits of system with no SFD at 2500 rpm 
(stable) 

Fig. 7. Shaft orbits of system with no SFD at 3200 rpm 
(unstable) 

 
It can be seen very clearly that the integration of 

SFD into a journal bearing leads to an expanded stable 
working range of the shaft speeds, from 2500 rpm to 
about 4500 rpm. The stability is verified in Fig. 6 and 
7 with the solutions of equation (1) found in the time 
domain for the rotational speeds immediately before 
and after the dynamics of the systems being 
transformed. 

Fig. 6 shows the stability of the shaft center with 
numerical simulation results showing that the orbit 

converges to a point. Meanwhile, in the dynamic 
steady state, at 3200 rpm (Fig. 7), the static equilibrium 
in the bearing-bearing system is proved to be unstable 
and then, the shaft center orbit becomes a closed loop. 

Fig. 8 shows the trajectory of the shaft center for 
the system with integrated spherical SFD at speeds of 
4500 rpm and 5000 rpm. The changes in position of 
the shaft centers in Fig. 8a and 8b fully correlate with 
the graphs shown in Fig. 5. 
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 (a)   

 
(b) 

Fig. 8. Shaft orbit in system with SFD at speeds (a) 
4500 rpm (stable); (b) 5000 rpm (unstable) 

Fig. 9 is a comparison of the absolute trajectory 
of the shaft center at 5000 rpm. The results showed that 
the SFD damping had the effect of reducing the 
vibration amplitude of the shaft many times compared 
to the case without SFDs.  

Fig. 10 provides a closer view of the orbit of shaft 
center for the case with SFD. The self-excited 
vibration still pertains, similar to the case without SFD, 
but with a much reduced amplitude. This can be 
understood as the extra damping effect that the SFD 
provides an added capacity to dissipate the vibrational 
energy. 

4. Conclusion 

The paper has proposed a possibility of 
incorporating SFD into the journal bearings for rotor 
systems. The results show the great influence of SFDs 
in reducing the vibration of the shaft in particular and 
the whole machine in general. With further 
investigation of the influences of different parameters 
of the system, the results of this paper can serve as a 
basis for studying and applying SFDs to bearing 
structures to prevent vibration and reduce noise in 
general and submarines in particular. 

 
Fig. 9. Limit cycle of systems at 5000 rpm. 

 
Fig. 10. Shaft trajectory in the presence of SFD 
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