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Abstract 

The dynamic response of a structure subjected to moving loads is an interesting and meaningful research 
subject in various engineering fields such as bridges, roadways, railways and aircrafts. A vast number of 
studies has employed the vibration model of the Euler-Bernoulli beam to calculate the dynamic response of a 
beam structure under the action of moving loads. The present paper deals with the dynamic response of an 
uniform Timoshenko beam subjected to a moving force. Properties of the natural frequencies and modes of 
the Timoshenko beam are discussed. Using the modal method, a procedure for calculating the forced 
vibrations of the Timoshenko beam has been proposed. It is shown that the solution of the forced vibration for 
the transverse displacement and the rotation of the cross section of the beam can be expressed in form of a 
sum of two infinite series. The numerical simulation result shows that the speed change of the moving force 
has little effect on the beam deflection, but its magnitude change greatly affects the beam deflection. 
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1. Introduction1 

The dynamic response of a structure subjected to 
moving forces is an interesting and meaningful 
research subject in various engineering fields such as 
dynamics of bridges, roadways, railways, and runways 
as well as missiles and aircrafts. Different types of 
structures and girders such beams, plates, shells, and 
frames have been considered [1-3]. 

It would be interesting to study the problem of the 
dynamic response of Timoshenko beams subjected to 
moving forces. The governing equations for a 
Timoshenko beam of length l can be written in the 
following forms [1-3]. 

2

2( ) * ( ) ( , )w wA x k G A x p x t
x xt

∂ ∂ ∂ρ ψ
∂ ∂∂

  = − +    
 (1) 

2

2( ) * ( ) ( )wI x k GA x E I x
x x xt

∂ ψ ∂ ∂ ∂ψρ ψ
∂ ∂ ∂∂

   = − +      
 (2) 

In the (1) and (2) w(x, t) is the transverse 
displacement, ( , )x tψ is the rotation of the cross 
section due to bending, ( , )p x t is the external 
transverse force, ( , )x tτ  is the external bending 
moment, A(x) is the cross -section area, I(x) is the area 
moment of inertia,  E is Young’s modulus, G is the 
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shear modulus, *k  is the shear correction factor, and 
ρ is the mass density. 

Due to the complexity of equations (1) and (2), it 
is common to use approximation methods such as the 
Ritz method, the finite element method, to calculate 
the vibrations of the Timoshenko beam [1-3]. The 
calculating the free oscillations of the Timoshenko 
beam has been studied a lot. In contrast, the study of 
forced vibration of the Timoshenko beam is also an 
issue that many scientists are interested in researching. 

The published documents for calculating the 
forced vibrations of Timoshenko beams by analytical 
methods are relatively few.  The classical solution for 
the transverse displacement and the rotation of the 
cross section of a Timoshenko beam is expressed in a 
form of two infinite series, one of which represents the 
force vibrations and the other one free vibrations of the 
beam. By calculating the dynamic response of a 
Timoshenko beam to a moving force, Sniady [4] has 
been shown that one of the series can be presented in 
closed form. In [5], Majkut has proposed using the 
dynamic Green function for calculating forced 
vibrations of Timoshenko beam. Khoraskani et al. [6, 
7] investigated the dynamic response of Timoshenko 
beam under a moving mass by using modal method. 
Kim et al. [8] calculated forced vibration of a 
Timoshenko beam subjected to moving loads in the 
steady-state using the analytical method. Zhdan [9] has 
investigated the dynamic behavior of Euler- Bernoulli 
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and Timoshenko beams subjected to a moving 
concentrated load with two special form series. From 
the mathematical point of view, the calculation 
methods used in [4-7, 9] are not directly related to the 
modal method, but in the work [8], the modal method 
is applied to calculate the forced vibrations of the 
Timoshenko beam.   

In the present study, we use the principles of 
mechanics to establish the formulas for calculating the 
forced vibration of the Timoshenko beam. The 
evaluation of the transient vibration for a simply 
supported Timoshenko beam subjected to a force 
moving with a constant velocity will then be presented 
in detail. 

2. Analyzing Free Vibration of a Uniform 
Timoshenko Beam with the Constant Cross-Section 

2.1. Natural Frequencies and Mode Shapes 

If the external force and the external bending 
moment do not exist and if ( )I x  and ( )A x  are 
assumed to be constant, (1) and (2) can be simplified 
so that free vibration is governed by  

2

2 * 0w wA k GA
x xt

∂ ∂ ∂ρ ψ
∂ ∂∂

 − − = 
 

 (3) 

2 2

2 2* 0wI k G A EI
xt x

∂ ψ ∂ ∂ ψρ ψ
∂∂ ∂

 − − − = 
 

 (4) 

Equation (3) and (4) can be rewritten in matrix 
form as 

2

2
( , ) ( , )x t x t
t

∂ + =
∂
uM Ku 0  (5) 

where 

2

2

2

2

( , )
( , )

( , )

0
0

* *

* *

w x t
x t

x t

A
I

k GA k GA
xx

k GA k GA EI
x x

ψ

ρ
ρ

∂ ∂
∂∂

∂ ∂
∂ ∂

 
=  
 

 
=  
 
 
− 
 =
 
− −  

u

M

K

 (6) 

The solution of (3) and (4) is assumed to be in the 
following form [7, 8] 

( , ) ( ) ( ), ( , ) ( ) ( )w x t W x T t x t x T tψ= = Ψ  (7) 

Substituting (7) into (3), (4) and performing some 
mathematical transformations, we get the following 
equations: 

2( ) ( ) 0T t T tω+ =  (8) 

2
* ( ) * ( )

                       ( ) 0
k GAW x k GA x

AW xω ρ
′′ ′− Ψ

+ =
 (9) 

2( ) * ( ) ( * ) ( ) 0EI x k G AW x I k GA xω ρ′′ ′Ψ + + − Ψ =
 (10) 

From (8) we obtain 

( ) i tT t e ω=  (11) 

where ω  is the eigenfrequency of a Timoshenko 
beam. 

We assume that the solutions of (9) and (10) are 
in the following form: 

( ) ,  ( )sx sxW x ae x be= Ψ =  (12) 

where s denotes the wavenumber. Substitution of (12) 
into (9) and (10) yields the algebraic equations as 
follows: 

2 2

2 2

a 0( * ) *
0* *

k GAs A k GAs
bk GAs k GA EIs I

ρ ω
ρ ω

 − +    
=     − − −     

 (13) 

For the existence of nontrivial solutions of linear 
algebra equations according to (13), the determinant of 
the coefficient matrix in (13) must vanish at certain 
values of s, that is, at eigenvalues. From this condition, 
a dispersion equation is obtained as follows: 

4 2 2

2 2

( )
*

        ( . ) 0
*

I As s
EI k GA

I A A
EI k GA EI

ρ ρω

ρ ρ ρω ω

+ +

+ − =
 (14) 

In order to obtain the four eigenvalues, the above 
quartic equation (14) can be reduced to a quadratic 
equation by replacing 2s  with  ξ  

2 2

2 2

( )
*

        ( . ) 0
*

I A
EI k GA

I A A
EI k GA EI

ρ ρξ ω ξ

ρ ρ ρω ω

+ +

+ − =
 (15) 

By solving the quadratic equation (15), we can 
obtain four eigenvalues as follows: 

1 2,s i s iβ β= = −  (16) 

3 4 ( )cs s ifα ω ω= − = ≤  (17) 

3 4 ( )cs s i ifα ω ω′= − = ≥  (18) 

where , ,β α and α′  are always real numbers and cω is 
the cutoff frequency defined by 

*
c

k GA
I

ω
ρ

=  (19) 
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2

2 4 2

( )
*1

2 ( ) 4
*

I A
EI k GA

I A A
EI k GA EI

ρ ρ ω
β

ρ ρ ρω ω

+
=

+ − +
  (20) 

2 4 2

2

( ) 41 *
2

                ( )
*

I A A
EI k GA EI

I A
EI k GA

ρ ρ ρω ω
α

ρ ρ ω

− +
=

− +

 (21) 

2

2 4 2

( )
*1'

2 ( ) 4
*

I A
EI k GA

I A A
EI k GA EI

ρ ρ ω
α

ρ ρ ρω ω

+
=

− − +
  (22) 

By using the four eigenvalues given by (16), (17) 
and (18), the general solutions of (9) and (10) can be 
written as follows [8]: 

1) When 0 <ω cω≤  

1 2

3 4

W( ) cosh sinh
                                cos sin

x C x C x
C x C x

α α
β β

= +
+ +

 (23) 

1 2

3 4

( ) g sinh g cosh
                        g sin g cos

x C x C x
C x C x

α α

β β

α α
β β

Ψ = +
− +

  (24) 

2) When cω ω≥  

1 2 3 4W( ) cos sin cos sinx C x C x C x C xα α β β′ ′= + + +
 (25) 

1 2

3 4

( ) g sin g cos
                           g sin g cos

x C x C x
C x C x

α α

β β

α α
β β

′ ′′ ′Ψ = − +
− +

  (26) 

where 
2

2
*

1 ( )Ag
k GAα
ω ρα

α
= +   (27) 

2
2

*

1 ( )Ag
k GAβ
ω ρβ

β
= −   (28) 

2
2

*

1 ( )Ag
k GAα
ω ρα

α′ ′= −
′

  (29) 

To obtain the natural frequencies in analytical 
closed forms for specific boundary conditions, we 
considered three frequency ranges separately: 

(a) 0 ,cω ω< <  (b) cω ω> , and (c) .cω ω=  

2.2. Orthogonality of Mode Shapes 

For the modal analysis of the forced vibration of 
Timoshenko beam we must derive the orthogonality 
properties of the mode shapers of the beam. The 
equations (9) and (10) can be written in the following 
matrix form: 

2( ) ( )xω− + =M K U 0  (30) 

where  

( )
( )

( )
W x

x
x

 
=  Ψ 

U  (31) 

From (30) we get the jth and kth sets of natural 
frequencies and mode shapes which must satisfy the 
following two equations separately as follows:   

2( ) ( )j j jx xω=KU MU  (32) 

2( ) ( )k k kx xω=KU MU  (33) 

From (32) and (33), we obtain 
2T T

k j j k jω=U KU U MU  (34) 

2( )T T
j k k j kx ω=U KU U MU  (35) 

Because M is a symmetric matrix, from (35) we 
have:  

2( ) ( )T T T T
j k k j kω=U KU U MU  

2T T T
k j k k jω⇒ =U K U U MU  (36) 

From  (34) and (36), we obtain  

0 0

2 2

0

                 ( )

l l
T T T
k j k j

l
T

j k k j

dx dx

dxω ω

−

= −

∫ ∫

∫

U KU U K U

U MU
 (37) 

Taking simple mathematical transformations, the 
right-hand side of (37) can be rewritten as   

2 2

0

2 2

0 0

( )

( )( )

l
T

j k k j

l l

j k k j k j

dx

A W W dx I dx

ω ω

ω ω ρ ρ

−

= − + Ψ Ψ

∫

∫ ∫

U MU
 (38) 

From (38), the orthogonality property of the mode 
shapes with respect to the matrix M can be derived as 
follow [8]: 

0

0 ( )
0 ( )

l
k jT

k j
k j

if
dx

if
ω ω
ω ω
≠

= ≠ =
∫U MU  (39) 

Using (33) and (38), we can derive the 
orthogonality property of mode shapes with respect to the 
matrix K  as follows: 

0

0 ( )
0 ( )

l
k jT

k j
k j

if
dx

if
ω ω
ω ω
≠

= ≠ =
∫U KU  (40) 

From the boundary conditions of the simply 
supported Timoshenko beam, the mode shapes have the 
following form  
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( ) sink
kW x xl

π= , ( )( ) cosk k
k xx g

lβ
π

Ψ =  (41) 

where 
2

( ) *( )k
k

lkg
l k GAkβ

ωπ
π

= −  (42) 

It can be seen that the mode shapes satisfy the 
condition according to (39). 

3. Forced Vibration Analysis of Timoshenko Beam 
Using Modal Analysis Method 

3.1 The Formula for Determining the Solution 

The governing equations for a uniform Timoshenko 
beam with constant cross-section can be written in the 
following form    

2 2

2 2* ( , )w wA k GA p x t
xt x

∂ ∂ ∂ψρ
∂∂ ∂

 
− − = 

 
 (43) 

2 2

2 2* ( , )wI k G A EI x t
xt x

∂ ψ ∂ ∂ ψρ ψ τ
∂∂ ∂

 − − − = 
 

 (44) 

Equation  (43) and (44) can be written in matrix 
form as:  

2

2

( , ) ( , ) ( , )x t x t x t
t

∂
+ =

∂
uM Ku f  (45) 

where 

2

2

2

2

0
,

0

* *

* *

A
I

k GA k GA
xx

k GA k GA EI
x x

ρ
ρ

 
=  
 
 ∂ ∂
− ∂∂ =
 ∂ ∂
− − ∂ ∂ 

M

K
 (46) 

( , ) ( , )
( , ) ,

( , ) ( , )
w x t p x t

x t
x t x tψ τ

   
= =   
   

u f  (47) 

The solution of (43) and (44) is assumed to be 

1

1

( , ) ( ) ( )

( , ) ( ) ( )

j j
j

j j
j

w x t W x q t

x t x q tψ

∞

=

∞

=

=

= Ψ

∑

∑
 (48) 

In (48) ( ), ( )j jW x xΨ   are the mode shapes of the 
beam, and ( )jq t  is the function to be determined. 

If we use the notation 

( )
( )

( )
j

j
j

W x
x

x
 

=  Ψ 
U  (49) 

then the solution of (48) can be rewritten as 

1
( , ) ( ) ( )j j

j
x t x q t

∞

=

= ∑u U   (50) 

From (50), we have  

2

2

( ) ( )( , ) ( ) ( )
( ) ( )

j j
j j

j j

W x q tx t x q t
x q tt

 ∂
= =  Ψ∂   

∑∑ ∑
u U







 (51) 

2

2

2

2

( , )

* * ( ) ( )
( ) ( )

* *

j j

j j

x t

k GA k GA W x q txx
x q t

k GA k GA EI
x x

 ∂ ∂
−   ∂∂ =  Ψ ∂ ∂   − − ∂ ∂ 

∑
∑

Ku

 

       (52) 

Substituting (51) and (52) into (45) one obtains: 

"

1 1

'

1

( ) ( ) * ( ) ( )

            * ( ) ( ) ( , )

j j j j
j j

j j
j

A W x q t k GA W x q t

k GA x q t p x t

ρ
∞ ∞

= =

∞

=

−

+ Ψ =

∑ ∑

∑



  (53) 

'

1 1

"

1 1

( ) ( ) * ( ) ( )

* ( ) ( ) ( ) ( ) ( , )

j j j j
j j

j j j j
j j

I x q t k GA W x q t

k GA x q t EI x q t x t

ρ

τ

∞ ∞

= =

∞ ∞

= =

Ψ −

+ Ψ − Ψ =

∑ ∑

∑ ∑



 

       (54) 
Using properties of the normal mode shapes, from 

(53) and (54) we get: 

2

1
( )[ ( ) ( )] ( , )j j j j

j
A W x q t q t p x tρ ω

∞

=

+ =∑   (55) 

2

1
( )[ ( ) ( )] ( , )j j j j

j
I x q t q t x tρ ω τ

∞

=

Ψ + =∑   (56) 

Multiplying both sides of (55) by ( )jW x   and 
integrating over the length of the beam, we have  

2

1 0

0

[ ( ) ( )] ( ) ( )

                             ( , ) ( )

l

j j j j k
j

l

k

A q t q t W x W x dx

p x t W x dx

ρ ω
∞

=

+

=

∑ ∫

∫



 (57) 

It follows from (56) that 

2

1 0

0

[ ( ) ( )] ( ) ( )

                               ( , ) ( )

l

j j j j k
j

l

k

I q t q t x x dx

x t x dx

ρ ω

τ

∞

=

+ Ψ Ψ

= Ψ

∑ ∫

∫



 (58) 
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It follows from (57), (58) that 

2

1 0

0 0

[ ( ) ( )] [ ( ) ( ) ( ) ( )]

( , ) ( ) ( , ) ( )

l

j j j j k j k
j

l l

k k

q t q t AW x W x I x x dx

p x t W x dx x t x dx

ω ρ ρ

τ

∞

=

+ + Ψ Ψ

= + Ψ

∑ ∫

∫ ∫



 

 (59) 

Using the orthogonality conditions of the normal 
mode shapes, from (59) we obtain the modal equations as 
follows:  

2 0 0

2 2

0

( , ) ( ) ( , ) ( )
( ) ( )

[ ( ) ( )]

                     ( ), 1, 2,3,...

l l

k k

k k k l

k k

k

p x t W x dx x t x dx
q t q t

AW x I x dx

h t k

τ
ω

ρ ρ

+ Ψ
+ =

+ Ψ

= =

∫ ∫

∫


 

 (60) 

It should be noted that the cutoff frequency is 
generally very large, so that the forced vibration of the 
Timoshenko beam in the frequency domain less than or 
equal to the cutoff frequency of the beam ( )cω ω≤ will 
be investigated in practice. 

3.2 Application Example 

We consider now the transient vibration of a simply 
supported Timoshenko beam of finite length l subjected 
to a force 0P  moving with a constant velocity Pv  
(Fig. 1). Using the Delta Dirac function, the density 

( , )p x t  can be written in the following form 

( ) ( )0, ( )P Pp x t L x P x xδ= −  (61) 

where ( )PL x  is a logical signal function 

1 0
( )

0
P

P
P

if x L
L x

if x L
≤ ≤

=  ≥
 (62) 

 

 
Fig. 1.  The simply supported Timoshenko beam. 

If ( )EI x  and ( )A x  are assumed to be constant, it 
follows from (43) and (44) that 

( )

2 2

2 2

0

* *

                        ( )P P

w wA k GA k GA
xt x

L x P x v t

∂ ∂ ∂ψρ
∂∂ ∂

δ

− +

= −
 (63) 

2 2

2 2* * 0wI k G A k G A EI
xt x

∂ ψ ∂ ∂ ψρ ψ
∂∂ ∂

− + − =  (64) 

Using the modal analysis method, the forced 
vibration responses defined by (63) and (64) can be 
represented as follows [8]: 

1 1
( , ) ( ) ( ), ( , ) ( ) ( )k k k k

k k
w x t W x q t x t x q tψ

∞ ∞

= =

= = Ψ∑ ∑  (65) 

where ( )kW x  and ( )k xΨ are the mode shapes of the 
beam, ( )kq t  are generalized coordinates that are 
determined to satisfy initial conditions. For the simply 
supported Timoshenko beam, the mode shapes have the 
form as (41) and (42). Since ( , ) 0x tτ = , the function 

( )kq t is defined by the following equation  

( )

2

0

2 2

0 0

( ) ( )

( ) ( , )
( )

( ) ( )

                                         1, 2,...

k k k
l

k

kl l

k k

q t q t

W x p x t dx
h t

A W x dx A x dx

k

ω

ρ ρ

+ =

=
+ Ψ

=

∫

∫ ∫



       (66) 

It should be noted that  

2 2

0 0

2 2 2
( )

0 0

2
( )

0 0

( ) [sin( )]

                       
2

( ) ( ) [cos( )]

                      ( )
2

( ) ( , ) ( )sin( )

                         

l l

k

l l

k k

k

l l

k

k xA W x dx A dx
l

lA

k xI x dx g I dx
l

lg I

k xW x p x t dx x vt dx
l

β

β

πρ ρ

ρ

πρ ρ

ρ

πδ

=

=

Ψ =

=

= −

∫ ∫

∫ ∫

∫ ∫

0   sin k vP t
l
π

=

 (67) 

Substitution of (67) into (66) leads to 

( )2 0
* sin ,   1, 2,...k k k k

P
q q t k

m
ω+ = Ω =  (68) 

where 

 * 2
( )( ) ,

2 2k k k
l l k vm A g I

lβ
πρ ρ= + Ω =  (69) 

 

l 

x 

z 

xP 
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 ( )

2
2 *
k k

k kk GA g
l lβ

π πω
  = −     

 (70) 

Substituting (70) into (68) we obtain 

( )

( )

2
*

0
*                        sin    , 1, 2,...

k kk

k
k

k kq k GA g q
l l

P
t k

m

β

π π  + −     

= Ω =



 (71) 

Applying the initial condition on the displacement 
applied to  (68) we obtain 

0 0, (0) 0, (0) 0k kt q q= = = , (k=1, 2, …) (72) 

Solving  (71) with the initial conditions according 
to  (72) we get the functions ( )kq t  

( )

0
* 2 2

0
* 2 2

sin
( )

                sin  , 1, 2,...
( )

k
k k

k k k k

k
k k k

P
q t

m
P

t k
m

ω
ω ω

ω

Ω
= −

−Ω

+ Ω =
−Ω

 (73) 

The transient bending vibration of the beam is then 
determined by the formulas  

( )

1

1

( , ) ( )sin

( , ) ( ) cos

N

k
k

k k
k

kw x t q t x
l

kx t q t g x
lβ

π

πψ

=

∞

=

=

=

∑

∑
 (74) 

where 
2 2

( ) * *
k k

k
l Akg

k GA l k GAkβ
ω ω ρπβ

β π
= − = −  (75) 

4. Numerical Results and Discussion   

For the numerical investigation, the geometric and 
material properties of the uniform simply supported 
Timoshenko are listed in Table 1. This parameter set has 

also been used by Azam et al. [6]. In this example we also 
need the dynamic parameters of the moving load. That is, 
the toving force 

0  3600 9.81  35316 ( )P mg N= = × =  
and the speed of the force  18 /  ( 5 / )pv km h m s= = . 

The calculation results are listed in Table 2 and 
showed in Fig. 2 to Fig. 6. The number of eigenfunctions 
is chosen to be three (N = 3).   

Table 1. Parameter used for numerical calculation 

Symbols Values Parameters of the 
beam 

l 50.0 (m)  Length of beam 

A 2.0 (m2) Cross section area  

I 1.042 (m4) Inertial moment 

E 3.34 x 1010 
(N/m2) Elastic modulus 

G 1.34 x 1010 
(N/m2) Shear modulus  

ρ 2400 (kg/m3) Mass per unit 
volume 

k* 0.7 Shear correction 
factor 

 
Table 2. Natural frequency of the beam [Hz] 

Mode 
number  

Timoshenko 
beam 

E-B beam 
[3] 

[Hz] 

Calculation 
error  
TB/EB (%) 

1 1.684 1.692 0.475 
2 6.644 6.767 1.85 
3 14.629 15.227 4.08 
4 25.279 27.070 7.08 
5 38.186 42.296 10.76 

 

 

 
Fig. 2. Transverse displacement w(x,t) of the beam at the position x=0.5l. 
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Fig. 3. Rotation angle of the beam cross section with respect to the vertical axis at the positions  

x = 0.25l; x = 0.5l, x = 0.75l. 
 

 
Fig. 4. Transverse vibration of beam at the positions x = 0.25l, x = 0.5l, x = 0.75l. 

 

 
Fig. 5. Maximum transverse of beam at the positions x = 0.5l. 

 

 

0 1 2 3 4 5 6 7 8 9 10

t[s]

-20

-10

0

(x
,t)

 [r
ad

]

10 -5

x=L/2 x=L/4 x=3L/4

0 1 2 3 4 5 6 7 8 9

t[s]

-2.5

-2

-1.5

-1

-0.5

0

0.5

w
(x

,t)
, [

m
m

]

x=L/2 x=L/4 x=3L/4

2 4 6 8 10 12 14 16 18 20 22 24

v
p [m/s]

0

0.5

1

1.5

2

2.5

3

3.5

w
m

a
x

(m
m

)



  
JST: Engineering and Technology for Sustainable Development 

 Volume 32, Issue 1, March 2022, 061-070 

68 

Table 3. Natural frequency of the beam [Hz] 

Mode number TM beam EB beam [3] Calculation error TB/EB 
(%) 

1 10.279 10.574 2.87 
2 38.186 42.296 10.76 
3 77.813 95.167 22.30 
4 124.155 169.186 36.27 
5 174.073 264.354 51.86 

 

 
Fig. 6. Transverse displacement of the beam at the position x=0.5l. 

 

 
Fig. 7. Transverse displacement w(x,t) of the beam at the position x=0.5l. 

 
The cutoff frequency of this beam is 
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In Table 2, the cutoff frequency is 435.91 Hz. 
Accordingly, the number of natural frequencies is

21Bn = . The obtained natural frequencies are the same 
as the results in work [6].  Fig. 2 shows transient 
vibrations of the Timoshenko beam and the Euler-
Bernoulli beam at cross section x = l/2. Fig. 3 shows the 
results for the angle of rotation of the Timoshenko beam 

at the cross-sections x = l/4, x = l/2 and x = 3l/4. Fig. 4 
shows the results calculated for transverse vibration of 
Timoshenko beam at the cross-sections x = l/4, x = l/2 and 
x = 3l/4. Fig. 5 shows a graph of the maximum deflection 
versus the velocity of the force on the beam. Fig. 6 shows 
the beam deflection at the mid-beam section depending 
on the magnitude of the moving force on the beam in 
which 0P  = 3.6 kN, 5.4 kN và 7.2 kN respectively. From 
Fig. 5 and 6, it can be seen that during the transition 
process the influence of the speed change of the moving 
force on the beam deflection is only little, while the 
influence of the magnitude of the moving force on the 
beam deflection is very large. 
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Fig. 8. Rotation angle of the beam cross section with respect to the vertical axis. 

 

 
Fig. 9. Transverse vibration of beam at the positions x = 0.25l, x = 0.5l, x = 0.75l. 

 

To study the influence of the length of the 
Timoshenko beam on the vibrational properties of the 
beam, the beam of length l = 20 m is taken into account. 
The other parameters are the same as in the first example. 
Some of the calculation results are listed in Tab. 3 and 
plotted in Fig. 7, 8, and 9.   

From Table 2 and 3, it can be shown that the natural 
frequencies of the beam change very fast if ít length is 
relatively short. Fig. 2 and 7 show clearly the effects of 
shear deformation and rotatory inertia on the beam 
deflection. 

5. Conclusion 

In this paper, the calculation of forced vibration of 
the Timoshenko beam in the transition process by the 
modal analysis method was presented. Based on the 
obtained results, the following concluding remarks can be 
reached. 

1. Using the modal method, a procedure for 
calculating the forced vibrations of the Timoshenko beam 
has been proposed. 

2. From formulas (73) and (44) and from numerical 
simulation results as shown in Fig. 6, it can be concluded 
that during the transition process the speed change of the 
moving force has little effect on the beam deflection. 

3. The numerical results of the transient vibration of 
a simply supported Timoshenko beam subjected to a 
force 0P  moving with a constant velocity Pv  show also 
that the  magnitude change of the moving force greatly 
affects the beam deflection. 
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