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Abstract 

While the electroosmosis of the first kind (equilibrium) is accepted widely, the electroosmosis of the second 
kind (nonequilibrium) is still controversial. In this work, the theory of electroosmosis slip, of either the first kind 
or of the second kind at electrolyte membrane system is revisited via our direct numerical simulation. The 
obtained results show that above a certain voltage threshold, the basic conduction state becomes 
electroconvectively unstable. This instability provides a mechanism for explaining the over-limiting 
conductance in concentration polarization at a permselective membrane. The most important work in our study 
is to examine the famous electroosmosis of the second kind formula suggested by Rubinstein and Zaltzman 
in 1999. Although their formula has been presented for a long time, there has been no work to validate its 
accuracy experimentally or numerically due to the difficulty in pinpointing exactly the extended space charge 
layer in their formula. By using direct numerical simulation, we could solve this problem and inspect the 
application range of their formula. This also helps to strongly confirm the relationship between the 
electroosmosis of the second kind and the instability in concentration polarization at electrodialysis 
membranes. 
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1. Introduction1 

Concentration polarization (CP) is generated 
from complicated effects which relate to the formation 
of electrolyte concentration gradients resulting from 
the passage of an electric current through a solution 
adjacent to a permselective membrane. This 
phenomenon transfers counterion from electrolyte 
solutions to ion-exchange membranes. The specific 
aspect of concentration polarization we address here 
concerns the stationary voltage-current (I-V curves) of 
highly permselective membranes employed in 
electrodialysis which are generally depicted in Fig. 1. 
There are three distinguishable regions in such a 
typical curve [1], [2]. The first low electric region is 
called as Ohmic region (region I). The nearly flat 
region beside the Ohmic region is named as the 
limiting one (region II). The end of the plateau is 
followed by the over-limiting region III. Transition to 
region III is accompanied by a threshold appearance of 
a low-frequency excess electric noise, whose 
amplitude increases with the distance from the 
threshold and may reach up to a few percent of the 
respective mean value.  

While the Ohmic and limiting conductance were 
widely gained the explanation, the mechanisms of the 
over-limiting conductance remained unclear for a long 
time. To clarify the mechanisms of transporting 
additional charge carriers to a permselective 
membrane which cause the over-limiting current at 
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high voltage, various mechanisms have been 
suggested as a source of this region, including 
electroconvection [1] and bulk electroconvection [2], 
[3], chemical effects [4], and electrostatic effects in 
micro-scale system [5]. 

Finally, with the accumulation of evidence, the 
electroconvection was suggested to cause the over-
limiting behavior in the depleted diffusion layer at the 
CP of the permselective membranes [6]. The 
electroconvection mechanism also has been confirmed 
indirectly by an experimental finding: If the surface of 
the permselective membrane facing the dilute is coated 
by a gel, a plateau is reached at saturation, and the 
excess electric noise disappears [7]. 

 
Fig. 1. Sketch of a typical voltage-current of a perm-
selective membrane. 
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There are two types of electroconvection in 
strong electrolytes. The first is regularly described as 
the bulk electroconvection, due to the volume electric 
forces acting on a macroscopic scale in a locally 
electroneutral electrolyte. The second is commonly 
known as electroosmosis, either of the first kind or the 
second kind [8]. The term electroosmosis of the first 
kind (EO1) relates to the electrolyte slip resulting from 
the action of the tangential electric field upon the space 
charge of a quasiequilibrium diffuse double layer. 
Electroosmosis of the second kind (EO2) invoked by 
Dukhin [8] results from the action of the tangential 
electric field upon the extended space charge of the 
nonequilibrium double layer. This latter develops at a 
permselective interface in the course of concentration 
polarization under the passage of normal electric 
current [9]. 

The stability problem corresponding to EO1 
implied that no hydrodynamic instability could result 
from EO1 for a realistic low molecular electrolyte 
[10]. EO1 is accepted widely to explain the current 
density towards the limiting value which happens at 
concentration polarization resulting from the 
vanishing interface electrolyte concentration at the 
permselective membranes. 

EO2 which is related to the extended space 
charge developing in the nonequilibrium electric 
double layer at a permselective interface was invoked 
by Dukhin as mentioned above [9]. Unfortunately, in 
his theory of this phenomenon, Dukhin disregarded the 
very same effects of double layer polarization which 
he had used to explain the quasiequilibrium 
electrokinetic phenomena (which resulted in the 
formula for the EO1 [11]). This led to a fundamental 
inconsistency of his theory of EO2. This inconsistency 
is modified by Rubinstein and Zaltzman who analyzed 
polarization of the nonequilibrium double layer by the 
tangent components of the external gradients, gaining 
a correct condition for EO2 [3]. According to this 
condition, electroosmotic slip velocity at a flat 
permselective membrane is proportional to the 
tangential derivative of the normal component of the 
current density through the permselective interface 
with the squared voltage, resulting in the expression 

𝑢𝑢�𝑠𝑠 = −
1
8
𝑉𝑉�2

𝜕𝜕2�̃�𝐶
𝜕𝜕𝑦𝑦�𝜕𝜕�̃�𝑧
𝜕𝜕�̃�𝐶
𝜕𝜕�̃�𝑧

�

𝑧𝑧�=0

 (1) 

However, there is no work to examine 
experimentally or numerically the EO2 formula of 
Rubinstein and Zaltzman before. If this formula is 
proven to be believable, it will help to confirm the 
relationship between the EO2 and the instability in 
concentration polarization at electrodialysis 
membranes, which in turn clarifies the mechanism of 
the over-limiting conductance phenomenon.  

In this paper, we use our numerical solver which 
is developed in the OpenFOAM platform to simulate 
the phenomena that occurred at near permselective 
membrane. By using the obtained data, we also present 
a clear explanation for these phenomena. The most 
important part of the paper is the examination of the 
EO2 formula suggested by Rubinstein and Zaltzman. 

2. Model and Numerical Method 

2.1. Model 

We consider a model system of a permselective 
membrane in contact with a symmetric, binary 
electrolyte solution as sketched in Fig. 2. In the model, 
bulk space where the concentrations of both anion and 
cation are maintained at constant is at a distance H 
from the membrane. Electric current is driven through 
the membrane by a bias voltage between the bulk space 
and the membrane. 

 
Fig. 2. Model of a permselective membrane in contact 
with a quiescent electrolyte solution. A bias voltage V 
is applied between the membrane and bulk space to 
drive ion current through the membrane. 

2.2. Equations 

The two-dimensional model problem for 
concentration polarization mentioned above is 
described by following equations [1], [12] (tilded 
notations are used below for the dimensionless 
variables, as opposed to their untilded dimensional 
counterparts): 

1
�̃�𝜆𝐷𝐷

𝜕𝜕�̃�𝐶±

𝜕𝜕�̃�𝑡
= −𝛻𝛻� . 𝐽𝐽± (2) 
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The Nernst-Planck equations (2) and (3) describe 
convective electro-diffusion of cations and anions, 
respectively. Equation (4) is the Poisson equation for 
the electric potential, where 𝜌𝜌�𝑒𝑒   is the space charge due 
to a local imbalance of ionic concentrations. The 
Stokes equation (6) is obtained from the full 
momentum equation. Finally, equation (7) is the 
continuity equation for an incompressible solution. 
Spatial variables in equations (2-7) have been 
nondimensionalized as follows: 

𝛻𝛻� =
∇
𝑙𝑙0

, �̃�𝑡 =
𝑡𝑡
𝜏𝜏0

 , �̃�𝐶± =
𝐶𝐶±

𝐶𝐶0
,𝛷𝛷� =

𝛷𝛷
𝛷𝛷0

,𝐔𝐔� =
𝐔𝐔
𝑈𝑈0

,𝑃𝑃� =
𝑃𝑃
𝑃𝑃0

   

where 𝑙𝑙0, 𝜏𝜏0,𝐶𝐶0,𝛷𝛷0,𝑈𝑈0 and 𝑃𝑃0 are the reference value 
of spatial coordinate, time, ion concentration, electric 
potential, velocity field and pressure, respectively. The 
value of 𝑙𝑙0 is the characteristic geometrical length 
scale, 𝐶𝐶0 is the bulk salt concentration, the other values 
are defined as follows: 

𝜏𝜏0 =
𝜆𝜆𝐷𝐷𝑙𝑙0
𝐷𝐷0

 (8) 

𝛷𝛷0 =
𝑘𝑘𝐵𝐵𝑇𝑇
𝑧𝑧𝑃𝑃

 (9) 

𝑈𝑈0 =
𝜖𝜖𝛷𝛷0

2

𝜂𝜂𝑙𝑙0
 (10) 

𝑃𝑃0 = 𝜂𝜂𝑈𝑈0
𝑙𝑙0

  (11) 
where �̃�𝜆𝐷𝐷 = 𝜆𝜆𝐷𝐷/𝑙𝑙0 is the dimensionless thickness of 
the Debye layer. 

𝑃𝑃𝑃𝑃 =
𝑈𝑈0𝑙𝑙0
𝐷𝐷0

=
𝜖𝜖𝛷𝛷0

2

𝜂𝜂𝐷𝐷0
 (12) 

is the Peclet number defined as the ratio of the 
convective to the diffusive ion flux. 

𝑆𝑆𝑆𝑆 = 𝜂𝜂
𝜌𝜌𝑚𝑚𝐷𝐷0

= 𝜈𝜈
𝐷𝐷0

  (13) 

is the Schmidt number defined as the ratio of the 
momentum diffusion to the ionic diffusion in the 
electrolyte. The Reynolds number, Re, is defined as 

𝑅𝑅𝑃𝑃 = 𝑃𝑃𝑒𝑒
𝑆𝑆𝑆𝑆

= 𝑈𝑈0𝑙𝑙0
𝜈𝜈

  (14) 

𝐷𝐷�± are the dimensionless diffusivity of cation and 
anion,  

𝐷𝐷�± = 𝐷𝐷±
𝐷𝐷0

  (15) 

where 𝐷𝐷0 is the average diffusivity 

𝐷𝐷0 =
2𝐷𝐷+𝐷𝐷−
𝐷𝐷+ + 𝐷𝐷−

 (16) 

2.3. Boundary Conditions 

To close the governing equation, boundary 
conditions must be applied. No-slip boundary 
condition is applicable at the membrane surface. The 
common boundary conditions for ion concentrations at 
ion exchange membrane [12] are employed: fixed 

value for the concentration of counter-ions  
(𝐶𝐶𝑚𝑚 = 2𝐶𝐶0), and no-flux for co-ions. The control 
parameter in our simulation is the bias voltage applied 
between the bulk space and the membrane.  
Periodic boundary conditions for all variables  
are assumed at the left and right boundaries.  
The simulation is conducted with bulk concentration 
𝐶𝐶0 = 0.01𝑀𝑀, diffusivity of cation and anion  
𝐷𝐷+ = 𝐷𝐷− = 1 x 10−9𝑚𝑚2/𝑠𝑠, characteristic length  
𝑙𝑙0 = 100 µ𝑚𝑚.  

2.4. Numerical Method 

In this work, we employed the coupled method 
proposed by Pham to solve the sets of equations [12]. 
The finite volume method, a locally conservative 
method, is used for the discretization of the equations. 
The nonlinear discretized PNP equations are solved 
using the Newton-Raphson method [12]. To resolve 
the rapid variations of the ion concentrations and 
electric potential near charged surfaces, the mesh near 
the membrane is extremely refined toward the 
surfaces. To avoid solving the large system of linear 
equations and guarantee the strong coupling of the 
PNP equations, we make use of a coupled method for 
solving the sets of PNP and NS equations [12]. Starting 
with a velocity field from the previous iteration or 
initial condition, the potential and concentrations are 
simultaneously solved from the PNP equations. Then, 
electric body force is calculated and substituted into 
the NS equations. The velocity field obtained by 
solving the NS equations is substituted back into the 
PNP equations. The process is repeated until 
convergence is reached. 

3. Results and Discussions 

In our simulation, we apply the increasing 
voltages from 0V0 to 27V0 on the model described 
above. The obtained results include the I-V response 
of the electrolyte membrane system, the streamlines, 
and the ions concentration corresponding to the three 
distinguishable regions of this I-V curve. Specifically, 
we got the velocity obtained by simulation and EO2 
velocity suggested by Rubinstein and Zaltzman gained 
through the data of ions concentration gradient and 
voltage distribution in the model; and the former is 
used to be as a reference for the latter to examine its 
accuracy. 

3.1. Current-Voltage (I-V Curve) Response 

As shown in Fig. 3 the Ohmic region starts at 0V0 
and ends at 7V0. Following the Ohmic region is the 
limiting region which corresponds to the range of 
voltage from 7V0 to 24V0.  

The last region on I-V curve is the over-limiting 
one which begins at 24V0 and stops at 27V0. To clarify 
these regions, we consider thoroughly them by 
studying the streamlines and ions concentration near 
the perm-selective membrane in respective regions. 
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Fig. 3. The I-V curve of a permselective membrane 
when applying bias voltage from 0V0 to 27V0. 
 
3.2. The Explanation of Ohmic Region 

When the electric field is applied on the perm-
selective membrane, counterion conducts through it, 
leading to a decrease in ion concentration near the 
membrane (Fig. 4b). This depletion causes an ion 
concentration polarization layer which is developed 
near the membrane and makes a gradient in the ion 
concentrations. The action of the electric field upon the 
net space charge in the electric double layer (EDL) 
produces a vortex pair formed above the surface 
(Fig. 4a). These vortices are referred to as seed 
vortices. These vortices rotate slowly, therefore they 
contribute insignificantly to the overall transport of 
ions. Ion in the system is mainly transported by 
diffusion where ion concentrations vary linearly with 
the distance from the membrane surface. As the bias 
voltage increases the ion concentration near the 
membrane is depleted further, making the electrolyte 
more polarized (Fig. 4c). As a result, the gradient of 
ion concentration increases, producing an increasing 
diffusive flux which is proportional to the external 
electric field. The current therefore increases with the 
bias voltage indicating the characteristics of Ohmic 
regime (Fig. 3). 

3.3. The Explanation of Limiting Region 

When bias voltage exceeds a critical value  
(Vcr1 = 7V0), ion concentration near the membrane 
surface approaches zero. Beyond this critical value, the 
concentration near the membrane does not reduce as 
increasing in bias voltage, but there is the development 
of an extended space charge layer next to the EDL of 
the membrane (𝜌𝜌𝑒𝑒 = 𝐶𝐶+ − 𝐶𝐶−). As can be seen in 
Fig. 5c, the thickness of the concentration polarization 
layer is about 0.1 (corresponding to bias voltage  
V = 19V0). 

The fluid flow is driven by electric body force 
which is determined by the electric field and the space 
charge. As the result of a larger space charge and 

stronger electric field, fluid in the seed vortices rotates 
faster (Fig. 5a). However, the flow is not strong 
enough to significantly alter the ion concentrations. 
Therefore, the ion concentration is still uniform in the 
lateral direction. Due to the depleting of ions near the 
membrane, the current passing through the membrane 
is only slightly increased as bias voltages increase, 
corresponding to the limiting regime in the I-V curve 
(Fig. 3). 
 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 4. The streamline (a), ion concentration (b), and 
concentration profiles (c) in Ohmic region at bias 
voltage V = 2V0. 
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(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 5. The streamline (a), ion concentration (b), and 
concentration profiles (c) in limiting region at bias 
voltage V=19V0. 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 6. The streamline (a), ion concentration (b), and 
concentration profiles (c) in over-limiting region at 
bias voltage V=27V0. 

 

3.4. The Explanation of Over-Limiting Region 

When the voltage exceeds a critical value  
(Vcr2 = 24V0), the seed vortices are broken up by the 
deformation effect caused by the action of an electric 
field on the space charge in the extended space charge 
layer. These broken seeds merge into each other and 
form large vortices which also rotate in a direction 
opposite to the adjacent vortices (Fig. 6a). Such large 
vortices make the fluid outside the depletion zone 

where its high ion concentration is transported to the 
membrane surface. As higher bias voltage is applied, a 
faster rotation velocity of the vortices will be 
generated. The quicker flow carries more ions to the 
membrane surface to enhance the solution 
conductivity. Therefore, beyond the limiting current 
regime, the current passing through the membrane 
increases again with the increasing bias voltage, 
exhibiting the over-limiting current regime in the I-V 
curve (Fig. 3). 
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3.5. The Examination of EO2 Formula 

The explanation of the I-V curve characteristics 
in Fig. 3 holds wide agreement in the Ohmic and 
limiting region. In contrast, the over-limiting region is 
confronted by long debate. One hypothesis is  
given to relate it to the instability in concentration 
polarization at electrodialysis membranes through 
electroconvection. The key feature of this new 
structure is an extended space charge added to the 
usual one of the quasiequilibrium EDL which 
generates EO2. The velocity EO2 which relates to this 
extended space charge renders the quiescent 
conductance unstable. Based on the unstable 
electroconvection theory, Rubinstein and Zaltzman 
suggested their EO2 formula (1) as mentioned above. 
In order to develop this EO2 formula, they claimed that 
although the velocity field is controlled by a gradient 
of pressure, diffusion and convection effects, the 
contribution of the electric field is the most significant 
in the over-limiting region. This is completely exact 
due to the combination of strong electric field and the 
high space charge in the extended space charge layer. 
Therefore, the EO2 calculated by their formula is the 
highest value on the velocity curve at the hump 
position of the extended space charge layer. 

Consequently, there are two aspects to examine 
the accuracy of Rubinstein and Zaltzman’s formula, 
including velocity magnitude and the position where it 
obtains the highest value. While the first aspect can be 
solved successfully by comparing the value of velocity 
calculated by their formula and the one got from the 
numerical simulation, the second one is much difficult 
due to the exact position where the highest space 
charge occurs cannot be determined analytically. In 
reality, this position can be only found by numerical 
simulation. As shown in Fig. 7, the space charge hump 
is approximately at the position of 0.05 corresponding 
to the bias voltage of 24V0, 26V0, and 27V0, 
respectively. 

 

 
Fig. 7. The extended space charge layer corresponding 
to V=24V0, 26V0, 27V0. 

 

 

 

 
(a) 

 

 
(b) 

Fig. 8. The voltage distribution (a) and the ions 
concentration gradient (b) at V=27V0. 

In order to calculate the EO2 velocity suggested 
by Rubinstein and Zaltzman, we use the data of ions 
concentration gradient and the contribution of bias 
voltage through the simulated area. This data is plotted 
in Fig. 8. 

Fig. 9a shows that when the top curve of the 
velocity calculated by Rubinstein and Zaltzman’s 
formula (Us) and the one obtained by numerical 
simulation (U) is coincident, their magnitude is the 
same. It is also obvious that when the bias voltage 
increases, the velocity magnitude raises 
correspondingly as shown in Fig. 9. However, in   
Fig. 9b, c, d there is a slight difference between the 
highest value of velocity got by Rubinstein and 
Zaltzman’s formula and the one gained by numerical 
simulation. More specifically, the Us is lower 
gradually compared to U when the applied voltage is 
increasing. This course of difference is caused by the 
non-coincident position of the maximum velocity U 
and Us. As shown in Fig. 9b, c, d the top curve of Us 
is moderately father from the one of U where the 
electric force is strongest. Consequently, the Us 
velocity calculated by Rubinstein and Zaltzman is 
smaller than the one gained by numerical simulation.  
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Fig. 9. The profile of U calculated by direct simulation and the profile of Us calculated by Rubinstein and Zaltzman 
formula in over-limiting region at bias voltage V=24V0 (a), 25V0 (b), 26V0 (c), 27V0 (d). 
 

This drawback of their EO2 formula can be 
explained by the simplification in which Rubinstein 
and Zaltzman used to develop their formula as well as 
the difficulty of getting the exact position of space 
charge hump analytically as mentioned above. 
However, the difference between Us and U does not 
exceed 6 percent of error in the whole examined over-
limiting region. 

4. Conclusion 

In summary, we had used the direct numerical 
simulation solver which was developed in the 
OpenFOAM platform to study the phenomena that 
happened near the electrodialysis membrane of the 
planar model. From the simulation, three 
distinguishable regions on the I-V curve have been 
explained clearly. Importantly, the accuracy of the 
EO2 suggested by Rubinstein and Zaltzman was 
validated. We spotted that their formula is only applied 
with precise value at the exact space charge hump 
position. When their formula is calculated at father 
from this hump position, the magnitude of EO2 is 
smaller compared with our simulation result. This 
limitation of their formula is explained by 
simplification and assumption in the process of getting 
their formula as well as the difficulty of calculating 

exactly the position of the extended space charge layer. 
Only by using direct numerical simulation, we can 
pinpoint exactly the space charge hump and the real 
EO2 at this position. Finally, our study on Rubinstein 
and Zaltzman’s EO2 formula confirms numerically the 
theory of non-equilibrium electroconvection which is 
used to explain the mechanism of the interesting over-
limiting region on I-V curve. 
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