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Abstract 

Optimal control methods are increasingly used in automatic control systems, especially in automotive 
suspension system. However, the optimal control algorithm only achieves the highest efficiency in suspension 
control system when the required number of sensors is sufficient, corresponding to the number of states in 
the system. The arrangement of sufficient number of sensors depends on the capacity, economic conditions 
and responsiveness of the sensor. The Kalman observer is designed to reliably estimate the required 
parameters in the control where the number of sensors is limited. The article focuses on analyzing the theory 
of building a quarter-car model, developing and determining the optimal control matrix, the Kalman observer 
design method. The findings of the article reveal the effectiveness of automotive body vibration suppression 
and the required force for control corresponding to LQG control and LQR control, under the influence of square 
pulse road surface, when using two similar sensors are installed on the sprung and unsprung, thereby 
providing a choice of sensor type and the location on the semi-active ¼ suspension. 
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1. Introduction* 

 In automotive engineering system, the 
suspension system plays an important role in stability 
and comfort of a vehicle as well as passengers since it 
is responsible for the vehicle’s body vibration. Such 
system can be classified into three group, including 
passive, semi-active and active suspensions. Among 
them, the semi-active configuration is preferred due to 
its cost effectiveness and controllability. Different 
from the passive suspension, the semi-active one, 
which includes an actively variable damping 
coefficient, has better vibration isolation, meanwhile, 
it requires less energy than the active configuration 
does. The semi-active system can change the viscosity 
of the dampers instead of increasing the stiffness of the 
elastomer. Research on semi-active suspension is 
continuously developed to create the highest 
efficiency, bridge the gap between semi-active and 
fully active suspension systems. The semi-active 
suspension system controls the damping force to 
improve the smoothness and safety of the automobile’s 
movement. Damping force is changed through 
damping coefficient or flow through the orifice on the 
damper piston. 

 Currently, there are various research works 
relating to suspension control in literature. The study 
on the linear quadratic optimal control technique 
(LQR) [1] compared the vibrations between the 
passive suspension and the controlled suspension on 
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different types of road surface. The findings evaluated 
the system efficiency between controlled and 
uncontrolled condition. In such system, the road 
surface is a state variable and the signal needed in the 
control included five parameters (body and wheel 
displacement, body and wheel oscillation speed, road 
surface profile), which required a large sensing system 
(five parameters were equivalent to five sensors). To 
reduce the number of sensors in the system, the 
research work in [2] used an algorithm that predicts the 
state of the suspension in response to road input with a 
Kalman filter and cruise control of the suspension 
system between the suspended and unsuspended 
masses. The Kalman filter was used as an observer that 
observes the states of the system and predicts the next 
states of the model. The study used the LQR [1] 
together with the Kalman filter, forming the linear 
quadratic gaussian (LQG), to control and observe the 
suspension space, which reduced the number of 
sensors (without body and wheel displacement 
sensors). The estimation and calculation of control 
parameters through available sensors were also 
mentioned by many studies. The estimation method 
could be done with a small number of sensors, but the 
amount of information was sufficient for control [3]. 
The study focused on estimating the vertical velocity 
of the chassis and relative velocity between the chassis 
and the wheel. The input to the estimator was a signal 
from the wheel displacement sensors and from the 
accelerometer sensors located in the chassis. In 
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addition, the control signal was used as the input to the 
estimator. The Kalman filter was analyzed in the 
frequency domain and compared with a conventional 
filter solution that includes both displacement and 
acceleration signals inference. The study showed the 
accuracy and reliability of the estimation compared 
with the experiment. In the above studies, the road 
surface was used as a state variable, which required a 
sensor to determine the road surface profile. To replace 
this, the road surface condition estimation method [4] 
controlling the suspension using MR dampers was 
introduced. In study [5], a real-time open loop estimate 
of the disturbance displacement input to the tire and an 
external disturbance force. This estimate is achieved 
with two acceleration measurements as inputs to the 
estimator; one each on the sprung and unsprung 
masses. Each vehicle can effectively estimate the road 
profile based on its own state trajectory [6]. By 
comparing its own road estimate with the preview 
information, preview errors can be detected and 
suspension control quickly switched from preview to 
conventional active control to preserve performance 
improvements compared to passive suspensions. The 
study indicated the desired road surface to increase the 
comfort to users is MR damping. The research 
outcome was the road surface satisfying the comfort of 
the automobile body. The findings of the mentioned 
studies clearly showed the good controllability of the 
LQR and LQG algorithms in the efficiency of 
vibration suppression. The design of an observer using 
Kalman tool is necessary in control to reduce the 
number of sensors in the system. There have not been 
many studies evaluating the control efficiency of the 
LQG algorithm on the semi-active suspension system 
based on the type and number of sensors. Therefore, in 
this study, we use the LQR method [1] applied on the 
¼ suspension model, but consider the road surface as 
a noise signal, not a state variable [4]. We select 
simulation, evaluate the effect of vibration suppression 
and desired control force with the case of using two 
sensors in control compared to the case of four sensors 
and passive suspension system using Kalman filter to 
design state estimators [2],[3],[7], and estimate four 
states of the suspension system ¼ from two states 
(equivalent to two sensors). Therefore, the system 
model will become simpler and straightforward, 
therefore reduce the amount of information to be 
measured and improve the level of calculation. We 
focus on the simulation and evaluation of the 
effectiveness of body vibration suppression on the 
quarter car model when using the LQG algorithm and 
two input sensors (the displacement or oscillating 
velocity sensors installed on body and wheels). The 
research results, through evaluating the efficiency of 
vibration suppression and the energy used in the 
control, evaluate the influence of the control algorithm 
corresponding to the type and number of sensors used 
in the system, thereby proposing sensor type and 
location in semi-active suspension. 

2. System Design 

2.1. System Model  

A quarter-car model only considers the vertical 
displacement of the suspended and unsuspended parts, 
regardless of movements in other directions such as the 
lateral and longitudinal roll of the automobile. The 
quarter-car model using semi-active damping is shown 
in Fig. 1.  

The relationship between the state variables of 
the model and the physical variables of the suspension 
is shown as follows:  

w w
T

b bx z z z z=    (1) 

where ; ; ;b b w wz z z z   are displacement and velocity of 
the body and wheel, respectively.  

 In this study, we consider road surface as the 
disturbance of the system, so the state equation is 
written as follows:  

rx Ax Bf Gz
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= + +
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 (2) 

where y: output signal; A: physical matrix of the 
system; B: control matrix; C: output signal matrix; G: 
input disturbance matrix; zr: road profile; f: control 
force; x: state variables 
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Fig. 1. A quarter-car model 
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Table 1. Parameters of the quarter-car 

Parameter Notation Measure Value 

Body mass mb kg 342 

Wheel mass mw kg 38 

Spring stiffness c N/m 12500 

Tire stiffness kt N/m 76000 

Damping coefficient c Ns/m 1500 

Physical parameters of the suspension system 
model are shown in Table 1 

2.2. Controller Design 

2.2.1. LQG controller 

The optimal controller LQG is a combination of 
the optimal state feedback controller LQR and the 
Kalman observer. In the LQG controller, the influence 
of the noises ,rz f will be monitored (or filtered) by 
the Kalman observer and gives the best state signal
x z≈ . The state signal from the observer will be fed 
to the optimal state feedback controller LQR to 
generate the most optimal control signal ( )f t . The 
selection of values in the observer (Kalman algorithm) 
depends on the type of sensor used in the model. The 
block diagram of semi-active suspension control 
system according to the LQG algorithm is shown in 
Fig. 2.    

As shown in Fig. 2, the input to the LQG 
controller is the output signal of the suspension. This 
output signal depends on the matrix C (the output 
signal matrix). The selection of the values of the matrix 
C corresponds to the number and type of sensors used 
in the system. The output of the LQG controller is the 
value of the desired force applied to the suspension. 
This desired force can be from a semi-active damping, 
or a controllable elastomer. 

The input signal to the LQG controller is the 
input signal to the Kalman observer. The Kalman 
observer estimates or filters these signals (depending 
on the number of sensors selected; when choosing 
enough sensors in the system, the Kalman observer 
functions as a filter). The output signal from the LQG 
controller is the output from the force controller 
according to the LQR algorithm. The relationship 
between the LQR controller and the Kalman observer 
is the estimated signal and the desired force (f*). That 
is, the output from the Kalman observer will be the 
input to the LQR controller, and vice versa. This is a 
closed loop, ensuring the principles in the automatic 
control system. The calculation and construction of the 
LQR controller and the Kalman observer are 
completely independent. 

 
Fig. 2. Diagram of suspension system control 
according to the LQG algorithm 

 Fig. 3 is the layout of the LQG control for the 
semi-active suspension.  

 
Fig. 3. Layout of the semi-active suspension system 
using the LQG controller 
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2.2.2. LQR controller 

 The goal of the control problem here is to 
determine the component f so that with an unknown 
external influence on (zr) the state variable vector z 
needs to be quickly returned to the origin. In other 
words, it is necessary to quickly suppress the 
oscillations in the system caused by external forces 
over time. The diagram of suspension system with 
optimal control LQR is shown in Fig. 4.  

 The LQR algorithm determines the control signal 
f so that the objective function has the following 
quadratic form:  

0

( )T Tf x Q x f R f dt
∞

= +∫  (3) 

where Q and R are weight matrices based on the time 
balance to make the system stable in quality and the 
control energy dissipation . 

 According to the diagram, the LQR controller is 
replaced by K matrix. The control law has the 
following form:  

f Kx= −                (4) 
where the state feedback matrix is determined from the 
following Ricatti equation: 

1 0T TKA A K Q KBR B K−− − − + =  (5) 

 According to the diagram in Fig. 2 and the 
method of setting state variables, the matrix K is a 4×4 
matrix with the input of four state variables. The 
matrix K has a variable value, when the weight 
matrices take into account the control efficiency and 
the level of energy dissipation in the control change. 
Thus, for each fixed system, this K value does not 
change during the control process. With the physical 
values in Table 1 and the selection of the weight matrix 
Q and R, the matrix K with the following values is 
determined:  

TK= 21191 2593 21638 234− −  
 According to the state variable setting method, 
the LQR controller needs four state parameters of the 
system: displacement of the body and wheel; 
displacement velocity of body and wheel. Therefore, 
to apply LQR to control the suspension system, it is 
necessary to equip four sensors corresponding to four 
state parameters. In this study, to match the assembly 
ability and economic conditions, we selected 2/4 
sensors. Because the number of selected sensors is less 
than required by the LQR algorithm, it is necessary to 
design a state estimator (observer) so that the 
information from two sensors can be converted into the 
information of four sensors according to the optimal 
LQR controller requirements. This is calculated and 
built through the Kalman observer.  

 
Fig. 4. Diagram of suspension system control 
according to LQR 

 
Fig. 5. The prediction and correction steps of Kalman 
filter 

2.2.3. Kalman observer 

 The Kalman filter is a remarkable method to 
predict and estimate the state of a stationary process by 
minimizing the mean square error. 

 The results of Kalman filter have very small 
error. The Kalman filter has applications in spacecraft 
orbit determination, estimation and prediction of target 
trajectories, simultaneous localization and mapping,  

 The discrete Kalman filter cycle is shown in 
Fig. 5. It consists of two steps: 

 • Prediction step. In prediction step, the goal is to 
obtain the predicted state for next time step by forward 
projection of the current state and error covariance 
estimates. 

 • Correction step. In correction step, the aim is to 
correct the estimate state and error covariance. 

 The purpose of the estimator is to estimate the 
working states of the suspension system based on the 
model state variable setting method. The LQR 
controller estimates the value of the state vector x in 
the system. From the estimated x, the damping 
resistance f will be calculated through the control 
matrix. 

The estimated values are based on the output 
signal from the actuator in the semi-active suspension 
(semi-active damping), and the sensor signal from the 
sensors located on the wheels and the body of the 
vehicle. The diagram of Kalman observer connection 
in semi-active suspension control is shown in Fig 6. 
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Fig. 6.  Diagram of Kalman observer connection in semi-active suspension control 

 Kalman observer is responsible for estimating 
and calculating the output signal for LQR controller. 
LQR controller needs four state variable parameters. 

 The Kalman observer is used to estimate the 
working states of the suspension system based on the 
estimation algorithm according to the available 
sensors. The observer determines the process of 
changing state from the time (k-1) to the time (k) 
according to the formula:  

- Time update:    

1

1

ˆ ˆk k k
T

k k e

x Ax Bf
P AP A Q

−
−

−
−

 = +


= +
 (6) 

-  Measured value update: 
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where A is a time-variant matrix relating the state at 
the previous time step (k-1) to the state at the current 
step (k) and H is a time-variant matrix relating the state 
to the measurement (they are assumed to be constant; 

ˆkx −  is the predicted state vector containing the state 

variables of interest, 1ˆkx −  is the previous state vector, 

fk is the input vector; kP − is the priori error covariance. 
It is used to calculate the Kalman gain in the correction 
step. The correction update steps by equation (7); Qe 

is the noise covariance matrix; Re is the noise 
measurement covariance matrix; Kk is the Kalman gain 
that minimizes the posteriori error covariance; Pk is 
posteriori error covariance and I is unit matrix. 

When selecting two displacement sensors, 
choose: Qe =30, Re =1. And two speed sensors, choose: 
Qe =1, Re =1.09 

3. Simulation and Survey 

3.1.  Simulation Scenario 

 In this study, we selected two sensors. The sensor 
type is displacement sensor or oscillating velocity 
sensor. Simulation results compare the efficiency of 
vibration suppression and desired control force in 
control options when using two sensors (LQG 
algorithm) and four sensors (LQR algorithm) 
compared to passive ones. 

 The simulation plan is presented in Table 2.  

 

Table 2. Simulation scenario 

        Input 

 

Option 

Road 
surface 

Sensor 

Evaluation criteria Note 
bz

 wz
 bz

 wz
 

1 

Square 
bump 

  X X 
-Efficiency of vibration 
suppression  
- Desired control force  

LQG1 

2 X X   LQG2 

3 X X X X LQR 

4     Passive 
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3.2. Simulation Results 

 Simulation results evaluate the effectiveness of 
automobile body vibration suppression under different 
control options. Fig. 7 shows the vibration of the 
automobile body. According to the graph, when using 
the LQG controller (LQR + Kalman observer), the 
oscillation suppression efficiency of the LQG1 
controller is highest. The oscillation suppression 
efficiency is expressed through the maximum 
amplitude of vibration and the time to suppress the 
oscillation. Fig. 8 shows the maximum vibration 
amplitude of the automobile body corresponding to the 
control options.  

When using the LQG control option with two 
velocity sensors, the maximum amplitude reduction 

effect is highest, while when using two displacement 
sensors, the efficiency is slightly lower. 

 To evaluate the reduction in amplitude of body 
oscillation of each option, we develop a formula to 
determine the percentage of reduction in amplitude of 
the control options compared to the passive suspension 
system. The formula is as follows:  

max imax

max

p C

p

x x
100(%)

x
δ

−
= ×         (8) 

where δ: percentage of reduction in amplitude; xpmax: 
maximum amplitude of body in the passive state; xCmax: 
maximum amplitude of body in the ith option 

 
Fig. 7. Body displacement with different control options 

 
Fig. 8. Maximum amplitude of vibration with different control options 
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Fig. 9. The comparison of vibration suppression efficiency with different control options 

 
Fig. 10. The comparison of wheel displacement with different control options 

The comparison of the vibration suppression 
efficiency (the reduction of maximum amplitude and 
the time of vibration suppression) among simulation 
options is shown in Fig. 9. 

From the graph, we can see that the distance of 
the equilibrium positions among the three control 
options LQG1 (circle), LQG2 (rhombus) and LQR 
(square) are similar. In terms of oscillation time 
suppression efficiency, LQR controller is the best. 
Regarding amplitude reduction, LQG1 controller 
achieves the highest efficiency (22.5% reduction), 
LQG2 controller decreases by 17.73%, and LQR 
controller reduced the lowest amplitude (10.73% 
reduction). This shows that the control efficiency is 
different between the two controllers LQG and LQR. 
The LQG controller has better effect on attenuating the 
oscillation amplitute, whereas the LQR counterpart 
performs more effectively in reducing the fluctuation 
time. As for the LQG controller, the oscillation 
suppression time of the two options LQG1 and LQG2 
is quite similar. This shows that, in terms of oscillation 
suppression efficiency, the LQG1 option (using two 
velocity sensors) is the best. In addition, the 

comparison of positions on the graph shows a clear 
effect between controlled and passive suspension (star 
shape).  

The wheel oscillations corresponding to three 
simulation options LQG1, LQG2 and LQR are shown 
in the figure. According to the graph, the wheel 
oscillations of the two options LQG1 and LQG2 are 
quite similar in both amplitude and frequency. The 
maximum wheel amplitude according to the LQG1 
option is 0.06683(m), LQG2 is 0.06609(m) and LQR 
is 0.06401(m). The difference in the maximum wheel 
oscillation amplitude between the LQR control 
algorithm and the two LQG1 and LQG2 algorithms is 
2.82 mm and 2.08 mm, respectively. 

Thus, in terms of wheel oscillation amplitude, the 
control efficiency according to the control law LQR is 
the best, and the LQG1 is the worst. This shows the 
rationality while controlling the suspension system, 
that is: to achieve the smoothness effect of the body, 
the wheels will vibrate more and will be more likely to 
separate from the road surface. 
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Fig. 11. Control force characteristics of suspension system ¼ 

 
 In the control design, it is necessary to consider 
the quality of control because each different control 
algorithm will give different results. If the reduction of 
amplitude is satisfied, the oscillation suppression time 
will increase and vice versa. The choice of control 
quality depends on the control capabilities and sensors 
used in the system. The control quality depends on the 
responsiveness of the control energy or control force.  

Fig. 11 shows the control force characteristics 
according to different control algorithms. According to 
Fig. 11, the maximum control force corresponds to the 
largest LQG1 controller (430N), the smallest LQG2 
controller (231N). In Fig. 7, the amplitude reduction 
corresponding to the two cases of LQG1 and LQG2 
controllers is about 5% different, but in Fig. 9, the 
maximum control force of the LQG1 controller is 
almost twice as large as that of the LQG2 controller. 
On the other hand, the characteristic curve of the 
LQG2 controller is much more linear than that of the 
LQG1 controller. This shows that the ability to 
generate and control the control force of LQG2 is 
easier than that of LQG1 controller. 

 Therefore, when designing the actuator to 
generate control force for the suspension system, the 
LQG2 controller is better and easier (small control 
force but good effect). As for the LQR algorithm, 
when all the four parameters from the sensor are 
sufficient, the control force characteristics are able to 
act faster and compatible with the actual impact of the 
road surfact) and the control force in the compression 
stroke is larger than in the exhaust stroke. This clearly 
shows the advantage of LQR control in quick 
suppressing the oscillation time of the automobile 
body.  

4. Conclusion 

 This paper focuses on theoretical analysis in 
building a semi-active suspension model using the 
LQG control algorithm. This algorithm is a 
combination of the LQR linear quadratic controller 

and the Kalman observer. The study has found the 
optimal set of control parameters (K matrix) as well as 
calculated and estimated input parameters through 
sensors used in the system. The article focusing on 
analyzing the control efficiency of the suspension 
system with two sensors in the system (compared with 
the optimal control requirement of four sensors) has 
compared the control quality through the oscillation 
suppression efficiency and desired control force 
according to each simulation option. 

 When controlling a semi-active suspension 
system under the condition that the driver has only two 
sensors, he should choose two sensors of the same 
type. This is consistent with reality, that means, 
choosing two displacement sensors or two velocity 
sensors. The sensor location is on both the body and 
the wheel. In this study, we find that the control 
method using the LQG2 controller (using the 02 
displacement sensors) is the most effective, because 
the control force generated is small but still effective 
in suppressing the oscillation (the amplitude is 5% 
lower than that using the LQG1 controller (using the 
two velocity sensors), but the control force is nearly 
twice as small). The LQG2 controller is suitable for 
actuator design and development. Therefore, it is 
recommended choosing a displacement sensor for both 
the body and the wheel and use the LQG2 controller. 
This is completely consistent with the reality of using 
and developing sensor technology today, because 
displacement sensors are easier to manufacture and 
cheaper, especially when the output signal 
characteristics from the sensor are similar and linear. 
Thus, the algorithm to read data from the sensor is also 
simpler. The development of the Kalman algorithmic 
estimator needs to be studied to give the most accurate 
estimation parameters, which can be applied to the 
alternating arrangement between the types and the 
number of sensors (using oscillation sensors and 
velocity sensor alternately, or using one or three 
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sensors...), thereby improving control efficiency as 
well as economic efficiency.  
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