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Abstract 

Nowadays embedded systems are using a lot of different communication standards to transfer data such as 
USB, UART, SPI, I2C, etc. To be able to transfer data with each communication standard, the system needs 
at least one controller block for that communication standard. This has added to the complexity of the system 
and the cost of manufacturing hardware. Embedded systems only support SPI communication if desired, 
which can still be communicated with peripherals with I2C standard. However, the SPI cannot be directly 
connected to the I2C but must use a standard communication converter. This paper will primarily focus on 
designing an IP core communication standard converter from SPI to I2C using APB (Advanced Peripheral 
Bus) communication as one of the AMBA (Advanced Microcontroller Bus Architecture) communication sets. 
In particular, APB is a bus used to communicate with peripherals that do not require fast processing speeds 
such as UART, SPI, I2C, etc. 
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1. Introduction 

Serial *Peripheral Interface (SPI) is one of the 
most widely used interfaces between microcontrollers 
and peripherals such as sensors, analog-to-digital 
converters (ADC), and digital-to-analog converters 
(DAC), shift register or SRAM. Whereas Inter 
Integrated Circuit (I2C) is a two-wire bus used to 
enable communication between two or more devices 
on the same system. Let's assume an embedded system 
having only the SPI communication standard has to 
interface with peripherals that only use the I2C 
communication standard, next, by using design flow of 
ASIC (Application-Specific Integrated Circuit) and 
FPGA (Field-Programmable Gate Array) 
technologies, a SPI to I2C communication converter is 
created. Previously published researches such as 
Design of SPI to I2C Bridge for High Speed Data 
Interfacing in Digital System [1] and FPGA 
Implementation of Serial Protocol using SPI and I2C 
[2] have some limitations such as: Cannot transmit 
data correctly if SPI device and I2C device operate in  
different frequency domains; can’t use bus to 
communicate with the system (APB, AHB,..); only can 
works with an initial pre configuration; the maximum 
transfer rate of the I2C interface  is only 3.4 Mbit/s. 
Therefore, the research team proposed to design an SPI 
to I2C protocol converter based on ASIC technology 
and deployed it on the FPGA platform to solve these 
above problems. The structure of the paper is 
organized as follows: In part 2, the block diagram 
design of the SPI to I2C communication converter will 
be presented; Part 3 and part 4 bring up with testing 
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and synthesis of design and implementation on the 
FPGA platform; Part 5 is the conclusion of the paper 
and the research team's next development direction on 
the design of SPI to I2C protocol converter. 

2. Block Diagram Design 

2.1. Overview of the Converter 

A protocol converter is a device that is used to 
convert the standard communication (e.g. SPI) of one 
device to a suitable communication (e.g. I2C) with 
another device to have the ability to transmit data 
between two communication standards. Fig. 1 shows 
the block diagram of the system SPI to I2C protocol 
converter. 
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Fig. 1. Connecting an SPI to I2C converter in a system. 

2.2. Serial Peripheral Interface 

SPI is a synchronous serial communication 
protocol that is commonly used at short distances, 
mostly in embedded systems between microprocessors 
or microcontrollers and peripherals like sensors, ADC, 
DAC, SRAM, and so on. SPI devices communicate in 
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the duplex-mode with only one single master device 
and many slave devices. During communication, the 
master can only pick a slave-based device by dragging 
the device's Slave Select (SS N) signal pin to a low 
level[3]. Fig. 2 illustrates SPI communication. 

2.3. Inter Integration Circuit 

Nowadays, in the communication protocols 
operating with low frequency, I2C (Inter Integrated 
Circuit) protocol is very suitable for communication 
between integrated circuits, slow communication with 
peripheral devices. Fig. 3 shows a transaction of the 
I2C interface standard. 

For operation mode with 7-bit slave address, the 
master device will send a start condition, followed 
immediately by the 7-bit slave address which it wants 
to communicate with and finally a bit representing a 
write or read from the slave (bit 0 is written and bit 1 
is read). If the slave exists on the bus, the slave will 
respond with the ACK bit (low-level to confirm) for its 
address. After that, the master will then be in read 
mode or write mode based on the previously sent 
written bit or read a bit [4]. The address and data bytes 
are sent with the MSB bit first. Starting conditions 
occur  when the SDA pulls from high-level to low-
level when the SCL is high and stopping condition is 
represented by the SDA transition from low-level to 
high-level when the SCL is high. 

2.4. Block Diagram 

Some previous architecture was given as follows: 
The SPI to I2C converter will contain a SPI interface 
as the slave and a I2C interface as the master. All 
request signals will be generated by the SPI master 
controller block. When an external SPI master wants 
to read or write data to an I2C slave peripheral, it sends 
a read command or write command and the 
corresponding address of the I2C slave through the 
internal SPI slave inside the converter. Thereon, the 
SPI slave will then send commands, address, and data 
(in case of writing) to the I2C master, and the internal 
state machine will perform the necessary data 
conversion.  

These designs will only accommodate data 
transmission with a clock domain, from there 
proposing two more FIFO buffers (First in, first out) 
called TX FIFO (receiving data from the SPI-bus side) 
and RX FIFO (receiving data from the I2C-bus side) 
for the purpose of storing pending data. Next, in order 
to communicate with the CPU and the user can 
configure the converter, it is proposed to design a 
register block that is used to configure input values and 
store input signal information. Output of the circuit. 
This work is done through an advanced peripheral 
communication standard APB (Advanced Peripheral 
Bus) used to communicate with peripherals that do not 
require fast processing speed such as UART, SPI, I2C, 
etc. In addition, the converter will have additional 

interrupt pins to respond to the current state of the 
circuit. Fig. 4 shows the general block diagram of the 
SPI to I2C converter. 
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Fig. 2.  SPI Interface 

 
Fig. 3. A transaction of a standard I2C interface. 
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Fig. 4. Block diagram of SPI to I2C converter. 

The blocks in Fig. 4 are shown and have the 
following meanings: (1) spi2i2c_reg_blk: Is the block 
used to configure input values and store information 
about the active state of the converter; (2) spi_slave: Is 
a block designed to be equivalent as a simple SPI 
device. This block implements the SPI interface with 
the external SPI master; (3) i2c_master: Is a block 
designed to be equivalent as a simple SPI device. This 
block implements I2C interface for data transmission  
I2C slave devices; (4) spi_to_i2c_bridge_ctrl: Is the 
main processing block of the converter. This block 
controls the transmission and reception of data from 
two SPI slave block and I2C master block; (5) 
tx_fifo_async_ff: Is an asynchronous buffer, which 
means that the write and read times on the watch may 
vary, and thus is commonly employed as a buffer  data 
storage devices. This block retains data that has been 
transmitted from an external SPI master and is waiting 
to be processed before being delivered to the I2C-bus; 
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(6) rx_fifo_async_ff: This block stores data 
transmitted from external I2C slave devices waiting to 
be processed to send those data to the SPI-bus. 

2.5. Operating Principle 

In order for the SPI master to communicate with 
the I2C slave devices, the research team designed a set 
of commands that can be customized according to the 
previous convention between the two sides of the SPI 
master and the converter, and then send those 
commands on the SPI-bus. Most SPI devices currently 
operate data within a transaction (i.e. every time SS_N 
is active) whose number of bits transmitted must be a 
multiple of 8 from which the total width of a 
transaction on the SPI-bus Designed so that the 
number of bits is divisible by 8, this converter has an 
instruction width of 1 byte so that the SPI master can 
transmit properly. The SPI master commands that can 
be transmitted on the SPI-bus are listed in Table 1. The 
following is the data frame for the commands in the 
table: 

2.5.1. Data transfer to slave I2C peripheral device 
(0x01) 

When the SPI master pulls the SS_N signal pin a 
low level, the data received from the external SPI 
master (SCLK) clocked MOSI pin is processed by the 
SPI slave block in the converter and then forwarded to 
the processing block to add the elements of the I2C 
interface standard as the start bit, the address bits, the 
ACK bit (controlled by the I2C slave) and the stop bit. 
The SPI master will send a command to the converter 
in the following order of bytes: 1 byte of writting 
instruction (0x01), 1 byte of data for the number of 
bytes that the SPI master wants to transmit (maximum 
256 bytes), 1 byte of data for the address of the I2C 
slave and finally the data transmitted to those I2C 
devices. The data stream sent on the SPI-bus when the 
write command (0x01) is executed is shown as shown 
in Fig. 5. 

The data after being filtered by the SPI slave 
block continues to be processed by the processor block 
(spi_to_i2c_bridge_ctrl) and sent to the I2C master 
block for transmission to the I2C slave devices. Fig. 6 
shows the data stream sent on the I2C-bus when the 
SPI master executes a write command (0x01). 

2.5.2. Receive data from slave I2C peripheral device 

The data received from the I2C slave devices are 
processed by the internal I2C master block by 
removing the I2C interface standard bits which are the 
start bit, the address bits, the ACK bit and the stop bit. 
The received data is stored in the RX FIFO memory 
and will not be returned to the external SPI master 
without executing the buffer read (0x03) instruction 
described in the next section. To receive data the SPI 
master will send a command to the I2C slave device 

with the order of bytes sent as follows: 1 byte of the 
read command (0x02), 1 byte of data for the number 
of bytes that the SPI master wants to receive 
(maximum 256 bytes) and 1 byte of data for the 
address of the I2C slave device. Fig. 7 shows the data 
stream sent on the SPI-bus when the SPI master 
performs a read command (0x02). 

Table 1. The commands the SPI master can send on the 
SPI-bus. 

No Command Description 

1 0x01 Write N bytes to device I2C 

2 0x02 Read N bytes from I2C device 

3 0x03 Read buffer command. 

 

0x01
COMMAND

NUMBER
OF BYTES

SLAVE ADDRESS
+ W

DATA
BYTE 1

DATA
BYTE N

.   .   .

SPI Master sends message 

number of bytes D[7:0] 0
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SCLK

MOSI slave address A[7:1] data byte 1 data byte  N
 

Fig. 5. Data is transferred over the SPI-bus when a 
write signal is issued, (0x01). 
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Fig. 6. Data is transferred across the I2C-bus when the 
SPI master issues a write signal, (0x01). 
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Fig. 7. The data stream sent on the SPI-bus when the 
SPI master performs a read command (0x02). 
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Fig. 8. The data stream sent on the I2C-bus when the 
SPI master performs a read command (0x02). 
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Fig. 10. The data takes effect when the SPI master 
reads the buffer, 
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Fig. 9. The data stream sent on the SPI-bus when the 
SPI master performs a buffer read (0x03). 
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Fig. 11. Basic structure of UVM environment. 

The data after being filtered by the SPI slave 
block is further processed by the processing block 
(spi_to_i2c_bridge_ctrl) and sent to the I2C master 
block for transmission to the I2C slave devices and 
then receiving the returned data. Fig. 8 shows the data 
stream sent on the I2C-bus when the SPI master 
performs a read (0x02). 

2.5.3. Read buffer 

After the SPI master executes a buffer read 
(0x03) command from the RX FIFO buffer, the data 
being stored in the buffer will be returned to the SPI 
master via the MISO signal pin. Fig. 9 shows the data 
stream sent on the SPI-bus when the SPI master 
performs a buffer read (0x03).  

Because the speed of operation of the SPI and 
I2C communication protocols differs, data received 
from the I2C device can be delivered at any moment 
because the SS_N pin is pulled to a low level and the 
SPI master cannot identify when the data takes effect, 
Read buffer command (0x03) is created. As a result, 
the buffer reading command was designed to address 
this issue. The data in effect when the SPI Master 
executes the buffer reading instruction is shown in 
Fig. 10. 

3. Design Verification and Synthesis. 

3.1. Design Testing.  

With an RTL (Register-Transfer Level) design 
according to ASIC (Application-Specific Integrated 

Circuit) technology, before the product is packaged, it 
is critical to test the design. Building a verification 
environment has become an essential phase in the 
product design process that cannot be overlooked in 
order to ensure that a product works properly under 
real-world settings. The UVM (Universal Verification 
Methodology) library and QuestaSim software for 
design verification are two of the most successful 
verification approaches for ASIC-based designs [5]. 

3.1.1. Introduction to UVM library 

UVM (Universal Verification Methodology) is a 
method of simulating hardware designs. The UVM 
library is a collection of classes and methods built on 
the System Verilog language. UVM was built with the 
goal of creating a common simulation method for the 
IC industry. Simulation testing is a very time-
consuming process. In particular, the time spent 
building and editing the simulation environment is 
quite large. Without a common methodology, a 
simulation environment will be difficult to reuse, 
extend and understand by many different engineers, 
organizations or companies. 

The basic structure of a UVM environment 
consisting of blocks is shown in Fig. 11. The blocks in 
Fig. 11 are described as follows: (1) Top is the element 
that contains the entire test environment, including the 
DUT; (2) Test is the top layer containing all UVM 
components; (3) DUT (Design Under Test) is the 
design to be tested; (4) Environment is a grouping 
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element of other UVM environmental components 
such as Agent and Scoreboard; (5) Agent groups the 
components that test the connection to the 
communication of the DUT. It can have many different 
components, but usually has 3 main components: 
Monitor is the component that monitors information 
and communication signals with the DUT, Sequencer 
controls the transmission of transactions from 
sequences, and Driver receives transactions. From the 
sequences is to convert them in turn to the 
corresponding values to drive the signals for 
communication with the DUT; (6) Scoreboard is the 
component that examines the desired behavior, 
activity or data of the DUT and (7) Sequence is the 
object that generates transactions and provides them to 
the UVM Sequencer to deliver to the Driver. 

3.1.2. Build testbench structure 

Fig. 12 shows the block structure of UVM for 
design testing. The UVM class library brings a lot of 
automation to the SystemVerilog hardware description 
language such as sequencing and data automation 
features (packing, copying, comparing), etc. After 
building the structure testbench as shown in Fig. 11, 
perform design testing on QuestaSim software. 
Imagine that when a transaction (0x01) is executed, the 
data flow sent via the SPI-bus consists of the following 
24 bits of commands: Write 0x01 with 8 bits of 
commands, 8 bits of transferred bytes, and 8 bits of  
I2C address. The SPI master will then send the actual 
data on the I2C bus (in this example is 4 bytes of data). 
On the SPI-bus, the operating frequency is 10 MHz, 
and I2C is in Fast-mode Plus (1 MHz). With the above 
operating frequency, the minimum required depth of 
TX FIFO is 10. Fig. 13 shows the design simulation 
results on the SPI-bus data input side. After receiving 
the input data from the SPI with the request to perform 
data transmission to the I2C slave device, the I2C 
interface of the converter will have the waveform 
shown in Fig. 14. 

The results after simulation are shown in Fig. 13 
and Fig. 14, when directly observed, it can be seen that 
the results are correct compared to the requirements set 
forth. But for the convenience of design testing, 
QuestaSim software with the use of the UVM library 
will generate a report, helping the designer to 
determine the correct operation and coverage of the 
design, thereby can create input plans and goals for 
parts of the design. The results when running the test 
cases will be saved by UVM and extracted to a 
coverage report generated on Questa software with the 
results as shown in Fig. 15. The important information 
of the coverage report includes: 

- dti_spi_to_i2c_top (87.83%): is the coverage 
result of code RTL coverage. It measures how much of 
the RTL code has been executed through all the test 
cases. This includes implementing design blocks, line 
numbers, conditions, FSM, toggles, and paths. UVM 

will automatically extract code coverage from the RTL 
code. 

- dti_spi2i2c_sva (100%): is the result of 
checking the correctness of the functions and timing 
required in the design. 

- dti_cvg (100%): shows that all items in the test 
plan for design features have been tested. 
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Fig. 12. Testbench structure using UVM to test the 
design. 

 
Fig. 13. Simulation results of the converter on the SPI 
data input. 

 
Fig. 14. Simulation results of data transmission on 
I2C-bus. 

 

 
Fig. 15. Coverage report of the design on QuestaSim 
software. 
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Each verified design requires coverage metrics to 
gauge performance and help determine when the 
design is good enough to stop. In this report the 
dti_tb_top information reaches 92.39% indicating that 
design testing can be stopped to make the move to the 
next steps of the ASIC design flow. 

3.2. Design Synthesis 

Advanced techniques are used for ASIC chip 
synthesis, physics synthesis, static timing testing and 
analysis, optimization, dynamic simulation, formal 
verification, DFT scan insertion, link to layout, 
physical synthesis and static timing analysis using the 
Design Compiler tool of Synopsys [6]. Configure the 
software with an operating frequency of 150 MHz with 
optimal options for timing, area and power. To be able 
to synthesize, in addition to the RTL design, a library 
of standard cell is required, the library used for 
synthesis in this design is a standard cell library with 
40 nm technology, -40 oC operating temperature 
(which is the condition where standard cells work the 
worst) and the voltage used is 0.99 V. The important 
results are area (area) and time (timing) in the design 
synthesis are shown as follows: 

3.2.1 Area 
Number of ports:                          108 
Number of nets:                          6040 
Number of cells:                         5957 
Number of combinational cells:           4394 
Number of sequential cells:              1563 
Number of macros/black boxes:               0 
Number of buf/inv:                        999 
Number of references:                      67 
Combinational area:               5096.587949 
Buf/Inv area:                      587.608000 
Noncombinational area:            6409.591938 
Macro/Black Box area:                0.000000 
Net Interconnect area:   undefined  (No wire load specified) 
Total cell area:                        11506.179887 

Area results including ports, nets, cells, 
combined, non-combined and total area reports are 
shown in the report. The important information shown 
in the area report is that the number of combinational 
cells is 4394, the number of sequential cells is 1563, 
and the total design area is 11506.179887 (µm2). 

3.2.2. Timing 

Slack is a type of timing in the Static Timing 
Analysis of techniques for testing designs in terms of 
time. Slack includes setup slack and hold slack, 
defined as the difference between the actual or 
achieved time and the desired time for a timing path. 
Slack timing path helps designers determine their 
design can work with the required frequency or not. 
Below is a part of the report with the part cited as the 
path with the lowest slack line. The important 
information shown in the report is the slack parameter, 
if the result of an aggregate is the result of slack (MET) 
means that the value of slack is a non-negative value 
and the design can work with the frequency 
considered, otherwise slack (VIOLATED) means that 
the design value of slack is a negative value and the 
design cannot work with the frequency considered. In 
this report, the slack (MET) is equal to 0.00030 ns 

(positive), which means the design can work with the 
original specified frequency of 150 MHz.  
Startpoint:dti_spi2i2c_reg_blk/rb_regs/iscl_scl_low_cnt_reg[0](rising 
edge-triggered flip-flop clocked by pclk) 
Endpoint: 
dti_spi_to_i2c/dti_i2c_core/i2c_master_ctrl_inst/master_i2c_bit_cnt_inst
/count_reg_reg[2](rising edge-triggered flip-flop clocked by clk) 
Path Group: clk 
Path Type: max 
clock clk (rise edge)                               45.00000   45.00000 
  clock network delay (ideal)                          0.00000   45.00000 
  clock uncertainty                                   3.00000   42.00000 
dti_spi_to_i2c/dti_i2c_core/i2c_master_ctrl_inst/master_i2c_bit_cnt_inst
/count_reg_reg[2]/CK (dti_ffqa01x1)                                                     
0.00000   42.00000 r 
  library setup time                                  0.15634   41.84366 
  data required time                                             41.84366 
  slack(MET)                                               0.00030 
  normalization delay                                             5.00000 
  normalized slack                                                0.00006 

4. Design Implementation on FPGA 

4.1. Deployment Block Diagram on Xilinx FPGA 
Platform 

The I2C and I2S interfaces are designed to 
control the on-board audio codec to output audio 
signals under this article, which is built on the Xilinx 
FPGA platform. Before being transferred to the codec, 
audio data is stored in the FPGA's internal RAM block. 
The SPI2I2C controller is the decoder configured via 
the I2C interface. Digital audio data can be sent across 
the DAC interface of the codec using the I2S controller 
once it is configured and ready. Thereafter, the digital 
audio data is fed through the WM8731 Audio Codec 
for conversion to analog signals and output to 
multimedia devices [7]. The block diagram based on 
the Xilinx FPGA platform is shown in Fig. 16. 

In order for the implementation to be designed on 
FPGA, the selected FPGA platform should have at 
least the following parameters: (1) System frequency: 
200 MHz; (2) controllers: I2C, I2S; (3) Support APB 
Interface; (4) Software design support. From there, 
using the Xilinx Kintex Ultra-Scale FPGA platform is 
able to meet the listed requirements and is suitable for 
deploying IPs of great complexity. 
 

Processor

Clock Divider

Block RAM I2S Controller

SPI2I2C
ControllerAPB BRIDGE

AXI APB

APB

Clock

Reset_n

FPGA Platform

WM8731
 Audio Codec

I2C

I2S

SPI Master
Controller

APB

SPI

Fig. 16. Deployment block diagram on Xilinx FPGA 
platform.  

4.2. Work 
The BRAM block carries the original data in the 

coe file format. Furthermore, using the I2C interface 
generated by the SPI2I2C converter to configure the 
internal registers of the WM8731 Audio Codec, assign 
the registers inside the IPs to SPI Master, SPI2I2C, and 
I2S. After configuring the IP register configuration, 
allow the I2S SCK clock to synchronize data between 
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I2S and WM8731. The values inside the BRAM are 
read out and recorded in the FIFO memory, and the 
step was repeated until the BRAM signals the data to 
be empty. The operational flow of the design 
implemented on the Xilinx FPGA can be seen in 
Fig. 17. 

 
Fig. 17. The operational flow of the design 
implemented on the Xilinx FPGA. 

4.3. Synthesized Results on FPGA. 

The following synthesis results were generated 
by the converter using Xilinx Vivado 2018.1 software 
with a configured operating frequency of 150 Mhz.  

4.3.1. CLB Logic 

Club Logic is a critical component of FPGA 
technology. Reconfigurable logic gates may be created 
using logic blocks. The most typical FPGA 
architecture is logic blocks, which are commonly 
arranged in an array. I/Os (to communicate with 
external signals) and routing channels are required by 
logic blocks (to connect logic blocks). A logic block is 
made up of many logic cells (called ALM, LE, Slice, 
...). One cell consists of a 4-input LUT, a Full Adder, 
and a D-type flip-flop. Below is the result of the 
synthesized logic CLB. The results show that the 
number of CLB LUTs used accounted for only 0.24%, 
CLB Register accounted for 0.15%, which means that 
the design takes up very little resources of the FPGA. 

  +------------------------+------+-------+-----------+--------+ 

  |        Site Type        | Used | Fixed | Available | Util% | 

  +-----------------------+------+-------+-----------+---------+ 

  | CLB LUTs*               | 1264 |     0 |    537600 |  0.24 | 

  |   LUT as Logic          | 1264 |     0 |    537600 |  0.24 | 

  |   LUT as Memory         |    0 |     0 |     76800 |  0.00 | 

  | CLB Registers           | 1570 |     0 |   1075200 |  0.15 | 

  |   Register as Flip Flop | 1570 |     0 |   1075200 |  0.15 | 

  |   Register as Latch     |    0 |     0 |   1075200 |  0.00 | 

  | CARRY8                  |   14 |     0 |     67200 |  0.02 | 

  | F7 Muxes                |  100 |     0 |    268800 |  0.04 | 

  | F8 Muxes                |    9 |     0 |    134400 | <0.01 | 

  | F9 Muxes                |    0 |     0 |     67200 |  0.00 | 

  +-----------------------+------+-------+-----------+---------+ 

 

4.3.2. Primitives 

A resource in an FPGA that is directly recognized 
by the implementation software and typically 
corresponds to a logical resource in a logic resource 
(e.g. I/O pin, buffer, logic gate, or flip-flop). The report 
below shows the average number of Primitives used 
compared to a small IP core deployed on an FPGA. 

+----------+------+----------------------------------------+ 

| Ref Name | Used |             Functional Category        | 

+----------+------+----------------------------------------+ 

| FDRE     |  800 |                   Register             | 

| LUT6     |  744 |                        CLB             | 

| FDCE     |  741 |                   Register             | 

| LUT4     |  212 |                        CLB             | 

| LUT2     |  202 |                        CLB             | 

| LUT5     |  167 |                        CLB             | 

| LUT3     |  142 |                        CLB             | 

| MUXF7    |  100 |                        CLB             | 

| INBUF    |   52 |                        I/O             | 

| IBUFCTRL |   52 |                     Others             | 

| OBUF     |   49 |                        I/O             | 

| FDPE     |   29 |                   Register             | 

| CARRY8   |   14 |                        CLB             | 

| LUT1     |   11 |                        CLB             | 

| MUXF8    |    9 |                        CLB             | 

| OBUFT    |    2 |                        I/O             | 

| BUFGCE   |    2 |                      Clock             | 

+----------+------+----------------------------------------+ 

5. Discussion Results. 

Table 2 compares the design features of the 
converter by the design team with previously 
published papers such as Design of SPI to I2C Bridge 
for High-Speed Data Interfacing in Digital System of 
IJARCCE, FPGA Implementation of Serial Protocol 
using SPI and I2C of  IJEEE and industrial products of 
other companies such as Silicon Labs' CP2120 [8] or 
NXP's SC18IS600 [9]. The current design of the 
research team solved the problems posed in the 
introduction. Table 2 shows that SPI mode can work 
with all modes of SPI protocol, so it can communicate 
with all systems which have SPI bus. The design uses 
the APB peripheral communication bus with a faster 
register configuration speed than using the SPI bus 
directly for configuration like Silicon Labs’s product.  

Today, technology products are increasingly 
developed, the speed of system communication must 
also increase to meet the needs. Therefore, the research 
team has considered improving the speed of SPI and 
I2C interface standards in the design. 

Table 2. Compare and contrast the design aspects of 
various converters. 

Features IJARCC
E [1] 

IJERT 
[2] 

Silicon 
Labs [8] 
(CP2120) 

NXP [9] 
(SC18IS6

00) 

dti_spi2i
2c (Our 
Design) 

Mode 
SPI 

Not 
mention. 

Not 
mention. Mode 3 Mode 3 Mode 0, 

1, 2, 3 

SPI data 
transmis
sion 
direction 

Not 
mention. 

Not 
mention. 

LSB or 
MSB 

LSB or 
MSB MSB 

Register 
configur
ation 

Can’t 
configura

ble. 

Can’t 
configur

able. 

Using 
SPI bus 

Using 
SPI bus 

Using 
APB bus 

SPI 
speed 

Not 
mention. 

Not 
mention. 1 Mbit/s 1.2 

Mbit/s 
25 

Mbit/s 

I2C max 
speed 

3.4 
Mbit/s 

3.4 
Mbit/s 400 kbit/s 400 

kbit/s 5 Mbit/s 

Buffer Not Not 256 bytes 96 bytes 256 
bytes 

Configure SPI2I2C Controller

Configure I2S Controller

Configue WM8731 Codec

Enable I2S Master clock

Read data from BRAM and 
write to TX FIFO

Transmit data

Disable clock and FIFO

FINISH

Bram 
Empty?

TX FIFO 
Empty?

False

True

Initialize audio 
data

False

True
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The speed of the SPI interface is also 
significantly improved from 1.2 Mbit/s up to 25 Mbit/s 
by making this design works well with most of the 
systems which using the SPI interface standard 
available on the market. In addition, the speed of the 
I2C interface is also improved to a maximum of                         
5 Mbit/s. 

Because of the speed disparity between SPI and 
I2C, a buffer is required to hold data received from the 
two interfaces. The buffer's breadth grows in 
proportion to the difference between the two values.  
This design solves the problem of the performance gap 
between the two communication protocols being too 
big by using a 256-byte buffer, however, this increases 
the hardware cost of the design. 

6. Conclusion 
The converter designed by the research team can 

work with all the features proposed by the founders of 
these two communication standards that some other 
industrial companies do not have.  

The protocol converter design is proposed to be 
implemented in both ASIC and FPGA technologies, 
according to the study. The protocol converter has 
more features than the previous mentioned designs in 
terms of design. For example, to compensate for the 
speed differential between the two communication 
standards, a set of two FIFO buffers has been 
incorporated to the architecture. Additionally, the SPI 
and I2C bus speeds have been enhanced (25 MHz SPI-
bus and 5 MHz I2C-bus). Furthermore, the design is 
capable of operating at a high frequency of up to                    
150 MHz.  
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