

JST: Smart Systems and Devices

Volume 31, Issue 2, September 2021, 019-026

19

Designing SPI to I2C Protocol Converter Base on ASIC Technology and

Implementing on the FPGA Platform

Nguyen Hoang Dung
 Hanoi University of Science and Technology, Hanoi, Viet Nam

*Email: dung.nguyenhoang@hust.edu.vn

Abstract

Nowadays embedded systems are using a lot of different communication standards to transfer data such as
USB, UART, SPI, I2C, etc. To be able to transfer data with each communication standard, the system needs
at least one controller block for that communication standard. This has added to the complexity of the system
and the cost of manufacturing hardware. Embedded systems only support SPI communication if desired,
which can still be communicated with peripherals with I2C standard. However, the SPI cannot be directly
connected to the I2C but must use a standard communication converter. This paper will primarily focus on
designing an IP core communication standard converter from SPI to I2C using APB (Advanced Peripheral
Bus) communication as one of the AMBA (Advanced Microcontroller Bus Architecture) communication sets.
In particular, APB is a bus used to communicate with peripherals that do not require fast processing speeds
such as UART, SPI, I2C, etc.

Keywords: SPI, I2C, FPGA.

1. Introduction

Serial *Peripheral Interface (SPI) is one of the
most widely used interfaces between microcontrollers
and peripherals such as sensors, analog-to-digital
converters (ADC), and digital-to-analog converters
(DAC), shift register or SRAM. Whereas Inter
Integrated Circuit (I2C) is a two-wire bus used to
enable communication between two or more devices
on the same system. Let's assume an embedded system
having only the SPI communication standard has to
interface with peripherals that only use the I2C
communication standard, next, by using design flow of
ASIC (Application-Specific Integrated Circuit) and
FPGA (Field-Programmable Gate Array)
technologies, a SPI to I2C communication converter is
created. Previously published researches such as
Design of SPI to I2C Bridge for High Speed Data
Interfacing in Digital System [1] and FPGA
Implementation of Serial Protocol using SPI and I2C
[2] have some limitations such as: Cannot transmit
data correctly if SPI device and I2C device operate in
different frequency domains; can’t use bus to
communicate with the system (APB, AHB,..); only can
works with an initial pre configuration; the maximum
transfer rate of the I2C interface is only 3.4 Mbit/s.
Therefore, the research team proposed to design an SPI
to I2C protocol converter based on ASIC technology
and deployed it on the FPGA platform to solve these
above problems. The structure of the paper is
organized as follows: In part 2, the block diagram
design of the SPI to I2C communication converter will
be presented; Part 3 and part 4 bring up with testing

ISSN: 2734-9373
https://doi.org/10.51316/jst.152.ssad.2021.31.2.3
Received: December 03, 2020; accepted: January 26, 2021

and synthesis of design and implementation on the
FPGA platform; Part 5 is the conclusion of the paper
and the research team's next development direction on
the design of SPI to I2C protocol converter.

2. Block Diagram Design

2.1. Overview of the Converter

A protocol converter is a device that is used to
convert the standard communication (e.g. SPI) of one
device to a suitable communication (e.g. I2C) with
another device to have the ability to transmit data
between two communication standards. Fig. 1 shows
the block diagram of the system SPI to I2C protocol
converter.

SS_N

SCLK

MOSI

MISO

S
P

I
M

a
s
t
e

r
 I

n
t
e

r
f
a

c
e

S
P

I
S

la
v

e
 I

n
t
e

r
f
a

c
e

SPI Master
Controller

SPI2I2C
Bridge

Controller

I2
C

 M
a

s
t
e

r
 I

n
t
e

r
f
a

c
e

AD/DA
Converter LCD Driver

Serial
EEPROMs

Temperature
Sensors

LED
Controller

SCL

SDA

I2C Slave
Controller

I2
C

 S
la

v
e

 I
n

t
e

r
f
a

c
e

Fig. 1. Connecting an SPI to I2C converter in a system.

2.2. Serial Peripheral Interface

SPI is a synchronous serial communication
protocol that is commonly used at short distances,
mostly in embedded systems between microprocessors
or microcontrollers and peripherals like sensors, ADC,
DAC, SRAM, and so on. SPI devices communicate in

JST: Smart Systems and Devices

Volume 31, Issue 2, September 2021, 019-026

20

the duplex-mode with only one single master device
and many slave devices. During communication, the
master can only pick a slave-based device by dragging
the device's Slave Select (SS N) signal pin to a low
level[3]. Fig. 2 illustrates SPI communication.

2.3. Inter Integration Circuit

Nowadays, in the communication protocols
operating with low frequency, I2C (Inter Integrated
Circuit) protocol is very suitable for communication
between integrated circuits, slow communication with
peripheral devices. Fig. 3 shows a transaction of the
I2C interface standard.

For operation mode with 7-bit slave address, the
master device will send a start condition, followed
immediately by the 7-bit slave address which it wants
to communicate with and finally a bit representing a
write or read from the slave (bit 0 is written and bit 1
is read). If the slave exists on the bus, the slave will
respond with the ACK bit (low-level to confirm) for its
address. After that, the master will then be in read
mode or write mode based on the previously sent
written bit or read a bit [4]. The address and data bytes
are sent with the MSB bit first. Starting conditions
occur when the SDA pulls from high-level to low-
level when the SCL is high and stopping condition is
represented by the SDA transition from low-level to
high-level when the SCL is high.

2.4. Block Diagram

Some previous architecture was given as follows:
The SPI to I2C converter will contain a SPI interface
as the slave and a I2C interface as the master. All
request signals will be generated by the SPI master
controller block. When an external SPI master wants
to read or write data to an I2C slave peripheral, it sends
a read command or write command and the
corresponding address of the I2C slave through the
internal SPI slave inside the converter. Thereon, the
SPI slave will then send commands, address, and data
(in case of writing) to the I2C master, and the internal
state machine will perform the necessary data
conversion.

These designs will only accommodate data
transmission with a clock domain, from there
proposing two more FIFO buffers (First in, first out)
called TX FIFO (receiving data from the SPI-bus side)
and RX FIFO (receiving data from the I2C-bus side)
for the purpose of storing pending data. Next, in order
to communicate with the CPU and the user can
configure the converter, it is proposed to design a
register block that is used to configure input values and
store input signal information. Output of the circuit.
This work is done through an advanced peripheral
communication standard APB (Advanced Peripheral
Bus) used to communicate with peripherals that do not
require fast processing speed such as UART, SPI, I2C,
etc. In addition, the converter will have additional

interrupt pins to respond to the current state of the
circuit. Fig. 4 shows the general block diagram of the
SPI to I2C converter.

SPI
Master

SPI
Slave

SS_N

SCLK

MOSI

MISO

SS_N

SCLK

MOSI

MISO

Fig. 2. SPI Interface

Fig. 3. A transaction of a standard I2C interface.

spi_slave

spi2i2c_reg_blk

rx_fifo_async_ff

i2c_mastertx_fifo_async_ff

spi_to_i2_bridge_ctrl

Tx FIFO Status

Rx FIFO Status

Config

Status

Rx_Data

Req

Config

Status

Tx_Data
Req

Status

Tx_data

Rx_Data

APB

SPI

I2C

Status
Rx_data
Rx_cmd

Control

INTR

Fig. 4. Block diagram of SPI to I2C converter.

The blocks in Fig. 4 are shown and have the
following meanings: (1) spi2i2c_reg_blk: Is the block
used to configure input values and store information
about the active state of the converter; (2) spi_slave: Is
a block designed to be equivalent as a simple SPI
device. This block implements the SPI interface with
the external SPI master; (3) i2c_master: Is a block
designed to be equivalent as a simple SPI device. This
block implements I2C interface for data transmission
I2C slave devices; (4) spi_to_i2c_bridge_ctrl: Is the
main processing block of the converter. This block
controls the transmission and reception of data from
two SPI slave block and I2C master block; (5)
tx_fifo_async_ff: Is an asynchronous buffer, which
means that the write and read times on the watch may
vary, and thus is commonly employed as a buffer data
storage devices. This block retains data that has been
transmitted from an external SPI master and is waiting
to be processed before being delivered to the I2C-bus;

JST: Smart Systems and Devices

Volume 31, Issue 2, September 2021, 019-026

21

(6) rx_fifo_async_ff: This block stores data
transmitted from external I2C slave devices waiting to
be processed to send those data to the SPI-bus.

2.5. Operating Principle

In order for the SPI master to communicate with
the I2C slave devices, the research team designed a set
of commands that can be customized according to the
previous convention between the two sides of the SPI
master and the converter, and then send those
commands on the SPI-bus. Most SPI devices currently
operate data within a transaction (i.e. every time SS_N
is active) whose number of bits transmitted must be a
multiple of 8 from which the total width of a
transaction on the SPI-bus Designed so that the
number of bits is divisible by 8, this converter has an
instruction width of 1 byte so that the SPI master can
transmit properly. The SPI master commands that can
be transmitted on the SPI-bus are listed in Table 1. The
following is the data frame for the commands in the
table:

2.5.1. Data transfer to slave I2C peripheral device
(0x01)

When the SPI master pulls the SS_N signal pin a
low level, the data received from the external SPI
master (SCLK) clocked MOSI pin is processed by the
SPI slave block in the converter and then forwarded to
the processing block to add the elements of the I2C
interface standard as the start bit, the address bits, the
ACK bit (controlled by the I2C slave) and the stop bit.
The SPI master will send a command to the converter
in the following order of bytes: 1 byte of writting
instruction (0x01), 1 byte of data for the number of
bytes that the SPI master wants to transmit (maximum
256 bytes), 1 byte of data for the address of the I2C
slave and finally the data transmitted to those I2C
devices. The data stream sent on the SPI-bus when the
write command (0x01) is executed is shown as shown
in Fig. 5.

The data after being filtered by the SPI slave
block continues to be processed by the processor block
(spi_to_i2c_bridge_ctrl) and sent to the I2C master
block for transmission to the I2C slave devices. Fig. 6
shows the data stream sent on the I2C-bus when the
SPI master executes a write command (0x01).

2.5.2. Receive data from slave I2C peripheral device

The data received from the I2C slave devices are
processed by the internal I2C master block by
removing the I2C interface standard bits which are the
start bit, the address bits, the ACK bit and the stop bit.
The received data is stored in the RX FIFO memory
and will not be returned to the external SPI master
without executing the buffer read (0x03) instruction
described in the next section. To receive data the SPI
master will send a command to the I2C slave device

with the order of bytes sent as follows: 1 byte of the
read command (0x02), 1 byte of data for the number
of bytes that the SPI master wants to receive
(maximum 256 bytes) and 1 byte of data for the
address of the I2C slave device. Fig. 7 shows the data
stream sent on the SPI-bus when the SPI master
performs a read command (0x02).

Table 1. The commands the SPI master can send on the
SPI-bus.

No Command Description

1 0x01 Write N bytes to device I2C

2 0x02 Read N bytes from I2C device

3 0x03 Read buffer command.

0x01
COMMAND

NUMBER
OF BYTES

SLAVE ADDRESS
+ W

DATA
BYTE 1

DATA
BYTE N

. . .

SPI Master sends message

number of bytes D[7:0] 0

SS_N

SCLK

MOSI slave address A[7:1] data byte 1 data byte N

Fig. 5. Data is transferred over the SPI-bus when a
write signal is issued, (0x01).

S SLAVE ADDRESS R/W A DATA
BYTE 1 A . . . DATA

BYTE N A/NA P/Sr

P

Sr

1 2 7 8 9 2 71 8 9
ACK A/NA

SDA

SCL

Data transfer on the I2C-bus

from master to slave

slave to master

A = acknowledge (SDA LOW)
NA = not acknowledge (SDA HIGH)
S = START condition
P = STOP condition
Sr = repeat start conditon

Fig. 6. Data is transferred across the I2C-bus when the
SPI master issues a write signal, (0x01).

0x02
COMMAND

NUMBER
OF BYTES

SLAVE ADDRESS
+ W

SPI Master sends message

number of bytes D[7:0] 1

SS_N

SCLK

MOSI slave address A[7:1]
Fig. 7. The data stream sent on the SPI-bus when the
SPI master performs a read command (0x02).

JST: Smart Systems and Devices

Volume 31, Issue 2, September 2021, 019-026

22

S SLAVE ADDRESS R/W A DATA
BYTE 1 A . . . DATA

BYTE N NA P/Sr

P

Sr

1 2 7 8 9 2 71 8 9
ACK ACK

SDA

SCL

Data transfer on the I2C-bus

from master to slave

slave to master

A = acknowledge (SDA LOW)
NA = not acknowledge (SDA HIGH)
S = START condition
P = STOP condition
Sr = repeat start conditon

Fig. 8. The data stream sent on the I2C-bus when the
SPI master performs a read command (0x02).

don’t care

ss_n

sclk

mosi

valid_data

miso

Fig. 10. The data takes effect when the SPI master
reads the buffer,

0x03
COMMAND

DATA
BYTE 1

DATA
BYTE N

. . .

SPI-bus data

from master to slave

slave to master

Fig. 9. The data stream sent on the SPI-bus when the
SPI master performs a buffer read (0x03).

Sequencer

Driver

Monitor

DUT

Sequence

Scoreboard

TOP Test
Environment

Fig. 11. Basic structure of UVM environment.

The data after being filtered by the SPI slave
block is further processed by the processing block
(spi_to_i2c_bridge_ctrl) and sent to the I2C master
block for transmission to the I2C slave devices and
then receiving the returned data. Fig. 8 shows the data
stream sent on the I2C-bus when the SPI master
performs a read (0x02).

2.5.3. Read buffer

After the SPI master executes a buffer read
(0x03) command from the RX FIFO buffer, the data
being stored in the buffer will be returned to the SPI
master via the MISO signal pin. Fig. 9 shows the data
stream sent on the SPI-bus when the SPI master
performs a buffer read (0x03).

Because the speed of operation of the SPI and
I2C communication protocols differs, data received
from the I2C device can be delivered at any moment
because the SS_N pin is pulled to a low level and the
SPI master cannot identify when the data takes effect,
Read buffer command (0x03) is created. As a result,
the buffer reading command was designed to address
this issue. The data in effect when the SPI Master
executes the buffer reading instruction is shown in
Fig. 10.

3. Design Verification and Synthesis.

3.1. Design Testing.

With an RTL (Register-Transfer Level) design
according to ASIC (Application-Specific Integrated

Circuit) technology, before the product is packaged, it
is critical to test the design. Building a verification
environment has become an essential phase in the
product design process that cannot be overlooked in
order to ensure that a product works properly under
real-world settings. The UVM (Universal Verification
Methodology) library and QuestaSim software for
design verification are two of the most successful
verification approaches for ASIC-based designs [5].

3.1.1. Introduction to UVM library

UVM (Universal Verification Methodology) is a
method of simulating hardware designs. The UVM
library is a collection of classes and methods built on
the System Verilog language. UVM was built with the
goal of creating a common simulation method for the
IC industry. Simulation testing is a very time-
consuming process. In particular, the time spent
building and editing the simulation environment is
quite large. Without a common methodology, a
simulation environment will be difficult to reuse,
extend and understand by many different engineers,
organizations or companies.

The basic structure of a UVM environment
consisting of blocks is shown in Fig. 11. The blocks in
Fig. 11 are described as follows: (1) Top is the element
that contains the entire test environment, including the
DUT; (2) Test is the top layer containing all UVM
components; (3) DUT (Design Under Test) is the
design to be tested; (4) Environment is a grouping

JST: Smart Systems and Devices

Volume 31, Issue 2, September 2021, 019-026

23

element of other UVM environmental components
such as Agent and Scoreboard; (5) Agent groups the
components that test the connection to the
communication of the DUT. It can have many different
components, but usually has 3 main components:
Monitor is the component that monitors information
and communication signals with the DUT, Sequencer
controls the transmission of transactions from
sequences, and Driver receives transactions. From the
sequences is to convert them in turn to the
corresponding values to drive the signals for
communication with the DUT; (6) Scoreboard is the
component that examines the desired behavior,
activity or data of the DUT and (7) Sequence is the
object that generates transactions and provides them to
the UVM Sequencer to deliver to the Driver.

3.1.2. Build testbench structure

Fig. 12 shows the block structure of UVM for
design testing. The UVM class library brings a lot of
automation to the SystemVerilog hardware description
language such as sequencing and data automation
features (packing, copying, comparing), etc. After
building the structure testbench as shown in Fig. 11,
perform design testing on QuestaSim software.
Imagine that when a transaction (0x01) is executed, the
data flow sent via the SPI-bus consists of the following
24 bits of commands: Write 0x01 with 8 bits of
commands, 8 bits of transferred bytes, and 8 bits of
I2C address. The SPI master will then send the actual
data on the I2C bus (in this example is 4 bytes of data).
On the SPI-bus, the operating frequency is 10 MHz,
and I2C is in Fast-mode Plus (1 MHz). With the above
operating frequency, the minimum required depth of
TX FIFO is 10. Fig. 13 shows the design simulation
results on the SPI-bus data input side. After receiving
the input data from the SPI with the request to perform
data transmission to the I2C slave device, the I2C
interface of the converter will have the waveform
shown in Fig. 14.

The results after simulation are shown in Fig. 13
and Fig. 14, when directly observed, it can be seen that
the results are correct compared to the requirements set
forth. But for the convenience of design testing,
QuestaSim software with the use of the UVM library
will generate a report, helping the designer to
determine the correct operation and coverage of the
design, thereby can create input plans and goals for
parts of the design. The results when running the test
cases will be saved by UVM and extracted to a
coverage report generated on Questa software with the
results as shown in Fig. 15. The important information
of the coverage report includes:

- dti_spi_to_i2c_top (87.83%): is the coverage
result of code RTL coverage. It measures how much of
the RTL code has been executed through all the test
cases. This includes implementing design blocks, line
numbers, conditions, FSM, toggles, and paths. UVM

will automatically extract code coverage from the RTL
code.

- dti_spi2i2c_sva (100%): is the result of
checking the correctness of the functions and timing
required in the design.

- dti_cvg (100%): shows that all items in the test
plan for design features have been tested.

item

spi_master_model

Driver

DUT

i2c_slave_model

SVA Checker

sequence

sequencer

agent

environment

dti_top_tb

SPI_IF

SPI_IF

i2c_interface

spi2i2c_intf

Fig. 12. Testbench structure using UVM to test the
design.

Fig. 13. Simulation results of the converter on the SPI
data input.

Fig. 14. Simulation results of data transmission on
I2C-bus.

Fig. 15. Coverage report of the design on QuestaSim
software.

JST: Smart Systems and Devices

Volume 31, Issue 2, September 2021, 019-026

24

Each verified design requires coverage metrics to
gauge performance and help determine when the
design is good enough to stop. In this report the
dti_tb_top information reaches 92.39% indicating that
design testing can be stopped to make the move to the
next steps of the ASIC design flow.

3.2. Design Synthesis

Advanced techniques are used for ASIC chip
synthesis, physics synthesis, static timing testing and
analysis, optimization, dynamic simulation, formal
verification, DFT scan insertion, link to layout,
physical synthesis and static timing analysis using the
Design Compiler tool of Synopsys [6]. Configure the
software with an operating frequency of 150 MHz with
optimal options for timing, area and power. To be able
to synthesize, in addition to the RTL design, a library
of standard cell is required, the library used for
synthesis in this design is a standard cell library with
40 nm technology, -40 oC operating temperature
(which is the condition where standard cells work the
worst) and the voltage used is 0.99 V. The important
results are area (area) and time (timing) in the design
synthesis are shown as follows:

3.2.1 Area
Number of ports: 108
Number of nets: 6040
Number of cells: 5957
Number of combinational cells: 4394
Number of sequential cells: 1563
Number of macros/black boxes: 0
Number of buf/inv: 999
Number of references: 67
Combinational area: 5096.587949
Buf/Inv area: 587.608000
Noncombinational area: 6409.591938
Macro/Black Box area: 0.000000
Net Interconnect area: undefined (No wire load specified)
Total cell area: 11506.179887

Area results including ports, nets, cells,
combined, non-combined and total area reports are
shown in the report. The important information shown
in the area report is that the number of combinational
cells is 4394, the number of sequential cells is 1563,
and the total design area is 11506.179887 (µm2).

3.2.2. Timing

Slack is a type of timing in the Static Timing
Analysis of techniques for testing designs in terms of
time. Slack includes setup slack and hold slack,
defined as the difference between the actual or
achieved time and the desired time for a timing path.
Slack timing path helps designers determine their
design can work with the required frequency or not.
Below is a part of the report with the part cited as the
path with the lowest slack line. The important
information shown in the report is the slack parameter,
if the result of an aggregate is the result of slack (MET)
means that the value of slack is a non-negative value
and the design can work with the frequency
considered, otherwise slack (VIOLATED) means that
the design value of slack is a negative value and the
design cannot work with the frequency considered. In
this report, the slack (MET) is equal to 0.00030 ns

(positive), which means the design can work with the
original specified frequency of 150 MHz.
Startpoint:dti_spi2i2c_reg_blk/rb_regs/iscl_scl_low_cnt_reg[0](rising
edge-triggered flip-flop clocked by pclk)
Endpoint:
dti_spi_to_i2c/dti_i2c_core/i2c_master_ctrl_inst/master_i2c_bit_cnt_inst
/count_reg_reg[2](rising edge-triggered flip-flop clocked by clk)
Path Group: clk
Path Type: max
clock clk (rise edge) 45.00000 45.00000
 clock network delay (ideal) 0.00000 45.00000
 clock uncertainty 3.00000 42.00000
dti_spi_to_i2c/dti_i2c_core/i2c_master_ctrl_inst/master_i2c_bit_cnt_inst
/count_reg_reg[2]/CK (dti_ffqa01x1)
0.00000 42.00000 r
 library setup time 0.15634 41.84366
 data required time 41.84366
 slack(MET) 0.00030
 normalization delay 5.00000
 normalized slack 0.00006

4. Design Implementation on FPGA

4.1. Deployment Block Diagram on Xilinx FPGA
Platform

The I2C and I2S interfaces are designed to
control the on-board audio codec to output audio
signals under this article, which is built on the Xilinx
FPGA platform. Before being transferred to the codec,
audio data is stored in the FPGA's internal RAM block.
The SPI2I2C controller is the decoder configured via
the I2C interface. Digital audio data can be sent across
the DAC interface of the codec using the I2S controller
once it is configured and ready. Thereafter, the digital
audio data is fed through the WM8731 Audio Codec
for conversion to analog signals and output to
multimedia devices [7]. The block diagram based on
the Xilinx FPGA platform is shown in Fig. 16.

In order for the implementation to be designed on
FPGA, the selected FPGA platform should have at
least the following parameters: (1) System frequency:
200 MHz; (2) controllers: I2C, I2S; (3) Support APB
Interface; (4) Software design support. From there,
using the Xilinx Kintex Ultra-Scale FPGA platform is
able to meet the listed requirements and is suitable for
deploying IPs of great complexity.

Processor

Clock Divider

Block RAM I2S Controller

SPI2I2C
ControllerAPB BRIDGE

AXI APB

APB

Clock

Reset_n

FPGA Platform

WM8731
 Audio Codec

I2C

I2S

SPI Master
Controller

APB

SPI

Fig. 16. Deployment block diagram on Xilinx FPGA
platform.

4.2. Work
The BRAM block carries the original data in the

coe file format. Furthermore, using the I2C interface
generated by the SPI2I2C converter to configure the
internal registers of the WM8731 Audio Codec, assign
the registers inside the IPs to SPI Master, SPI2I2C, and
I2S. After configuring the IP register configuration,
allow the I2S SCK clock to synchronize data between

JST: Smart Systems and Devices

Volume 31, Issue 2, September 2021, 019-026

25

I2S and WM8731. The values inside the BRAM are
read out and recorded in the FIFO memory, and the
step was repeated until the BRAM signals the data to
be empty. The operational flow of the design
implemented on the Xilinx FPGA can be seen in
Fig. 17.

Fig. 17. The operational flow of the design
implemented on the Xilinx FPGA.

4.3. Synthesized Results on FPGA.

The following synthesis results were generated
by the converter using Xilinx Vivado 2018.1 software
with a configured operating frequency of 150 Mhz.

4.3.1. CLB Logic

Club Logic is a critical component of FPGA
technology. Reconfigurable logic gates may be created
using logic blocks. The most typical FPGA
architecture is logic blocks, which are commonly
arranged in an array. I/Os (to communicate with
external signals) and routing channels are required by
logic blocks (to connect logic blocks). A logic block is
made up of many logic cells (called ALM, LE, Slice,
...). One cell consists of a 4-input LUT, a Full Adder,
and a D-type flip-flop. Below is the result of the
synthesized logic CLB. The results show that the
number of CLB LUTs used accounted for only 0.24%,
CLB Register accounted for 0.15%, which means that
the design takes up very little resources of the FPGA.

 +------------------------+------+-------+-----------+--------+

 | Site Type | Used | Fixed | Available | Util% |

 +-----------------------+------+-------+-----------+---------+

 | CLB LUTs* | 1264 | 0 | 537600 | 0.24 |

 | LUT as Logic | 1264 | 0 | 537600 | 0.24 |

 | LUT as Memory | 0 | 0 | 76800 | 0.00 |

 | CLB Registers | 1570 | 0 | 1075200 | 0.15 |

 | Register as Flip Flop | 1570 | 0 | 1075200 | 0.15 |

 | Register as Latch | 0 | 0 | 1075200 | 0.00 |

 | CARRY8 | 14 | 0 | 67200 | 0.02 |

 | F7 Muxes | 100 | 0 | 268800 | 0.04 |

 | F8 Muxes | 9 | 0 | 134400 | <0.01 |

 | F9 Muxes | 0 | 0 | 67200 | 0.00 |

 +-----------------------+------+-------+-----------+---------+

4.3.2. Primitives

A resource in an FPGA that is directly recognized
by the implementation software and typically
corresponds to a logical resource in a logic resource
(e.g. I/O pin, buffer, logic gate, or flip-flop). The report
below shows the average number of Primitives used
compared to a small IP core deployed on an FPGA.

+----------+------+--+

| Ref Name | Used | Functional Category |

+----------+------+--+

| FDRE | 800 | Register |

| LUT6 | 744 | CLB |

| FDCE | 741 | Register |

| LUT4 | 212 | CLB |

| LUT2 | 202 | CLB |

| LUT5 | 167 | CLB |

| LUT3 | 142 | CLB |

| MUXF7 | 100 | CLB |

| INBUF | 52 | I/O |

| IBUFCTRL | 52 | Others |

| OBUF | 49 | I/O |

| FDPE | 29 | Register |

| CARRY8 | 14 | CLB |

| LUT1 | 11 | CLB |

| MUXF8 | 9 | CLB |

| OBUFT | 2 | I/O |

| BUFGCE | 2 | Clock |

+----------+------+--+

5. Discussion Results.

Table 2 compares the design features of the
converter by the design team with previously
published papers such as Design of SPI to I2C Bridge
for High-Speed Data Interfacing in Digital System of
IJARCCE, FPGA Implementation of Serial Protocol
using SPI and I2C of IJEEE and industrial products of
other companies such as Silicon Labs' CP2120 [8] or
NXP's SC18IS600 [9]. The current design of the
research team solved the problems posed in the
introduction. Table 2 shows that SPI mode can work
with all modes of SPI protocol, so it can communicate
with all systems which have SPI bus. The design uses
the APB peripheral communication bus with a faster
register configuration speed than using the SPI bus
directly for configuration like Silicon Labs’s product.

Today, technology products are increasingly
developed, the speed of system communication must
also increase to meet the needs. Therefore, the research
team has considered improving the speed of SPI and
I2C interface standards in the design.

Table 2. Compare and contrast the design aspects of
various converters.

Features IJARCC
E [1]

IJERT
[2]

Silicon
Labs [8]
(CP2120)

NXP [9]
(SC18IS6

00)

dti_spi2i
2c (Our
Design)

Mode
SPI

Not
mention.

Not
mention. Mode 3 Mode 3 Mode 0,

1, 2, 3

SPI data
transmis
sion
direction

Not
mention.

Not
mention.

LSB or
MSB

LSB or
MSB MSB

Register
configur
ation

Can’t
configura

ble.

Can’t
configur

able.

Using
SPI bus

Using
SPI bus

Using
APB bus

SPI
speed

Not
mention.

Not
mention. 1 Mbit/s 1.2

Mbit/s
25

Mbit/s

I2C max
speed

3.4
Mbit/s

3.4
Mbit/s 400 kbit/s 400

kbit/s 5 Mbit/s

Buffer Not Not 256 bytes 96 bytes 256
bytes

Configure SPI2I2C Controller

Configure I2S Controller

Configue WM8731 Codec

Enable I2S Master clock

Read data from BRAM and
write to TX FIFO

Transmit data

Disable clock and FIFO

FINISH

Bram
Empty?

TX FIFO
Empty?

False

True

Initialize audio
data

False

True

JST: Smart Systems and Devices

Volume 31, Issue 2, September 2021, 019-026

26

The speed of the SPI interface is also
significantly improved from 1.2 Mbit/s up to 25 Mbit/s
by making this design works well with most of the
systems which using the SPI interface standard
available on the market. In addition, the speed of the
I2C interface is also improved to a maximum of
5 Mbit/s.

Because of the speed disparity between SPI and
I2C, a buffer is required to hold data received from the
two interfaces. The buffer's breadth grows in
proportion to the difference between the two values.
This design solves the problem of the performance gap
between the two communication protocols being too
big by using a 256-byte buffer, however, this increases
the hardware cost of the design.

6. Conclusion
The converter designed by the research team can

work with all the features proposed by the founders of
these two communication standards that some other
industrial companies do not have.

The protocol converter design is proposed to be
implemented in both ASIC and FPGA technologies,
according to the study. The protocol converter has
more features than the previous mentioned designs in
terms of design. For example, to compensate for the
speed differential between the two communication
standards, a set of two FIFO buffers has been
incorporated to the architecture. Additionally, the SPI
and I2C bus speeds have been enhanced (25 MHz SPI-
bus and 5 MHz I2C-bus). Furthermore, the design is
capable of operating at a high frequency of up to
150 MHz.

References

[1]. Sidra Anam and Vinod Kapse, Design of SPI to I2C
bridge for high speed data interfacing in digital system,
International Journal of Advanced Research in
Computer and Communication Engineering, Vol. 5,
Issue 4, April 2016.

[2]. Saniya Farheen and Dr Baswaraj Gadgay, FPGA
implementation of serial protocol using SPI and I2C,
International Journal of Ethics in Engineering &
Management Education (IJEEE), Volume 2, Issue 6,
June 2015.

[3]. Sanjeeb Mishra and Vijayakrishnan Rousseau, System
on chip interfaces for low power design, Elsevier Inc,
2016, pp. 239-243.
https://doi.org/10.1016/C2014-0-00336-X

[4]. Sanjeeb Mishra and Vijayakrishnan Rousseau, System
on chip interfaces for low power design, Elsevier Inc,
2016, pp. 243-247.

[5]. Uvm Cookbook Complete Verification Academy, 1rd,
Menter Graphics, 2017, pp. 1-4.

[6]. S. Gayathri and T. C. Taranath, RTL synthesis of case
study using design compiler, in Proc. 2017
International Conference on Electrical, Electronics,
Communication, Computer, and Optimization
Techniques (ICEECCOT), 2017, pp. 1-7,
https://doi.org/10.1109/ICEECCOT.2017.8284603.

[7]. Peter Athanas, Dionisios Pnevmatikatos and Nicolas
Sklavos, Embedded systems design with FPGAs,
Springer, 2015, pp. 1-4.

[8]. SPI To I2c Bridge And Gpio Port Expander, 1rd,
Silicon Labs, 2015.

[9]. SPI to I2C-bus Interface, 8rd, NXP Semiconductors,
2019.

	1. Introduction
	2. Block Diagram Design
	2.1. Overview of the Converter
	2.2. Serial Peripheral Interface
	2.3. Inter Integration Circuit
	2.4. Block Diagram
	2.5. Operating Principle

	3. Design Verification and Synthesis.
	3.1. Design Testing.
	3.2. Design Synthesis

	4. Design Implementation on FPGA
	4.1. Deployment Block Diagram on Xilinx FPGA Platform
	4.2. Work
	4.3. Synthesized Results on FPGA.

	5. Discussion Results.
	6. Conclusion
	References

