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Abstract 

The paper focuses on the controller designing for the position and speed of non-salient synchronous type axial 
self-bearing motors. The motor creates the magnetic field to lift the motor along the shaft and generate rotating 
torque. Firstly, the motor electro-mechanical relations are analyzed to formulate an accurate mathematical 
model, then a vector control structure is proposed. The force components control the axial position, and the 
torque controls the motor speed. Secondly, based on the Lyapunov stability function, the dynamic surface 
control is used to design position and speed controllers. The system simulation results show that the drive 
system ensures stability and tracking performance. In addition, the interaction between position and speed 
loops of the control loop is also negligible 
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1. Introduction* 

In recent years, motors with integrated magnetic 
bearings have received more and more attention due to 
its advantages compared to traditional ball bearings 
[1]. Integrated magnetic bearing motor applications 
include special conditions requiring low friction, high 
speed requirements, working environment 
temperatures that are too high or too low or requiring 
sterility. The problem of improving control quality for 
magnetic drive motors has prompted the use of 
different control engineering methods. 

 The motor studied in this paper is a synchronous 
motor with permanent magnets attached to the rotor 
and the two stators with windings on both sides of the 
rotor. The motor structure is shown in Fig. 1. 
Assuming that the motor shaft has been stabilized by 
the radial magnetic bearings, the object then has two 
degrees of freedom: rotation and displacement along 
the rotor axis [2-4]. 

This structure is defined as a self-lifting AC 
motor with axial clearance, which is called Axial Flux 
Permanent Magnetic machine (AFPM). The AFPM 
motor is a combination of axial magnetic motor with 
radial magnetic drive, due to reduced hardware 
configuration, it is simpler in structure and control than 
conventional integrated magnetic bearing motor. The 
AFPM motor can be either asynchronous or 
synchronous. However, synchronous motors have 
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received more attention due to their high efficiency 
and power factor and are easy to manufacture [5-6]. If 
the synchronous motor is non-salient, the inductance 
components on two axes d and q are different, and a 
reluctance torque appears, which causes difficulties in 
decoupling control between the position and speed 
control loops. 

The control method for AFPM motor is based on 
vector control principle, in which id  current is used to 
control axial force, and iq current controls rotational 
torque [7]. In [1-2] authors used PI and PID controllers 
that regulate the axial position and speed. However, 
the used equations and are strongly nonlinear. 
Therefore, an option of using nonlinear controllers is 
necessary. Dynamic surface control method is used to 
design the controller. This is a technique applied to 
nonlinear system objects, used to control the tracking 
and stability of the system [8-11]. The technique of 
dynamic surface control (DSC) carries the 
specification of backstepping and multi-surface sliding 
control (MSS) [14-16]. However, it has been added 
with a first-order filter to avoid explosion of term. The 
simulation results show that the proposed controller 
has the position and speed responses following the 
trajectory set in a fast time. The system is also stable 
to the interleaving effects of the two control loops. 
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Fig. 1. Structure of AFPM 

This paper is organized as follows. In second 
section, the mathematical model of AFPM motor and 
control principle are introduced. In third section, the 
DSC controllers are designed. Simulation and 
experiment are demonstrated in fourth section, which 
is followed by conclusion in fifth section. 

2. Control Principle 

The structure of a permanent magnet 
synchronous motor with integrated magnetic bearing 
is shown in Fig. 2. The rotor is lifted by two magnetic 
bearings from the radial axis. Motions in x, y, θx, θy 
directions of the rotor is assumed to totally controlled 
by the radial magnetic bearings. 

 The scope of the paper only focuses on rotational 
and translational motion in the z-axis, hence the motor 
consists of two degrees of freedom. The rotor is a flat 
disc with permanent magnets mounted on the rotor 
surface (nonsalient-pole rotor) or mounted in the rotor 
surface groove (salient-pole rotor). On each side of the 
rotor is a stator, on each stator there are three three-
phase windings creating a rotating magnetic field in 
the air gap. This magnetic field will generate torques 
T1 and T2 on the rotor and attractive forces F1 and F2 
between the rotor and each stator. The total torque T is 
calculated as the addition of the two component 
moments. The axial force F is calculated as the 
difference of the two component axial forces. They are 
regulated by the amplitude and phase angle of the 
currents across the two stators. If the axial magnetic 
field force is unstable, an axial position control signal 
is required to stabilize the axial motion [1] and [3]. The 
mathematical model of the motor is presented on the 
coordinate system based on the rotor magnetic           
flux (d, q) or the stator coordinate system (α, β). 

When presenting the mathematical model of the 
motor, it is important to note that the permanent 
magnet arrangement on the rotor affects the inductance 
on the stator winding. The paper considers the salient-
pole motor with stator inductance as a function of the 
rotor angle position and air gap between the stator and 
the rotor. synchronous motor with integrated magnetic 
bearing 

 
Fig. 2. The structure of a permanent magnet  

This inductance is inversely proportional to the 
airgap and it is presented by the following 
approximation formula: 
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where L’sd0 and L’sq0 are the d- axis and q- axis 
inductance per gap unit; Lsl  is leakage inductance;         
g = g0 ± z is clearance between stator and rotor; g0 is 
clearance at equilibrium position; z is displacement 
from the equilibrium position. 

The mathematical model of the synchronous 
motor represented on the axis system creating the 
rotation d, q is as follows [7], [14] 
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where isd and isq are stator current components. usd and 
usq are stator voltage components, ωe is the rotor speed, 
λs is the stator flux, λm is the magnitude of the flux 
linkage between the rotor and the stator. Calculating 
the axial force and rotational torque for a stator and 
then summarizing lead to a general mathematical 
model for the motor. 

According to [1-3] the torque is controlled by the 
current on the q-axis, and the axial force is controlled 
by the current on the d-axis. We assume that: 
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in which: id1 and id2 are the axial current components 
on the two stators, respectively, F1 and F2 are 
generating axial forces; id0 is the offset current which 
has a very small value or is close to zero. The axial 
force and the total torque caused by the two stators 
acting on the rotor [1] are: 

 2 2 2

0

4 4 ( ) 4Fd f d Fd d f Fq q
zF K i i K i i K i

g
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If the displacement is zero or very small relative 
to the gap at the equilibrium g0, then (2) and (3) can be 
reduced to: 

4 Fd f dF K i i  (6) 

2 T qT K i                                                       (7) 

From (13) and (14) we see that, although the axial 
force is still subject to a small dependence on the 
current component on the q-axis and the rotational 
torque is still subject to a small dependence on the 
current component on the d-axis, it can control the 
axial force by current id and the torque by iq current. 
The system control structure is based on the principle 
of vector control based on the rotor flux on the dq 
coordinate system, with the axis d coincident with the 
rotor flux vector [2, 7, 15, 16]. 

The symbol z is the axial position from the 
balance point as determined by the position sensor. 
This value is compared with the control value zref (this 
value is always set to zero to ensure the rotor is in the 
center position between the two stators). 

The q axis current components are controlled by 
the reference values obtained from the speed 
controller, and the d axis current components are 
controlled by the reference values obtained from the 
axial position controller. The output of the current 
controller is used to calculate the reference voltage 
values. We need to use the step of converting the 
rotation coordinate system to the stator three-phase 
fixed reference system.   The direct current to the stator 
phases of the AGBM is supplied from the PWM pulse 
width modulators. The position and speed controllers 
are synthesized by dynamic surface control (DSC) 
method.  

3. Dynamic Surface Control (DSC) 

3.1. Dynamic Surface Control Method 

Dynamic surface control technique is developed 
based on Backstepping technique and multi-sliding 
surface control. The n-order tight backpropagation 
nonlinear system is divided into n subsystems, each of 
which can find a virtual control law similar to 
Backstepping technique. The dynamic surface control 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The control structure of the AFPM motor  
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method uses an additional first-order filter in each step, 
so that DSC overcomes the disadvantage of operand 
explosion of Backstepping and MSS methods [10].  

Consider the following tight response nonlinear 
system: 
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where [ ]1 2, ,..., T n
n nx x x x R= ∈  is the system state 

vector, u R∈  is the input to the system, y R∈  is the 
output to the system, fi(.) and gi(.) with i =1,2 …, n are 
known nonlinear parameter functions of the system. 
To ensure strict backpropagation of the system we 
need gi(.) ≠ 0. 

The control objective is to find the control law u 
so that the system is stable, the system output follows 
the desired set signal y = x1 = xd. 

 
Fig. 4. DSC system structure 

3.2. Axial Position Controller  

The radial position of the rotor is stabilized by the 
horizontal magnetic bearing, so the axial displacement 
will be independent of the axial displacement, and is 
calculated as follows: 

. Lm z F F= −  (9) 

where m is the mass of the moving component, F is the 
axial force, and FL is the axial load. According to (4) 
we have:  
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where  2 2 2
04 ( )z Fd f d Fq qK K i i K i g   is the 

stiffness coefficient of the motor and Km= 4KFd if is the 
force amplification factor. 

The position control loop generates the position 
control idref  signal z to zero. Sliding surface definition:  

S z z= + λ (where 0λ > ) 

dS z z Pi Q z= + = − +

  λ λ            (11) 

According to the DSC method [8], the virtual control 
signal is determined: 

. ( )d z
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P P
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where Cz > 0. The virtual control signal is passed 
through the first-order filter to obtain the reference 
signal: 
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where τz >0 is the time constant. At this step, we select 

d dref di i i= − .  

Consider the control Lyapunov candidate function: 

2 21 1
2 2 dV S i= +                                                          (14) 

Taking derivative of (14) results in: 

0d dV SS i i= + ≤
                                                      (15) 

Then the time constant needs to be satisfied: 

2
z

z A
≤
ε
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where A > 0 and is the intercept limit value
.di A≤ The position control loop will stabilize after a 

finite time with z approaching the slip surface S [9-10].  

3.3. Speed Controller 

The difference between the electromagnetic 
torque T and the load torque TL creates the acceleration 
that follows the mechanical characteristics of the 
motor: 

L
dT T J
dt


   or LT T
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According to (4) we have: 
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The speed control loop can be expressed as: 

x = ω , y = ω , u = iq, qx Mi Nω= = −         (19) 
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The speed control requires ω  to track to the set speed 
value dω . The definition of the sliding surface is as 
follows: 

z1 = ω - dω                                                              (20) 

The virtual control signal: 

1 d
q

c z N
i

M M
− −

= +ω ω
                                       (21) 

where coefficient > 0. The iq current is passed through 
the first-order inertia filter to get the reference signal 
iqref. 

q qref
qref

i i
i

−
=

ωτ
                                               (22) 

where τꞷ>0 is a time constant. Defining the current 
tracking error as 

q qref qi i i= −                                                     (23) 

Consider the control function Lyapunov: 

2 2
1
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With the way of determining the control signal as 
above we have: 

1 1 0q qV z z i i= + ≤
 

                                             (25) 

then the time constant needs to be satisfied: 

2B
≤ ω

ω
ε

τ                                                          (26) 

where B > 0 and is the intercept limit value .qi B≤

The speed control loop will stabilize after a finite time 
with the slip surface z1 approaching 0 or the output 
trajectory of the speed loop ω  approaching the set 
trajectory dω . 

4. Simulation and Results 

To demonstrate the system control capability of 
the proposed structure, simulations were performed on 
Matlab Simulink software. With the parameters of the 
motor including phase resistance is 2.6 Ω; the air gap 
between the stator and the rotor is 2 mm; The rotor 
mass is 0.28kg, the moment of inertia is                
10.6x10-6 kgm2, the loop flux amplitude generated by 
the permanent magnet is λm = 0.022 Wb. 

Consider the drive system operating in the 
absence of load disturbances. Initially, the rotor is 
offset from the equilibrium position by 0.3 mm, the 
speed is set at 250 rad/s. The axial position and speed 
responses are shown in Fig. 5. The z position oscillates 

with an amplitude of 0.05 mm and returns to the 
equilibrium position after a time interval of 0.02 s. 
Meanwhile, the speed is accelerated towards the set 
value and stabilizes at that value after 0.12s time 
interval. The speed overshoot is almost negligible. 

 
Fig. 5. Response of position and speed without load 
interference  

Fig. 6 shows the response of two current 
components on the dq coordinate system. Flux forming 
current id fluctuates with an overshoot of 2.5A and 
stabilizes after 0.02s. It is this current that corrects the 
stable and balanced axial position after the same period 
of time. Torque generating current iq reference current 
acts as the acceleration of the speed. So, during the 
transient period, the iq current has a large value of 
0,82A. After 0.15s, the current drops and stabilizes, 
stopping the fluctuation of the speed response. 

In order to test the responsiveness of the speed 
controller, consider the case of changing the speed 
setting from 150 rad/s to 250 rad/s. The results in       
Fig. 7 show that the speed response only needs 0.08s 
to be asymptotic and stable with the set value when the 
overshoot is negligible. Torque generating iq current 
has a large value during the transient period and is zero 
when the speed does not change. 

 

(a) 

(b) 
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Fig. 6. The id and iq current in the absence of load 
disturbance 

 

 

Fig. 8. Load disturbance  and load torque in simulation 

 
Fig. 7. Response speed and iq current when changing 
speed set value  

 

Fig. 9. Response of id current and axial position in the 
presence of load disturbance  
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Fig. 10. Response of iq current and speed in the 
presence of load disturbance and load torque 

 
Fig. 11. Response of axial force and torque in the 
presence of load disturbance and load torque 

Consider the effect of axial load on the system by 
assuming that at the instant of 0.15s there is an applied 
load. The results on graph of Fig. 9 show that the axial 
position fluctuates as soon as the axial load occurs. 
Flux forming id reference current signal at the position 
controller output is increased to stable state with the 
load noise after about 0.03s. 

Correspondingly, the z-axis position fluctuates 
and stabilizes at the equilibrium point at 0.18s. 

The speed response on the graph of Fig. 9 shows 
that the speed is almost unaffected by the axial force. 
This means that the system has eliminated the 
interaction of the elements on the d axis to the elements 
on the q axis. 

To check the robustness of the system, we 
consider the case when there is a load torque acting at 
0.25s. Fig. 10 shows that the iq reference current signal 
at the output of the speed controller increases as soon 
as the load torque appears. This is to produce a 
sufficiently large torque value on the motor shaft to 
compensate for the load noise. The iq current stabilizes 
after about 0.02s. Corresponding to this, we have a 
slightly fluctuating and stable speed at the set value at 
0.27s. 

Fig. 11 shows that the impact of the load torque 
on the axial position is negligible. Therefore, it can be 
said that the system has eliminated the influence of the 

inter-channel interaction between the speed loop and 
the axial position loop. 

5. Conclusion 

This paper has designed and built a position and 
speed control transmission system for the axial gap 
flux motor, applying the DSC dynamic surface control 
method. The motor operates with torque and axial 
force generated from the current components on the d 
and q axis. The simulation results show that the 
designed position controller and speed controller can 
control the system stably, fast setting value with low 
overshoot. At the same time, it is possible to limit the 
interaction between the speed control loop and the 
axial position control loop. 
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