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Abstract 
One of the major problems in the theory of maximal monotone operators is to find a point in the solution set 
Zer( ), set of zeros of maximal monotone mapping  . The problem of finding a zero of a maximal 
monotone in real Hilbert space has been investigated by many researchers. Rockafellar considered the 
proximal point algorithm and proved the weak convergence of this algorithm with the maximal monotone 
operator. Güler gave an example showing that Rockafellar’s proximal point algorithm does not converge 
strongly in an infinite-dimensional Hilbert space. In this paper, we consider an explicit method that is strong 
convergence in an infinite-dimensional Hilbert space and a simple variant of the hybrid steepest-descent 
method, introduced by Yamada. The strong convergence of this method is proved under some mild 
conditions. Finally, we give an application for the optimization problem and present some numerical 
experiments to illustrate the effectiveness of the proposed algorithm. 

Keywords: Zero points, variational inequalities, maximal monotone operators, strongly monotone operators, 
lipschitz continuous operators. 

 
1. Introduction1 

Let   be a real Hilbert space,   be a set-
valued operator of   into 2  with domain 

( ) ( ){ | }x x= ∈ ≠ ∅    , range ( ) = 

( )x x    , and the inverse of   is 

( ) ( ){ }1 .y x y x− = ∈ ∈      is said to be 
monotone operator if 

, 0, u v x y− − ≥  

for all ( ) ( ) ( ), , , .x y u x v y∈ ∈ ∈      

  monotone operator   is maximal monotone 
operator if the graph 

 ( ) ( ) ( ) ( ){ }, ,x y x y x= ∈ × ∈ ∈        

of   is not properly contained in the graph of any 
other monotone operator in .  For a monotone 
operator ,  we define its resolvent 

( ) 1
:r I r

−
= +    by 

 ( ) ( ): , 0,r I r r+ ⊂ → >        

where I  being the identity map on the space .  

One of the major problems in the theory of 
maximal monotone operators is to find a point in the 
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solution set ( ) ( ){ }Zer | 0x x= ∈ ∈     where   

is a set-valued operator of   into 2   with domain 
( ) ( ){ }  x x= ∈ ≠ ∅       },   be a real Hilbert 

space. This problem includes, as special cases, convex 
programming, variational inequalities, split feasibility 
problem, and minimization problem. The problem of 
finding a zero of maximal monotone in Hilbert spaces 
is investigated by many researchers. 

For finding a zero of a maximal monotone 
operator  , Rockafellar [1] considered the proximal 
point algorithm and proved the weak convergence 
of this algorithm. In order to have strong convergence, 
we have to modify this algorithm. Several authors 
proposed modifications of Rockafellar’s proximal 
point algorithm to have strong convergence. 

In this paper, our aim is to find a common zero of 
a finite family of N maximal monotone operators  i, 
i = 1,2,...,N in a real Hilbert space  , i.e., an element 
of the set 

( )
1

: Zer
N

i
i=

=


    (CZP) 

We know that Zer( )  is a closed and convex 
subset of ( )   (see [2]). Therefore Zer( i ) is 
closed and convex for each 1,2, ,i N= … . Hence   is 
closed and convex too. 
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Let : →    be a operator.   is said to be 
η -strongly monotone and L-Lipschitz continuous 
operator on   when the following conditions are 
satisfied 

2,    x y x y x yη≥− − −   

and 

    x y L x y− ≤ −    

for all ,x y∈ , where η and L are some positive 
constants. In addition, if [ )0,1L∈ , then   is called 
to be contractive and if 1,L =  then   is called to be 
nonexpansive. 

The theory of Variational Inequality Problem 
(VIP) is well known, developed and appears to be one 
of the most important aspect in optimization and 
nonlinear analysis, since most mathematical problems 
can be modelled as a variational inequality problem. 
Let   be a nonempty, closed and convex subset of a 
real Hilbert space   and : →    be a nonlinear 
operator. The (VIP) defined for   and   is to find 

*x ∈  such that * *, 0 x x x x− ≥ ∀ ∈  . 

In 2001, Yamada [3] introduced the hybrid 
steepest-descent method 

( ) [ ] ( )1 1    k k kkx I xα µ+ += −   ,        (1) 

where [ ] modk Nk =    the mod function taking values in 

the set { }1,2, , N… , :i →   , 1, 2, ,i N= … , is a 
nonexpansive mapping on  with 

( )
1

: Fix
N

i
i=

= ≠ ∅


  and 

 ( )2 1Fix N …    ( )1 2Fix N= … =…    

               ( )1 1Fix ,N N−= …    (2) 

and the parameter { }kα  satisfies the following 
conditions. 

(C1) { } ( )
1

0,1 , lim 0,  and .k k kk
k

α α α
∞

→∞
=

⊂ = = ∞∑  

(C2) 
1

.k k N
k

α α
∞

+
=

− < ∞∑  

In the present article, we will study a class of the 
variational inequality problem (VIP) with   is the set 
of common zeros of a finite family of maximal 
monotone operators in a real Hilbert space (CZP) by 
using the steepest-descent method and a modification 
of the algorithm of Ceng et al. [4] in a real Hilbert 
space. We introduce a new iterative method and prove 
the strong convergence of the presented method under 
some mild conditions. 

The rest of this paper is divided into some 
sections. In Section 2, we recall some lemmas that will 

be used in the proof of our main theorems. In Section 
3, we present a method to construct approximate 
solutions. The last section we consider an example of 
numerical expressions. 

2. Preliminaries 

We have the following lemmas. 
Lemma 1. Let   be a real Hilbert space and let 

: →    be an η-strongly monotone and L-
Lipschitz continuous operator on   with some 
positive constants η and L. Then, for an arbitrarily 
fixed ( )20, 2 / Lµ η∈  and any ( )0,1t∈ ,  I tµ− is 

a contraction with contractive constant 1 − tτ, where 

( )2 1 1 2 Lτ µ η µ= − − − . 

(see [3]) 

Lemma 2. Let   be a nonempty closed convex subset 
of a real Hilbert space   and : →    be a 
nonexpansive operator with ( )Fix ≠ ∅ . If { }kx  is a 
sequence in   converging weakly to x∗ and if the 
sequence ( ){ }kI x−   converges strongly to y, then 

( ) *I x y− =  ; in particular, if 0y = , then 

( )* Fixx ∈  , where I  is the identity operator on         
 . 
(see [5], Lemma 2) 

Lemma 3.   is uniformly convex if and only if, for 
each β 0,>  there exists a continuous strictly 
increasing and convex function φ : + +→   with 

( )0 0ϕ =  such that 

 
( ) ( )

( ) ( )

2 2 2
1 2 1 2

1 2

1   1

1 ,

x x

xx

x xα α α

α α ϕ

α+ − ≤ + −

− − −
 

for all 1 2,x x ∈   with { }1 2,max x x β≤  and 

[ ]0,1α ∈ .  

(see [6])   

Lemma 4. Let   be a real Hilbert space. If 
: →    is a maximal monotone operator, then 

β
  is non-expansive, single-valued mapping and                                     

( ) ( )1 0Fix β
−=  for each 0β > .  

(see [7], Section 7) 

Lemma 5. Let   be a set-valued, monotone operator 
of   into 2 . Then, for 0r s≥ > , we have 

2s rx xx x− ≤ −    

for all ( ) ( )x rI I s∈ + ∩ +     .  
(see [7], p. 42, [8], Lemma 2.2)  
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Lemma 6. Let { }kw  be a sequence of real numbers. 

Assume { }kw  does not decrease at infinity, that is, 

there exists at least a subsequence { }ikw  of { }kw  

such that 1i ik kw w +<  for all 0i ≥ . For any 0k k≥  

define an integer sequence ( ){ }kν  as 

 ( ) { }1max 0 i : .j jk kk k w wν += ≤ ≤ <  

Then ( )kν →∞  as k →∞  and for all 0k k≥  
( ){ } ( ) 1max , kk kw w wν ν +≤ . 

(see [9]) 
Lemma 7. Let { }ks   be a sequence of nonnegative 
numbers satisfying the condition 

( )1 1 , 0,k k k k ks b s b c k+ ≤ − + ≥  

where { } { },  k kb c  are sequences of real numbers such 
that 

(i) { } ( )
1

0,1  and  ,k k
k

b b
∞

=

⊂ = ∞∑  

(ii) limsup 0.
k

kc
→∞

≤  

Then, lim 0.
k ks
→∞

=   

(see [10], Lemma 2) 

3. Main Results 

In this section, we use the steepest-descent 
method and a modification of the algorithm of Ceng et 
al. in [4] to establish the strong convergence of the 
proposed algorithms for finding the solution of the 
problem (CZP), which is the unique solution of the 
(VIP). We assume that the solution set   of the 
problem (CZP) is nonempty. Hence, it is a closed 
convex subset of  . Our algorithm can be expressed 
as follows. 

Algorithm 1. 

Step 0. Choose 20, 2
L
ηµ  ∈ 

 
, the sequence { }kα  

satisfies the condition (C1), the sequences { }ikβ  and 

{ }i
kγ  satisfy the following conditions 

(C3) ( ){ }min inf 0,i
ki k

β β≥ >  and 

(C4) { } [ ] ( ), 0,1  1, 2, ,i
k a b i Nγ ⊂ ⊂ ∀ = … . 

Step 1. Let 0x ∈ . Set : 0k = . 
Step 2. For all 1, 2, , ,i N= …  compute 

( ) 1 1 01 , .i
i
k

i i i i i
k k k k k k kz z z z x

β
γ γ− −= − + =  

Step 3. Compute ( )1 .N
k k kx I zα µ+ = −    

Step 4. Set : 1k k= +  and go to Step 2. 

Theorem 1. Let   be a real Hilbert space. Assume 
that : →    is an η-strongly monotone and L-
Lipschitz operator. Let : 2i →   , 1,2, ,i N= … , 
be maximal monotone operators such that 

( )
1

Zer
N

i
i=

= ≠ ∅


   

Then, the sequence { }kx   generated by Algorithm 1 
converges strongly to the unique solution of the (VIP). 

Proof Theorem. The proof consists in three steps. 

Step 1. We will show that there exists a positive 
constant 1M  such that kx , i

kz  and 1
i
kz M≤  for 

all 0k ≥  and 1,2, ,i N= … . 
It follows from the condition (C3) and Lemma 4 

that N
N
k

z z
β

=  for any point .z∈  From the 

nonexpansive property of N
N
kβ
 , the property of the 

convex function . , and Step 2 in Algorithm 3.1, we 
have that 

( )( ) ( )
( )
( )

1 1

1 1

1 1

1

 

1

1

1

N
N
k

N
N
k

N
k

N N N N
k k k k

N N N N
k k k k

N N N N
k k k k

N
k

z z

z z z z

z z z z

z z z z

z z

β

β

γ γ

γ γ

γ γ

− −

− −

− −

−

−

= − − + −

≤ − − + −

≤ − − + −

= −









    

0
k kz z x z≤ − = − .  (3) 

It follows from Step 3 in Algorithm 1, (3), and 
Lemma 1 that 

   1  kx z+ −  

( ) ( )N
k k k kI z I z zα µ α µ α µ= − − − −    

( ) ( )N
k k k kI z I z zα µ α µ α µ≤ − − − +    

( )1 N
k k kz z zµα τ α τ

τ
 ≤ − − +  
 

  

max ,N
kz z zµ

τ
 ≤ − 
 

  

max ,kx z zµ
τ

 ≤ − 
 

  

1max ,kx z zµ
τ−

 ≤ − 
 

  

  

0max , ,   0,x z z kµ
τ

 ≤ − ≥ 
 

   (4) 

where ( ) ( )2 1 1 2 0,1 .Lτ µ η µ= − − − ∈  Therefore, the 

sequence { }kx  is bounded and so are the sequences 
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{ }i
kz  and { },  1, 2, , .i

kz i N= …  Without loss of 
generality, we can assume that they are bounded by a 
positive constant 1M . So the existence of 1M   is 
proved.  

Step 2. We will prove that 

( )2* *
1 1 ,k k k k kx x b x x b c+ − ≤ − − +     (5) 

where { }kb  and { }kc  are sequences of real numbers, 

and *x   is the unique solution of (VIP).  
By using Step 3 in Algorithm 1 and Lemma 1, we 
estimate the value of 

2*
1kx x+ −  as follows 

2*
1 kx x+ −  

   ( ) * *
1,N

k k kI z x x xα µ += − − −  

   ( ) ( ) * *
1,N

k k k kI z I x x xα µ α µ += − − − −   
* *

1           ,k kx x xα µ ++ −  

   ( ) * *
11 N

k k kz x x xα τ +≤ − − −  

         * *
1,k kx x xα µ ++ −  

   ( )
2 2* *

11
2

N
k k

k

z x x x
α τ +− + −

≤ −  

* *
1 ,k kx x xα µ ++ − . 

This implies that 
2*

1 kx x+ −  

   
2* * *

1
1 2

,
1 1

Nk k
k k

k k

z x x x x
α τ α µ
α τ α τ +

−
≤ − + −

+ +
  

        
2*2

1
1

Nk
k

k

z x
α τ
α τ

 
= − − + 

 

   * *
1

2
,

1
k

k
k

x x x
α τ µ
α τ τ +

 + − +  
  .       (6) 

It follows from the condition (C3), Step 3 in 
Algorithm 1 and Lemma 3 that 

   
2* N

kz x−  

( )( ) ( ) 2
1 * 1 *1 N

N
k

N N N N
k k k kz x z x

β
γ γ− −= − − + −  

( )
221 * 1 *1 N

N
k

N N N N
k k k kz x z x

β
γ γ− −≤ − − + −  

( ) ( )1 1 1 N
N
k

N N N N
k k k kz z

β
γ γ ϕ − −− − −   

( ) 2 21 * 1 *1 N N N N
k k k kz x z xγ γ− −≤ − − + −  

( ) ( )1 1  1 N
N
k

N N N N
k k k kz z

β
γ γ ϕ − −− − −   

( ) ( )21 * 1 11 N
N
k

N N N
k k kz x a b z z

β
ϕ− − −≤ − − − −   

  

( ) ( )20 * 1 1

1

1 i
i
k

N
i i

k k k
i

z x a b z z
β

ϕ − −

=

≤ − − − −∑   

( ) ( )2* 1 1

1

1 i
i
k

N
i i

k k k
i

x x a b z z
β

ϕ − −

=

= − − − −∑  .       (7) 

where :ϕ + +→   is a continuous strictly increasing 
and convex function with ( )0 0ϕ = . From (6) and (7) 
we obtain that 

2*
1 kx x+ −  

2* * *
1

2 2
1 ,

1 1
k k

k k
k k

x x x x x
α τ α τ µ
α τ α τ τ +

   ≤ − − + −   + +   
  

  ( ) ( )1 1

1

2
   1 1

1
i

i
k

N
i ik
k k

ik

a b z z
β

α τ
ϕ

α τ
− −

=

 
− − − − + 

∑   (8) 

2* * *
1

2 2
1 ,

1 1
k k

k k
k k

x x x x x
α τ α τ µ
α τ α τ τ +

  ≤ − − + −  + +  
  

    ( ) ( )1 1

1

  1 i
i
k

N
i i
k k

i

a b z z
β

ϕ − −

=

+ − − ∑  . (9) 

Putting 
2

1
k

k
k

b
α τ
α τ

=
+

 

( ) ( )* * 1 1
1

1

, 1 i
i
k

N
i i

k k k k
i

c x x x a b z z
β

µ ϕ
τ

− −
+

=

= − + − −∑    

inequality (9) can be rewritten as (5). 

Step 3. We claim that *lim 0kk
x x

→∞
− = , where *x  is 

the unique solution of the (VIP). 

We consider two cases. 

Case 1. There exists an integer 0 0k ≥  such that 
* *

1k kx x x x+ − ≤ −  for all 0 .k k≥ Then, 
*lim kk

x x
→∞

−  exists. It then from (8) and (C1) that 

( )2 2* *
1

0

 

k

k k

d

x x x x+

≤

≤ − − −
 

           ( )2* * *
1 , 0k k kb x x x x x++ − − − →         

as k →∞ , where 

( )( ) ( )1 1

1

1 1 i
i
k

N
i i

k k k k
i

d a b b z z
β

ϕ − −

=

= − − −∑  , 

which implies that 

1 1 0 1,2, , .i
i
k

i i
k kz z i N

β
− −− → ∀ = …   (10) 

Next, we will show that 0i
k kx xβ− →  for all 

1, 2, ,i N= … . Indeed, in the case that 1i = , from 
Steps 2 and 3 in Algorithm 1 and (10), we have 

1 1
1 1

0 0 0 as .
k k

k k k kx x z z k
β β

− = − → →∞    
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In the case that 2i = , from the nonexpansive 
property of 2

2
kβ
 , Steps 2 and 3 in Algorithm 1, and 

(10), we have 

   2
2 
k

k kx x
β

− 

2 2 2
2 2 2

1 1 1 1

k k k
k k k k k kx z z z z x

β β β
≤ − + − + −    

2
2

1 1 12
k

k k k kx z z z
β

≤ − + − 

1 2
1 2

0 0 1 12 0
k k

k k k kz z z z
β β

≤ − + − →   as .k →∞  

Similarly, we obtain 0i
i
k

k kx x
β

− →  for all 

3, 4, ,i N= … . It follows from the condition (C3) and 
Lemma 5 that 

2i i
i
k

k k k kx x x xβ β
− ≤ −    

for all  1, 2, , .i N= …  So 
0 1, 2, , .i

k kx x i Nβ− → ∀ = …  (11) 

Now, we will show that limsup 0.k
k

c
→∞

≤  Indeed, 

suppose that { }nkx  is a subsequence of { }kx   such 

that 
 * * * *limsup , lim ,

nk knk
x x x x x x

→∞→∞
− = −  .  (12)    

Since { }nkx   is bounded, there exists a 

subsequence { }nmkx  of { }nkx  which converges 

weakly to some point .x+  Without loss of generality, 
we may assume that 

nkx x+
 . We shall prove that 

x+ ∈ . Indeed, from Lemma 2 and (11) we obtain 

( )Fix ix β
+ ∈   for all 1, 2, , .i N= … It follows from 

Lemma 4 that x+ ∈ . Since *x   is the unique solution 
of (VIP), * *, 0,x x x+− ≤  which combines with 
(12), we get 

* *limsup , 0k
k

x x x
→∞

− ≤ . (13) 

Putting 2 sup ,k
k

M x=   from Steps 2 and 3 in 

Algorithm 1, the condition (C4), and Lemma 1 we 
have 

1 k kx x+ −  

( ) N
k k kI z xα µ= − −  

( ) ( ) 2
N

k k k k kI z I x Mα µ α µ α µ≤ − − − +   

( ) 1 1
21 i

N
k

N N N N
k k k k k kx z z M

β
γ γ α µ− −≤ − − − +  

1 1 1
2

N
N
k

N N N
k k k k kx z z z M

β
α µ− − −≤ − + − +  

( ) 1
1 2 1 21 i

N
k

N N N N
k k k k kx z z

β
γ γ −

− − − −≤ − − −   

 1 1
2         N

N
k

N N
k k kz z M

β
α µ− −+ − +  

   
1 1

2
1

i
i
k

N
i i
k k k

i

z z M
β

α µ− −

=

≤ − +∑  . (14) 

It follows from (C1), (10), and (14) that 
1 0k kx x+ − →  as .k →∞ Thus, by (13) we have 

* *
1limsup , 0,k

k
x x x +

→∞
− ≤  and limsup 0.k

k
c

→∞
≤  

Hence, all conditions of Lemma 7 for (5) are 
satisfied. Therefore, we immediately deduce that 

*
kx x→  as k →∞ . 

Case 2. There exists a subsequence { }ik  of { }k  such 

that * *
1i ik kx x x x+− ≤ −  for all 0.i ≥ Hence, by 

Lemma 6, there exists an integer, nondecreasing 
sequence ( ){ }kν  for all 0k k≥  (for some 0  k large 

enough) such that ( )kν →∞  as ,k →∞  

( ) ( )
* *

1k kx x x xν ν +− ≤ − , 
(15) 

( )
* *

1k kx x x xν +− ≤ −  

for each 0.k ≥  From (8), the condition (C1), and the 
first inequality in (15), we have 

( ) ( ) ( ) ( )( )2* * *
10 , 0k k k kd b x x x x xν ν ν ν+≤ ≤ − − − →  

(16) 

By a similar argument to Case 1, we obtain 

( ) ( ) 0i
k kx xβν ν− →  as k →∞  

for all 1, 2, , ,i N= …  and 

( )
* *

1limsup , 0k
k

x x xν +
→∞

− ≤ . 

From (8), ( ){ } ( )0,1kbν ⊂ , and the first inequality 

in (15), we have also that 

( ) ( )

2* * *
1, .k kx x x x xν ν +− ≤ −  

Thus, 

( )

2*lim 0kk
x xν→∞

− = . (17) 

Finally, from (8) with k  replaced by ( )kν , we 
can write that 

    ( )

2*
1 kx xν + −  

( )

2*2
1

1
k

k
k

x xν

α τ
α τ

 
≤ − − + 
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       ( )
* *

1

2
,

1
k

k
k

x x xν
α τ µ
α τ τ +

 + − +  
  

      ( ) ( )1 1

1

2
 1 1

1
i

i
k

N
i ik
k k

ik

a b z z
β

α τ
ϕ

α τ
− −

=

 
− − − − + 

∑   

By virtue of (16), (17), and (C1), 

( )

2*
1lim 0kk

x xν +→∞
− = , which together with the second 

inequality in (15) implies that *lim 0kk
x x

→∞
− = . The 

proof is completed. 

4. Numerical Results 

To illustrate Theorem 1, we consider the 
following examples. We perform the iterative schemes 
in MATLAB 2021a running on a laptop with Intel(R) 
Core(TM) i5-1135G7 CPU @ 2.40GHz 2.42GHz, 
8GB RAM. Some signs in the result table: 

- k : Number of iterative steps. 

- 0x : The initial guess. 

- kx : Solution in k -th step. 

Now, with the purpose of illustrating the 
convergence of the Algorithm 1, we will apply the 
algorithm to solve a optimization problem over the set 
of common zero points of N maximal monotone 
operators. Consider the following optimization 
problem: find a point *x ∈  such that 

( ) ( )*

1

min ,  
N

ix
I

x x Cϕ ϕ
∈

=

= = ≠ ∅


  (18) 

where ( )xϕ  is a convex function having a strongly 
monotone and Lipschitz continuous derivative 

( )xϕ∇  on Hilbert space  , and  is a closed and 
convex subset of  . 

Example 1. Let 5.=   Here, we choose 
5 5:i →  , 1, 2, , ,i N= …  defined by 

( )

1

2

3

4

5

0 0 0 0 0
0 0 0
0 0 0
0 0 0
0 0 0 0

i

x
xi i

x xi i
xi i
xi

  
  
  
  = −
  

−   
    

  

( ) 5
1 2 3 4 5

T, , , ,x x x x x x= ∈  

that is a maximal monotone operator, the function ϕ  
defined by ( ) T Tu u u b u cϕ = + + , where 

 

3 0 0 0 0 6
0 3 0 0 0 2

,  and 5,0 0 3 0 0 0
0 0 0 3 0 1
0 0 0 0 3 5

b c

−   
   
   
   = = =
   
   
   
   

  

with 

( )

1

2

3

4

5

6 6
6 2

6
6 1
6 5

x
x

x x x
x
x
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T, , , ,x x x x x x= ∈  
are 6-strongly monotone and 6-Lipschitz continuous 
on Euclidean space 5 . 

The common zeros set of i , 1, 2, ,i N= … , is 

( )
1

:
N

i
i

Zer
=

=


   

( ){ 5
1 2 3 4 5     , , , ,u u u u u u= = ∈  

 }2 3 4 5 0u u u u= = = = . 

The unique solution of variational inequality problem 

( )* *, 0 x x xϕ∇ − ≥ for all x∈  (19) 

is ( )* 5T1,0,0,0,0x = ∈ . It is well known that (see 
[11], Propositions 5.1 and 5.2) the variational 
inequality problem (19) is equivalent to the 
optimization problem (18). 

We choose, for each k 

 ( ) 1/51 5 1, , 1 ,
1

i i
k k k

i i
k i

α β γ −+
= = = +

+
 

where 1,2, , 20i = … , and in the first tests, we consider 
the case when 1/ 6.µ =  The numerical results for the 

Algorithm 1 with initial point ( ) 5
0

T0,5,1, 1,0x = − ∈  
is shown in Table 1. 

In another run of tests for the Algorithm 1, we 
consider the case when 1/ 6,µ =   2 1,i

k iβ = +  

( ) 1

1

1
200

nk

k
n n

α
+

=

−
= ∑  and ( ) 1

1

1
2 1

nk
i
k

n n
γ

+

=

−
=

−∑  for each k  and 

1,2, ,10.i = …  These sequences are contained in ( )0,1  

but 1
1

k k
k

α α
∞

+
=

− = ∞∑ and 1
1

.i i
k k

k

γ γ
∞

+
=

− = ∞∑ The next 

two tables display the numerical results obtained for 
the initial guesses ( )T

0 3,1, 2,5, 4x = − −  and

( ) 5
0

T100,20,50, 70, 90x = − − ∈ , respectively 
(Tables 2 and 3). 
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Table 1. Numerical results for Algorithm 1 with the initial guess ( ) 5
0 0,5,1, 1,0x = − ∈ . 

Iter(k) 100 500 1000 1500 2000 

 1
kx  1.0000 1.0000 1.0000 1.0000 1.0000 

 2
kx  - 0.0033 - 0.0007 - 0.0003 - 0.0002  - 0.0002 

 3
kx  - 0.0000 - 0.0000 - 0.0000 - 0.0000  - 0.0000 

 4
kx  - 0.0017 - 0.0003  - 0.0002  - 0.0001  - 0.0001 

 5
kx  - 0.0083 - 0.0017 - 0.0008 - 0.0006  - 0.0004 

 *
kx x−‖ ‖ 0.0091 0.0018 9.1284 410−×  6.0858 410−×  4.4644 410−×  

Table 2. Numerical results for Algorithm 1 with the initial guess ( ) 5
0 3,1, 2,5, 4x = − − ∈ . 

Iter(k) 100 500 1000 1500 2000 

 1
kx  - 1.8240 0.8759 0.9961 0.9999 1.0000 

 2
kx  - 0.0011 - 0.0012 - 0.0012 - 0.0012 - 0.0012 

 3
kx  - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 

 4
kx  - 0.0006 - 0.0006 - 0.0006 - 0.0006 - 0.0006 

 5
kx   - 0.0029 - 0.0029 - 0.0029 - 0.0029 - 0.0029 

 *
kx x−‖ ‖ 2.8240 0.1241 0.0050 0.0032 0.0032 

Table 3. Numerical results for Algorithm 1 with the initial guess ( ) 5
0 100,20,50, 70, 90x = − − ∈ . 

Iter(k) 100 500 1000 1500 2000 

 1
kx  70.8944 4.0722 1.0954 1.0030 1.0001 

 2
kx  - 0.0011 - 0.0012 - 0.0012 - 0.0012 - 0.0012 

 3
kx  - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 

 4
kx  - 0.0006 - 0.0006 - 0.0006 - 0.0006 - 0.0006 

 5
kx  - 0.0029  - 0.0029 - 0.0029 - 0.0029 - 0.0029 

 *
kx x−‖ ‖ 69.8944 3.0722 0.0955 0.0043 0.0032 

Remark 1. 

- The initial guess 0x , ,  k kα β  and kγ  affect on 
the number of iterations k. 

- The sequence { }kα  doesn’t satisfy the condition 

(C2), the sequence { }kx   generated by 
Algorithm 1 converges strongly to the unique 
solution of the problem but the sequence { }nx

generated by Theorem 1 (see [12]) doesn’t 
converge strongly. 

5. Conclusion 

The paper has given the following issues: 

- We prove the strong convergence of the iterative 
method. 

- We give an application for the optimization 
problem and calculate a numerical example that 
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illustrate the convergence of method in a Hilbert 
space. 
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