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Abstract 

In this work, we developed a numerical solver, integrated it into the OpenFOAM platform, for modeling 
electroconvective flow. The solver deals with the system of Poisson-Nernst-Planck-Navier-Stokes equations. 
The finite volume schemes functioned in OpenFOAM were used for discretisation of the Poisson-Nernst-
Planck equations. The Newton method was employed to solve the nonlinear Poisson-Nernst-Planck equations 
in a coupled manner. The validation shows the high accuracy of our solver. It is used to investigate ion 
conduction in the electrodialysis cell. The simulation results have allowed examining the flow’s profile, ion 
distribution in different regimes of the system. Especially, the mechanisms behind the vortex formation in the 
channel can be explained by these results. This solver developed on OpenFoam open-source code provides 
the research community with a valuable tool for the study of electrochemical problems. 

Keywords: Poisson-Nernst-Planck-Navier-Stokes, electrokinetics, ion concentration polarization. 

 

1. Introduction1 

2Transportation of charged species can be found in 
many areas such as water desalination, microfluidic, 
biomedical, fuel cells [1], etc., and the mechanisms 
which cause transportation include drift, diffusion, and 
convection of charged species in the flow. 

The movements of charged species in biological 
systems are theoretically described by the Nernst-
Planck model. In this model, the transportation of 
charged species is governed by a system of the coupled 
Poisson-Nernst-Planck equations which describe it 
through mechanisms of diffusion, electromigration, 
and convection. The Poisson-Nernst-Planck (PNP) 
model is applied widely in modeling dilute solutions in 
chemistry, biology, and many other engineering 
sciences.   

However, PNP equations are highly nonlinear 
systems, so there are some difficulties solving them 
numerically. Especially, in the electrical double layer 
(EDL) which contains strong accumulation with 
rapidly electric potential changing of the permselective 
membrane, some of them are (i) the stiff nonlinear 
coupling and (ii) the rapidly electrical body force field 
change. Normally, with a lower nonlinear system like 
Navier-Stokes (NS), we solve it by using the 
sequential method, Piso and Simple, for example. 
However, if we apply this method for PNP, the number 
of iterations required is huge. In order to avoid this 
problem, we developed a new solver in OpenFoam 
platform for solving the sets of PNP and NS equation 
with a couple of methods. The velocity from the 
previous iteration or initial condition will be used to 
calculate the potential and concentration from PNP 
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equations at the same time. Then the obtained electric 
body force will be put into the NS equations. After the 
velocity field has been calculated, it is substituted into 
the PNP equations. The process is repeated until 
convergence is reached. Due to the conservative of 
PNP and NS equations, the finite volume method is 
used to discrete them. This method is also the 
foundation of OpenFoam. In addition, the ease in 
meshing procedure and coupling with NS and PNP 
equations lead us to a new solver in OpenFoam.  

The solver was validated and used for simulating 
electrokinetic flow in several electrochemical systems 
such as electrodialysis cell, ion concentration 
polarization phenomenon near ion exchange 
membrane. Obtained simulation results are in good 
agreement with the experiment, indicating that the 
solver can be a valuable tool for the design and 
optimization of electrochemical devices. 

2. Mathematical Model 

2.1. Mathematical Model 

In the system, ion transportation is governed by 
the Nernst-Plank (1) and (2); the relationship between 
electric potential field and ion concentrations is 
demonstrated by Poisson (3) and (4); and the fluid 
motion is described by the Navier-Stokes (5) and (6). 
The dimensionless form of these equations is as 
follow: 

1
𝜆𝜆𝐷𝐷�
𝜕𝜕𝐶𝐶±�
𝜕𝜕�̃�𝑡

= −∇� ∙ 𝐽𝐽±�  
(1) 

𝐽𝐽± = −𝐷𝐷�±(∇��̃�𝐶± + 𝑍𝑍±�̃�𝐶±∇�𝛷𝛷�)  + 𝑃𝑃𝑃𝑃𝑈𝑈��̃�𝐶± (2) 
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�̃�𝜆𝐷𝐷2 ∇� ∙ (∇�𝛷𝛷� )  =  −𝜌𝜌�𝑒𝑒 (3) 

𝜌𝜌�𝑒𝑒 = 𝑍𝑍+�̃�𝐶+ + 𝑍𝑍−�̃�𝐶− (4) 

1
𝑆𝑆𝑆𝑆

1
�̃�𝜆𝐷𝐷

𝜕𝜕𝑈𝑈�
𝜕𝜕�̃�𝑡

=  − ∇�𝑃𝑃� + ∇�2𝑈𝑈� − 𝑅𝑅(𝑈𝑈� ∙ ∇�)𝑈𝑈�

−
1
�̃�𝜆𝐷𝐷2
𝜌𝜌�𝑒𝑒∇�𝛷𝛷� 

(5) 

∇� ∙ 𝑈𝑈� = 0 (6) 

where �̃�𝑡, 𝐶𝐶±� , 𝛷𝛷�, 𝑈𝑈�, 𝑃𝑃� denote the dimensionless time, 
concentration of cations (+) and anions (-), electric 
potential, vector of fluid velocity, and pressure, 
respectively. These quantities are normalized by the 
corresponding reference values of time, ionic 
concentration, electric potential, velocity, and 
pressure, respectively as follow: 

𝜏𝜏0 =
𝑙𝑙02

𝐷𝐷0
;𝐶𝐶0 = 𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏;𝛷𝛷0 =

𝑘𝑘𝐵𝐵𝑇𝑇
𝑍𝑍𝑃𝑃

; 

𝑈𝑈0 =
𝜖𝜖𝛷𝛷0

𝜂𝜂𝑙𝑙0
;𝑃𝑃0 =

𝜂𝜂𝑈𝑈0
𝑙𝑙0

 
 

where 𝐶𝐶0 is the concentration scale, 𝑙𝑙0 is the 
characteristic length scale, 𝐷𝐷0 is the average 
diffusivity, 𝑘𝑘𝐵𝐵 is the Boltzmann constant, 𝑇𝑇 is the 
absolute temperature, 𝑃𝑃 is the elementary charge,  
𝑍𝑍 = �𝑍𝑍±� is ion valence, 𝜂𝜂 is the dynamic viscosity of 
the solution, and 𝜖𝜖 is the permitivity of the solvent. 
Parameters 𝐷𝐷�± = 𝐷𝐷±

𝐷𝐷𝑜𝑜
  ,  𝜆𝜆�𝐷𝐷 = 𝜆𝜆𝐷𝐷

𝑏𝑏0
, and 𝜌𝜌�𝑒𝑒 = 𝜌𝜌𝑒𝑒

𝐶𝐶𝑜𝑜
 are 

dimensionless diffusion coefficient, the Debye length, 
and the space charge, respectively. 𝑃𝑃𝑃𝑃 = 𝑈𝑈0 𝑙𝑙0 𝐷𝐷0⁄  ,  
𝑆𝑆𝑆𝑆 = 𝜂𝜂 𝜌𝜌𝑚𝑚⁄ 𝐷𝐷0, and 𝑅𝑅 = 𝑈𝑈0𝑙𝑙0 𝜌𝜌𝑚𝑚 𝜂𝜂⁄  are the Péclet 
number, the Schmidt number, and the Reynolds 
number, respectively [2]. 

In this study, �̃�𝜆𝐷𝐷  =  0.0005, corresponds to the 
characteristic length 𝑙𝑙0=20𝜇𝜇𝜇𝜇, bulk concentration 
𝐶𝐶0 = 1 𝜇𝜇𝑚𝑚(𝑁𝑁𝑁𝑁𝐶𝐶𝑙𝑙), and the absolute temperature  
T = 300K. Other parameters used in the simulation 
include the diffusivities 𝐷𝐷+ =  1.33 ∗ 10−9 𝜇𝜇2𝑠𝑠−1 , 
𝐷𝐷− =  2.03 ∗ 10−9 𝜇𝜇2𝑠𝑠−1, 𝜏𝜏0 = 2.381𝑃𝑃−1(𝑠𝑠), 𝑃𝑃𝑃𝑃 =
0.28,𝑈𝑈0 = 2.367𝑃𝑃−5(𝜇𝜇 𝑠𝑠⁄ ), 𝛷𝛷0 = 2.585𝑃𝑃−2(𝑣𝑣𝑣𝑣𝑙𝑙), 
𝑉𝑉0 = 0.25852 𝑉𝑉 . 

2.2. Numerical Method  

The finite volume method, a locally conservative 
method, is used for the discretization of the equations. 
The solution domain is subdivided into a finite number 
of control volumes, then the governing equations are 
integrated over the control volumes, the resultant 
volume integrals are then converted to surface 
integrals using Gauss’ theorem. The face quantities of 
the surface integrals are evaluated in terms of the 
unknowns at the centroid of the control volume and its 
neiboughring cells, as denoted by P and N, 
respectively, in Fig. 1: 

 
Fig. 1. A typical control volume is denoted by P. 

Neighbor of the control volume is denoted N. The 
face shared by P and N is denoted by f having area 
vector 𝐀𝐀𝒇𝒇. Area vector 𝐀𝐀𝒇𝒇 is decomposed into two 
components 𝐀𝐀𝒇𝒇, 𝐀𝐀𝒕𝒕. 

To obtain the discretization for the Nernst-Planck 
equation, we integrate (1) over a control volume, and 
use the Gauss’theorem to yield: 

�𝜕𝜕𝑡𝑡 𝐶𝐶𝑖𝑖𝑑𝑑𝑉𝑉 = −�𝐽𝐽𝑖𝑖𝑖𝑖 .𝐴𝐴𝑖𝑖 (7) 

For the temporal discretization, we use an 
implicit, second order accuracy scheme: 

�
∂𝐶𝐶𝑖𝑖
𝜕𝜕𝑡𝑡

𝑑𝑑𝑉𝑉
VP

=
3𝑉𝑉𝑃𝑃
2𝛥𝛥𝑡𝑡

𝐶𝐶𝑖𝑖𝑃𝑃𝑛𝑛 +
𝑉𝑉𝑃𝑃

2𝛥𝛥𝑡𝑡
(−4𝐶𝐶𝑖𝑖𝑃𝑃𝑛𝑛−1

+ 𝐶𝐶𝑖𝑖𝑃𝑃𝑛𝑛−2) 

(8) 

where 𝐶𝐶𝑖𝑖𝑃𝑃𝑛𝑛−1 and 𝐶𝐶𝑖𝑖𝑃𝑃𝑛𝑛−2 are values at the previous 
n-1 and n-2 steps, respectively. 

The ion fluxes passing through face 𝑓𝑓 have the 
following form: 

𝐽𝐽𝑖𝑖 = −𝐷𝐷𝑖𝑖(𝛻𝛻𝐶𝐶𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑧𝑧𝑖𝑖𝐹𝐹𝐶𝐶𝑖𝑖𝛻𝛻𝛻𝛻) + 𝐶𝐶𝑖𝑖𝑈𝑈 (9) 

The diffusion, migration, and convection terms 
presented in the ion flux are discretized using central 
differencing and interpolating schemes. 

The discretization for the Poisson-Nernst-Planck 
equations generates a system of nonlinear equations. 
There are a number of methods that can be used to 
solve the system, such as Newton-Raphson method, 
secant method, and Brent method. In this study, we 
make use the Newton-Raphson method because of its 
fast convergence [3]. In the following part, we briefly 
introduce the Newton-Raphson method for a system of 
nonlinear equations.  

In the next sections, we will derive expressions 
for the entries of the Jacobian matrix and the function. 

Consider three functions F1, F2, F3 
corresponding to three equations of PNP equation. The 
value of the functions is determined by variable values 
at the control volume centroid and its neighboring 
control volumes at the current time step. 

𝐹𝐹1 =
1
𝜀𝜀

3𝑉𝑉𝑃𝑃
2𝛥𝛥𝑡𝑡

𝐶𝐶1𝑃𝑃𝑛𝑛 +
1
𝜀𝜀
𝑉𝑉𝑃𝑃

2𝛥𝛥𝑡𝑡
(−4𝐶𝐶1𝑃𝑃𝑛𝑛−1 + 𝐶𝐶1𝑃𝑃𝑛𝑛−2�

+ �(−𝐷𝐷1(𝛻𝛻𝐶𝐶1 + 𝐶𝐶1𝛻𝛻𝛻𝛻)

𝑛𝑛𝑓𝑓

𝑖𝑖=1
+ 𝑃𝑃𝑃𝑃𝐶𝐶1𝑈𝑈)𝑖𝑖 ∙ 𝐀𝐀𝑖𝑖 = 0 

(10) 
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𝐹𝐹2 =
1
𝜀𝜀

3𝑉𝑉𝑃𝑃
2𝛥𝛥𝑡𝑡

𝐶𝐶2𝑃𝑃𝑛𝑛 +
1
𝜀𝜀
𝑉𝑉𝑃𝑃

2𝛥𝛥𝑡𝑡
(−4𝐶𝐶2𝑃𝑃𝑛𝑛−1 + 𝐶𝐶2𝑃𝑃𝑛𝑛−2�

+ �(−𝐷𝐷2(𝛻𝛻𝐶𝐶2 + 𝐶𝐶2𝛻𝛻𝛻𝛻)

𝑛𝑛𝑓𝑓

𝑖𝑖=1
+ 𝑃𝑃𝑃𝑃𝐶𝐶2𝑈𝑈)𝑖𝑖 ∙ 𝐀𝐀𝑖𝑖 = 0 

(11) 

𝐹𝐹3 = �(𝛻𝛻𝛻𝛻)𝑖𝑖 ∙

𝑛𝑛𝑓𝑓

𝑖𝑖=1

𝐀𝐀𝑖𝑖 =
−1
𝜀𝜀2

�𝑍𝑍𝑖𝑖𝐶𝐶𝑖𝑖

𝑛𝑛𝑓𝑓

𝑖𝑖=1

𝑉𝑉𝑃𝑃 = 0 
(12) 

Entries of the Jacobian matrix are defined by 
differentiating the functions with respect to the 
variables at the current control volume and its 
neighbors. 

Matrix entries corresponding to the ion 
concentration and electric potential in the Nernst-
Planck equation for ion i written at control volume P 
are calculated using the following formulas: 

𝐽𝐽(𝐶𝐶𝑖𝑖)𝑃𝑃𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑡𝑡−𝑃𝑃𝑏𝑏𝑃𝑃𝑛𝑛𝑏𝑏 = �
𝜕𝜕𝐽𝐽𝑖𝑖𝑖𝑖
𝜕𝜕𝐶𝐶𝑖𝑖𝑖𝑖

𝑛𝑛𝑓𝑓

𝑖𝑖=1

= −
1

|𝜉𝜉|
𝐀𝐀𝑖𝑖 .𝐀𝐀𝑖𝑖
𝐀𝐀𝑖𝑖 . 𝐢𝐢𝜉𝜉

+ 𝑧𝑧𝑖𝑖(1

− 𝛾𝛾) �
𝛻𝛻𝑁𝑁 − 𝛻𝛻𝑃𝑃

|𝜉𝜉| �
𝐀𝐀𝑖𝑖 .𝐀𝐀𝑖𝑖
𝐀𝐀𝑖𝑖 . 𝐢𝐢𝜉𝜉

− 𝑃𝑃𝑃𝑃𝑈𝑈𝑖𝑖 .𝐴𝐴𝑖𝑖(1 − 𝛾𝛾) 

(13) 

𝐽𝐽(𝛻𝛻𝑖𝑖)𝑃𝑃𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑡𝑡−𝑃𝑃𝑏𝑏𝑃𝑃𝑛𝑛𝑏𝑏 = �
𝜕𝜕𝐽𝐽𝑖𝑖𝑖𝑖
𝜕𝜕𝛻𝛻𝑖𝑖

𝑛𝑛𝑓𝑓

𝑖𝑖=1

= −
1

|𝜉𝜉| 𝑧𝑧𝑖𝑖(𝛾𝛾𝐶𝐶𝑖𝑖𝑃𝑃 + (1

− 𝛾𝛾)𝐶𝐶𝑖𝑖𝑁𝑁)
𝐀𝐀𝑖𝑖 .𝐀𝐀𝑖𝑖
𝐀𝐀𝑖𝑖 . 𝐢𝐢𝜉𝜉

 

(14) 

𝐽𝐽(𝐶𝐶𝑖𝑖)𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑁𝑁𝑁𝑁𝑃𝑃𝑛𝑛 =  
1
𝜇𝜇
𝑧𝑧𝑖𝑖 

(15) 

𝐽𝐽(𝐶𝐶𝑖𝑖)𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑁𝑁𝑁𝑁𝑃𝑃𝑛𝑛 = −𝜀𝜀2  �
1

|𝜉𝜉|
𝐀𝐀𝑖𝑖 .𝐀𝐀𝑖𝑖
𝐀𝐀𝑖𝑖 . 𝐢𝐢𝜉𝜉

𝑛𝑛𝑓𝑓

𝑖𝑖=1

 
(16) 

The discretized block coupled system of 
equations is obtained and have the general form: 

𝐴𝐴𝐶𝐶  𝑋𝑋𝐶𝐶  + �𝐴𝐴𝑁𝑁𝐵𝐵 𝑋𝑋𝑁𝑁𝐵𝐵  = 𝐵𝐵𝐶𝐶    (17) 

where 𝑋𝑋𝐶𝐶 ,  𝑋𝑋𝑁𝑁𝐵𝐵 ,𝐵𝐵𝐶𝐶  denote the solution vector at the 
cell center and its neighbour cells, the source term 
equivalent to the function value F, respectively. 

𝑋𝑋𝐶𝐶 = �
𝛥𝛥𝐶𝐶1𝐶𝐶
𝛥𝛥𝐶𝐶2𝐶𝐶
𝛥𝛥𝛻𝛻𝐶𝐶

�, 𝑋𝑋𝑁𝑁𝐵𝐵 = �
𝛥𝛥𝐶𝐶1𝑁𝑁𝐵𝐵
𝛥𝛥𝐶𝐶2𝑁𝑁𝐵𝐵
𝛥𝛥𝛻𝛻𝑁𝑁𝐵𝐵

�, 𝐵𝐵𝐶𝐶 =

�
𝐹𝐹1
𝐹𝐹2
𝐹𝐹3
� 

(18) 

𝐴𝐴𝐶𝐶 ,𝐴𝐴𝑁𝑁𝐵𝐵 denote the diagonal and off-diagonal 
elements of the block matrix, respectively. 

𝐴𝐴𝐶𝐶 = �
𝑁𝑁𝐶𝐶
𝐶𝐶1𝐶𝐶1 𝑁𝑁𝐶𝐶

𝐶𝐶1𝐶𝐶2 𝑁𝑁𝐶𝐶
𝐶𝐶1𝜙𝜙

𝑁𝑁𝐶𝐶
𝐶𝐶2𝐶𝐶1 𝑁𝑁𝐶𝐶

𝐶𝐶2𝐶𝐶2 𝑁𝑁𝐶𝐶
𝐶𝐶2𝜙𝜙

𝑁𝑁𝐶𝐶
𝜙𝜙𝐶𝐶1 𝑁𝑁𝐶𝐶

𝜙𝜙𝐶𝐶2 𝑁𝑁𝐶𝐶
𝜙𝜙𝜙𝜙

� 

𝐴𝐴𝑁𝑁𝐵𝐵 = �
𝑁𝑁𝑁𝑁𝐵𝐵
𝐶𝐶1𝐶𝐶1 𝑁𝑁𝑁𝑁𝐵𝐵

𝐶𝐶1𝐶𝐶2 𝑁𝑁𝑁𝑁𝐵𝐵
𝐶𝐶1𝜙𝜙

𝑁𝑁𝑁𝑁𝐵𝐵
𝐶𝐶2𝐶𝐶1 𝑁𝑁𝑁𝑁𝐵𝐵

𝐶𝐶2𝐶𝐶2 𝑁𝑁𝑁𝑁𝐵𝐵
𝐶𝐶2𝜙𝜙

𝑁𝑁𝑁𝑁𝐵𝐵
𝜙𝜙𝐶𝐶1 𝑁𝑁𝑁𝑁𝐵𝐵

𝜙𝜙𝐶𝐶2 𝑁𝑁𝑁𝑁𝐵𝐵
𝜙𝜙𝜙𝜙

� 

(19) 

Assemble (18), (19) into (17), we have full form 
of the system of equations 

�
𝑁𝑁𝐶𝐶
𝐶𝐶1𝐶𝐶1 𝑁𝑁𝐶𝐶

𝐶𝐶1𝐶𝐶2 𝑁𝑁𝐶𝐶
𝐶𝐶1𝜙𝜙

𝑁𝑁𝐶𝐶
𝐶𝐶2𝐶𝐶1 𝑁𝑁𝐶𝐶

𝐶𝐶2𝐶𝐶2 𝑁𝑁𝐶𝐶
𝐶𝐶2𝜙𝜙

𝑁𝑁𝐶𝐶
𝜙𝜙𝐶𝐶1 𝑁𝑁𝐶𝐶

𝜙𝜙𝐶𝐶2 𝑁𝑁𝐶𝐶
𝜙𝜙𝜙𝜙

��
𝛥𝛥𝐶𝐶1𝐶𝐶
𝛥𝛥𝐶𝐶2𝐶𝐶
𝛥𝛥𝛻𝛻𝐶𝐶

�

+ ��
𝑁𝑁𝑁𝑁𝐵𝐵
𝐶𝐶1𝐶𝐶1 𝑁𝑁𝑁𝑁𝐵𝐵

𝐶𝐶1𝐶𝐶2 𝑁𝑁𝑁𝑁𝐵𝐵
𝐶𝐶1𝜙𝜙

𝑁𝑁𝑁𝑁𝐵𝐵
𝐶𝐶2𝐶𝐶1 𝑁𝑁𝑁𝑁𝐵𝐵

𝐶𝐶2𝐶𝐶2 𝑁𝑁𝑁𝑁𝐵𝐵
𝐶𝐶2𝜙𝜙

𝑁𝑁𝑁𝑁𝐵𝐵
𝜙𝜙𝐶𝐶1 𝑁𝑁𝑁𝑁𝐵𝐵

𝜙𝜙𝐶𝐶2 𝑁𝑁𝑁𝑁𝐵𝐵
𝜙𝜙𝜙𝜙

��
𝛥𝛥𝐶𝐶1𝑁𝑁𝐵𝐵
𝛥𝛥𝐶𝐶2𝑁𝑁𝐵𝐵
𝛥𝛥𝛻𝛻𝑁𝑁𝐵𝐵

� 

=  �
𝐹𝐹1
𝐹𝐹2
𝐹𝐹3
� 

(20) 

The coupled algorithm involves the following 
steps: 

1. Initialize variables (𝑋𝑋𝑏𝑏 = 0) 

2. Assemble Jacobian Matrix 𝐽𝐽𝑏𝑏 with entries 
calculated from discretized equations and evaluate the 
function value 𝐹𝐹𝑏𝑏. 

3. Solve the system of linearized equations to 
obtain a new approximation of the solution: 

𝐽𝐽𝑏𝑏(𝑋𝑋𝑏𝑏)𝛥𝛥𝑋𝑋𝑏𝑏+1 = 𝐹𝐹𝑏𝑏(𝑋𝑋𝑏𝑏)  

𝑋𝑋𝑏𝑏+1 = 𝑋𝑋𝑏𝑏+𝛥𝛥𝑋𝑋𝑏𝑏+1 

(21) 

4. Check convergence and return to step 1 if not 
satisfied: 

‖𝛥𝛥𝑋𝑋𝑏𝑏+1‖ < 𝜖𝜖 (22) 

Solving the PNP equations using Newton-
Raphson method is an iterative process. It requires to 
recompute the Jacobian matrix and function value 
iteratively. To resolve the rapid variations of the ion 
concentrations and electric potential near charged 
surfaces, the mesh at the membrane/solution interface 
needed to be refined toward the membrane surfaces. 
To avoid solving the large system of linear equations, 
we solve the PNP and NS equations alternatively [4]. 
Starting with a velocity field from the previous 
iteration or initial condition, the potential and 
concentrations are simultaneously solved from the 
PNP equations. Then, electric body force is calculated 
and substituted into the NS equations. The velocity 
field obtained by solving the NS equations is 
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substituted back into the PNP equations. The process 
is repeated until convergence is reached. 

The numerical solver was validated by 
comparing the numerical solution to the analytical 
solution and solution published in the papers [5,6] of 
electric potential on a solid surface interfacing with an 
electrolyte solution. The potential can be calculated 
using the well-known Grahame equation: 

𝛻𝛻𝑁𝑁𝑏𝑏𝑁𝑁𝑖𝑖𝑃𝑃𝑠𝑠𝑒𝑒

=
2𝑘𝑘𝐵𝐵𝑇𝑇
𝑃𝑃

𝑠𝑠𝑠𝑠𝑠𝑠ℎ−1 �

𝜎𝜎
(8𝜖𝜖𝜖𝜖0𝑘𝑘𝐵𝐵𝑇𝑇𝑠𝑠𝐾𝐾𝐶𝐶𝑏𝑏)1

2
�       

(23) 

where σ (𝐶𝐶 ⁄ 𝜇𝜇2) is the charge density on the solid 
surface. 

To examine the effect of mesh nonorthogonality 
on the simulation result, we consider two mesh types 
including an orthogonal mesh (consisting of 
rectangular control volume), a non-orthogonal mesh 
(consisting of triangular control volumes). Parameters 
used in the simulation include the bulk concentration 
with different values (0.1𝜇𝜇𝑚𝑚, 1𝜇𝜇𝑚𝑚, 10𝜇𝜇𝑚𝑚), surface 
charge, temperature 𝑇𝑇 = 300𝐾𝐾, the diffusivities. 

The numerical and exact solutions for the surface 
potential at different bulk concentrations are presented 
in Table 1. From the results, we can see a good 
agreement between the exact solution and the 
numerical solution for both orthogonal and non-
orthogonal meshes. This agreement demonstrates the 
high accuracy of our numerical solution. 

Table 1. The computed surface potential and ion 
concentration in comparison with published data. 

𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝛻𝛻(𝜇𝜇𝑉𝑉) 𝛻𝛻(𝜇𝜇𝑉𝑉) 𝛻𝛻(𝜇𝜇𝑉𝑉) 𝛻𝛻(𝜇𝜇𝑉𝑉) 𝛻𝛻(𝜇𝜇𝑉𝑉) 

 Analytical Orthogonal Non 
orthogonal 

Marthr 
and 

Murthy 
[5] 

Daijuji  
et al [6] 

0.1 -39.5 -39.52 -39.5 -39.58 -39.5 

1 -13.5 -13.6 -13.62 -13.36 -13.7 

10 -4.34 -4.35 -4.35 -4.42 -4.42 

 
3. Results and Discussion 

We apply our numerical solver by simulating an 
electrodialysis cell that existed in electrodialysis 
desalination system [7-9]. The electrodialysis cell is a 
microchannel with a size of 20 x 10 x 60 um. The 
microchannel is constructed with an anion-exchange 
membrane (AEM) on top and a cation-exchange 
membrane (CEM) at the bottom. Salt solution is 
pumped into an end (inlet), due to the electric field 
remaining across the membranes, which extracts salt 
gradually when the solution flows along the channel. 

The desalted solution is then obtained at the other end 
of the channel (outlet). A sketch of the electrodialysis 
cell is provided in Fig. 2. 

 

 
Fig. 2. (a) Sketch of a electrodialysis cell. On top and 
bottom are cation exchange membranes AEM (top) 
and CEM (bottom). (b) The electrodialysis cell 
simulation model. 
 

The purpose of the simulation is to investigate the 
electrokinetic flow in the microchannel, particularly, 
to observe the electroconvective instability in an 
electrodialysis cell of which the permselective 
membranes interface with a pressure-driven electrolyte 
flow. To conduct the simulation, the following 
boundary conditions are enforced on the microchannel 
boundaries. On the AEM and CEM boundaries, the 
common boundary conditions for ion concentrations at 
ion-exchange membrane are employed: fixed value for 
concentration of counter ions (𝐶𝐶𝑚𝑚 =  𝐶𝐶0), and no-flux 
condition for co-ions [1,4,9,11]. Flow is generated by 
velocity at the inlet and fixed value pressure at the 
outlet. The ion concentrations at the channel entrance 
are fixed at the bulk concentration (𝐶𝐶𝑚𝑚 =  𝐶𝐶0). No-slip 
boundary condition is assumed at the membrane 
surfaces. 

The control parameter in our simulation is the 
bias voltage applied between the membranes. 
Different bias voltages are enforced by changing the 
potential on the CEM while keeping that on the AEM 
at zero. 

The mesh of 18000 cells refining the region near 
membrane is used (Fig. 2a). The maximum of cell size 
in y direction  𝑦𝑦𝑚𝑚𝑃𝑃𝑚𝑚= 0.1𝑙𝑙0 placing in the center region 
while the minimum is 𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛= 0.00145𝑙𝑙0 placing near 
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membranes (𝑙𝑙0=2−5 is the length scale). M4800 Dell 
workstation computer with Intel i7, 2.4Gh, processor, 
and 8 Gb of Ram is used. The average time solution 
for each voltage in three regimes is 14,52s, 30.71s, 
293.15s respectively. 

In the following sections, the results for voltage-
current response, development of electroconvective 
flow in the channel, and impact of the flow on the ion 
distributions will be presented and discussed.    

3.1. Voltage Current Response of the 
Electrochemical System 

The mechanism of operation electrodialysis 
system manifests on a current-voltage curve (I-V 
curve). To obtain it, the ion transport processing on the 
ion exchange membrane was simulated under various 
applied voltages. The integral of cation and anion over 
the membrane area is used to calculate the current 
through this system. The simulation result is depicted 
in Fig. 3, which shows three regimes of ICP system 
operation including Ohmic, limiting, and over-
limiting. In the Ohmic regime, when applying a small 
bias voltage between 0 and 10 𝑉𝑉0, ion is conducted 
through the membrane by the electric field. These 
results indicate the decrease in ion concentrations near 
the membrane and the increase in current. However, as 
the applied voltage is higher than about 10 𝑉𝑉0, the 
concentration of ion near the membrane surface 
approaches zero. The vanishing of ion near membrane 
makes modestly the increase in the current when the 
applied voltage increases from 10 𝑉𝑉0  to 24 𝑉𝑉0. Above 
24 𝑉𝑉0, however, the current rising again indicated the 
appearance of over-limiting phenomena in the system. 

 

 
Fig. 3. The current-voltage curve of the electrodialysis 
cell. 

The simulated results about three different 
regime operations are in good agreement with the 
previous experimental and theoretical studies on the 
ICP system [10,12]. 

3.2. Development of Electroconvective Flow Near 
Membanre Surface 

The electrical force field in the system exerts 
force on space charge (𝜌𝜌�𝑒𝑒) distributed in the 
microchannel between two membranes. In this section, 
we examine its effect on the profile of flow in the 
microchannel. 

The modeling result of the velocity flow inside 
the channel is depicted in Fig. 4. As we can observe, in 
Ohmic and limiting regime, the flow is almost 
unchanged by the effect of the body electric force field. 
In over-limitting regime, however, its profile was very 
different with the forming of helical vortices in the 
channel. The profile of flow might be explained from 
the simulation resulting. In Ohmic and limiting 
regimes, due to the neutrality of most of the volume in 
the system, the force field has a weak value in such 
location. Except for the layer near the exchange ion 
membrane where the ionic polarization occurs, the 
force field has a higher value. This body force, 
however, acts in a direction normal to the membrane 
just making an increase of the pressure in small volume 
near membrane (Fig. 5). As the applied voltage 
continues to increase (over-limiting regime), a space 
charge layer near the membrane surface is expanded. 
The electric body force begins to influence 
significantly on electroconvective flow here (Fig. 4c).  
This unstable layer led to the changing of flow 
configuration which features a couple vortex. 

3.3. Impact of Electroconvective Low on Ions 
Distribution 

The major factor in effective desalination is ion 
distribution in micro-channel. The impact of flow on it 
will be examined in this section.  

The simulation of ion distribution is illustrated in 
Fig. 6. The concentration contour indicates that in 
Ohmic and limiting regimes the ion isometric surface 
is nearly laminar but does not uniform in over-limiting 
regime. To clarify this phenomenon, we show the 
simulated ion concentration on the symmetry plane of 
the system and at the outlet (Fig. 7).   In x direction, 
there is little concentration variation in Ohmic and 
limiting regimes. However, the concentration profile 
in the width direction shows the electrokinetic 
instability of the system in over-limiting regime. This 
may indicate that the flow configuration on channel 
crosses section (Fig. 8). The ions in the middle region 
near selective membrane are swept by the stream of the 
combination of two symmetrical vortices, causing this 
layer thickness to increase significantly here. In 
contrast, on either side of the cross section, the ions are 
pushed through membrane, leading to the thickness 
reduction. 
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Fig. 4. Development of electroconvective flow near membrane surface in three regimes: (a) Ohmic, (b) limiting, 
(c) over-limiting

 

  
Fig. 5. Profile of space chare (𝒑𝒑𝒆𝒆) near CEM membrane in the Ohmic (V = 5𝑽𝑽𝟎𝟎), limiting (V = 15𝑽𝑽𝟎𝟎) and over-
limitting (V = 2𝟔𝟔𝑽𝑽𝟎𝟎). Due to the development of an extended space charge layer, the pressure can be changed. 
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Fig. 6. Simulation result for ions concentration in three regimes:  (a) Ohmic, (b) limiting, (c) over-limiting. 

 
Fig. 7. Simulation results for concentration on the symmetry plane and at the outlet are shown in different regimes: 
(a) Ohmic, (b) limiting, (c) over-limiting. 

 
Fig. 8. Flow configuration on the channel cross section in over-limitting regime. 
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4. Conclusion 

In this work, an OpenFoam integrated numerical 
solver for PNP-NS equation was developed. The 
obtained results show the high accuracy of the solver. 
It is applied in studying ion transport with different 
regimes in electrodialysis cell. The good results 
achieved enable us to fully explain, analyze the 
formation of electroconvective flow in electrodialysis 
cell. The numerical solver developed in this work 
provides a favorable open tool for OpenFoam research 
teams to investigate phenomena in the electrochemical 
field.   
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