

JST: Smart Systems and Devices

 Volume 32, Issue 3, September 2022, 009-016

9

Exploiting Deep Reinforcement Learning for Coverage Maximization

and Cost Minimization in Air Quality Monitoring Systems

Nam Duong Tran, Manh Cuong Dao, Nang Hung Nguyen, Thanh Trung Nguyen
Thanh Hung Nguyen*, Phi Le Nguyen

Hanoi University of Science and Technology, Hanoi, Vietnam
*Corresponding author email: hungnt@soict.hust.edu.vn

Abstract

Air-quality monitoring is highly desired in modern life, where environmental problems have become more
serious. Such a task requires continuous surveillance over large urban areas, which is costly both in
infrastructure and sensor resources. Hence it gives rise to Vehicular Mobile Networks (VMNs), in which mobile
vehicles play the role of sensor devices and constantly monitor the area. However, with extensive constraints,
the optimization of both maximizing the coverage and minimizing the sensory costs is vastly challenging. In
this research, we resolve the problem in terms of a learning process. Applying deep reinforcement learning,
we outperform more than 1.65% in terms of coverage, compared to common setups while remaining
considerably small sensory costs in terms of sensor activation rate. We conduct extensive experiments for a
better understanding of the behavior of the deep reinforcement learning model.

Keywords: Reinforcement Learning, VMNs, Energy optimization

1. Introduction

The*ever-developing Internet of Things (IoT) has
paved the way for many promising applications in
environment surveillance tasks. Modern sensors are
relatively small-sized yet highly accurate; however,
still limited in coverage and computational resources.
Constant activation of the sensors surely results in poor
performance of the sensors as a consequence of both
energy exhaustion and wasteful overlapping
information. Moreover, broadly monitoring large urban
areas requires an extensive amount of sensor devices
which is costly. One solution is to apply sensor devices
onto vehicular mobiles, creating a network of mobile
sensors that traverse around the area. This helps
minimize the number of sensors required. However, the
problem of activation rate remains unresolved.

In this work, we attempt to optimize both the
coverage in terms of the monitored area and the sensory
costs in terms of sensor activation rate. Let’s consider
a road in an urban area, which is 𝑚𝑚 (meter) in length
and 𝑛𝑛 (meter) in width. Many sensor-integrated mobile
vehicles are constantly running along the road. We also
consider the amount of time in which the air quality
remains unchanged in a certain area whose radius is
denoted as 𝜙𝜙, we denote this duration as 𝑡𝑡0. Based on
this hypothesis, with any given point in space (𝑥𝑥0,𝑦𝑦0),
the air quality at time 𝑡𝑡 is the same for all points located
within the circular area (𝑥𝑥 − 𝑥𝑥0)2 + (𝑦𝑦 − 𝑦𝑦0)2 ≤ 𝜙𝜙2
from the time 𝑡𝑡 to 𝑡𝑡 + 𝑡𝑡0. The objective is to maximize
the coverage and sensor activation rate in consideration
of mentioned space-time constraints.

ISSN: 2734-9373
https://doi.org/10.51316/jst.160.ssad.2022.32.3.2
Received: May 5, 2022; accepted: August 1, 2022

Our contributions to this work are as follows:

1) We formulate the problem into a learning
problem, which we use deep reinforcement
learning methods to resolve.

2) We conduct extensive experiments to both verify
the efficiency of the proposed method and
navigate the effect of several parameters on the
performance of the proposed method.

The remaining of this article is constructed as
follows. In section 2 we discuss several recent research
concerning the interested field. In section 3, we give an
overview of our proposal, which includes basic
concepts of reinforcement learning and its applications.
We then formulate our problem in the same manner in
section 4 by defining essential elements for a
reinforcement learning process. Next, we demonstrate
the results in section 5 then the conclusion in section 6.

2. Related Works

In recent years, the development of the fifth
generation of mobile communication (5G) networks
[1] and mobile edge computing (MEC) technology [2]
has promoted the development of intelligent vehicular
mobile networks. However, when data traffic increases
rapidly, the energy consumption of data processing will
increase significantly, while computer resources and
battery capacity are limited. Therefore, many
researchers have embarked on the problem of
offloading [3], scheduling [4], and resource distributing
[5,6] in VMNs. In [7], Emara et al gave insights into
applying different network architectures to the

JST: Smart Systems and Devices

 Volume 32, Issue 3, September 2022, 009-016

10

performance of VMNs in terms of end-to-end latency.
Dong et al [8] applied deep reinforcement learning-
based intelligent offloading scheme to resolve the
problem of resource distribution in VMNs. Zhang et al
[9] proposed a novel VMNs architecture based on
SDN, in which the computational resources are
distributed according to the Q-learning scheme to
maximize the balance degree. Cui et al [10] proposed a
novel offloading scheme that utilized k-nearest to select
offloading interface and reinforcement learning to
balance the workload throughout the network. In
VMNs, it often occurs that multiple targets must be
optimized simultaneously, Xu [11] proposed an
evolutionary-strategy-based offloading scheme
(NSGA-III) to optimize both workload distribution and
latency. Xiao et al [12] also considered sensory limited
energy in their work, applying deep learning to
captured heat-zone and optimizing the latency based on
the game theory formulation. It can be seen that the
concerning problems in recent years are mainly latency
and workload distribution, yet not coverage and
continuous monitoring, which is the ultimate target for
any sensory network.

Inspired by the above-mentioned research, we
propose an optimization method based on deep
reinforcement learning that focuses on the optimization
of coverage and sensory costs in vehicular mobile
networks.

3. Preliminaries

3.1. Reinforcement Learning

Reinforcement learning is a potential approach to
real-time optimization problems. Compared to the
once-famous heuristic methods, reinforcement learning
offers much flexibility and lightweight computation. In
combination with cutting-edge deep learning
techniques, deep reinforcement learning has been
utilized to achieve unprecedented excellence in many
fields of interest.

In general, a reinforcement learning process
consists of four essential elements that exact definition
depends on the nature of the problem in which the
learning process is applied:

1) Agents are the source of actions. Agents make
decisions according to their policy that optimizes
a reward function. In many real-world scenarios,
several agents interact with each other in either
competition or cooperation manner. In this work,
we maintain a single agent in our model.

2) Environment is any other factor that affects the
decision made by the agent. The environment can
be expressed as a set of states, and a set of
mapping that maps a pair of states and actions to
the next state. This mapping is often obscure and
probabilistically unstable and thus difficult to
know in advance. In general, an environment

consists of a state-space 𝑆𝑆 and a transitioning
space 𝑃𝑃.

3) Action is a decision made by the agent. The set of
actions is called the action space and is denoted as
𝐴𝐴. For each state 𝑠𝑠 ∈ 𝑆𝑆, the action space at that
state is denoted as 𝐴𝐴(𝑠𝑠) . An action 𝑎𝑎 ∈ 𝐴𝐴(𝑠𝑠)
made by the agent affects the environment and the
environment shifts to a new state 𝑠𝑠′ with the
probability of 𝑝𝑝(𝑠𝑠′, 𝑎𝑎|𝑠𝑠) ∈ 𝑃𝑃. An action is taken
according to the policy 𝑝𝑝(𝑎𝑎𝑡𝑡) = 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡).

4) Reward is a real scalar that shows how good the
taken action is in a particular state. We denote
𝑟𝑟𝑡𝑡 = 𝑅𝑅(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) as the reward of the action 𝑎𝑎𝑡𝑡 in the
state 𝑠𝑠𝑡𝑡. The reward function 𝑅𝑅 is essential for a
reinforcement learning process since the reward
signal guides the optimization path of the agent.

The ultimate target of the reinforcement learning
process is to control the agent to make a chain of actions
�̂�𝐴 = {𝑎𝑎𝑖𝑖}𝑖𝑖=1𝑁𝑁 that maximize the discounted total reward:

𝐺𝐺 = �𝛾𝛾𝑡𝑡−1
𝑁𝑁

𝑡𝑡=1

𝑟𝑟𝑡𝑡 = 𝑟𝑟1 + 𝛾𝛾𝑟𝑟2 + 𝛾𝛾2𝑟𝑟3 + ⋯+ 𝛾𝛾𝑁𝑁−1𝑟𝑟𝑁𝑁 (1)

in which, 𝑟𝑟𝑡𝑡 = 𝑅𝑅(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) is the intermediate reward at
time 𝑡𝑡 and 𝛾𝛾 ∈ (0,1] is the discount factor shows the
interest degree to the future rewards. The learning
process is considered finished when the agent learns a
policy 𝜋𝜋∗ = 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥𝜋𝜋(𝐺𝐺).

With such a target, most reinforcement learning
methods can be categorized into two main approaches:
policy-based and value-based. The policy-based
approach parameterizes the policy by a vector 𝜃𝜃 and
then makes an update upon this vector following the
policy gradient theorem. Different methods can use
different quantities as their multipliers to the gradient:

∇θ𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡 ,𝜃𝜃) = 𝐸𝐸�𝐺𝐺𝑡𝑡∇𝜃𝜃 log�𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)�� REINFORCE

 = 𝐸𝐸[𝑄𝑄∇𝜃𝜃 log(𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡))] Q ActorCritic

 = 𝐸𝐸[𝐴𝐴∇𝜃𝜃 log(𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡))] Advantage

 = 𝐸𝐸[𝛿𝛿∇𝜃𝜃 log(𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡))] TD

On the other hand, the value-based approach
tries to estimate the state-action value mapping
𝑄𝑄: 𝑆𝑆 × 𝐴𝐴 → 𝑅𝑅 , denoted as 𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) that tells the
goodness of action 𝑎𝑎𝑡𝑡 in the state 𝑠𝑠𝑡𝑡 or the value
mapping: 𝑉𝑉: 𝑆𝑆 → 𝑅𝑅 that tells how good a state is,
concerning the overall target. After one of these
mappings is well estimated, we can deduce an optimal
solution for the reinforcement learning process by
choosing an action that maximizes these mapping:

𝑎𝑎𝑡𝑡∗ = 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥�𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎)�,∀𝑎𝑎 ∈ 𝐴𝐴(𝑠𝑠𝑡𝑡)
or 𝑎𝑎𝑡𝑡∗ = 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥�𝑅𝑅 + 𝛾𝛾𝑉𝑉(𝑠𝑠𝑡𝑡)�,∀𝑎𝑎 ∈ 𝐴𝐴(𝑠𝑠𝑡𝑡) (2)

Usually, 𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) is favored when the joint space
𝑆𝑆 × 𝐴𝐴 is relatively small or computationally possible.
When the joint space is infinite or relatively large, it is
advantageous to utilize 𝑉𝑉(𝑠𝑠𝑡𝑡).

JST: Smart Systems and Devices

 Volume 32, Issue 3, September 2022, 009-016

11

3.2. Actor-Critic Method

Each approach has its advantage in different
cases. The policy-based approach is fast and flexible
for both discrete and continuous space, the value-based
approach is sample-efficient and stable. Actor-Critic
methods are a new learning type that combines the
strength of both approaches with the computational
power of deep learning. The vanilla Actor-Critic
architecture consists of two branches: Actor and Critic.
The Actor takes a state as input 𝑠𝑠𝑡𝑡 and returns a
probability over the action space 𝑝𝑝(⋅ |𝑠𝑠𝑡𝑡) as output,
meaning that the Actor plays the role of the policy 𝜋𝜋.
The Critic tries to make a good estimation of the
predicting reward for each action, with which the agent
shifts its policy accordingly. The idea is that two
models interact (or compete) with each other to achieve
better performance than each separately.

There are several extensions to the vanilla Actor-
Critic method, namely A2C and A3C and others. The
Advantage Actor-Critic (A2C) has its Critic learn the
Advantage values rather than the trivial Q values:

 𝐴𝐴(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) = 𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) − 𝑉𝑉(𝑠𝑠𝑡𝑡)

 = 𝐸𝐸[𝑟𝑟𝑡𝑡+1 + 𝛾𝛾𝑉𝑉(𝑠𝑠𝑡𝑡+1)] − 𝑉𝑉(𝑠𝑠𝑡𝑡). (3)

By learning the advantage values, the evaluation
of an action is based not only on how good the action is
but also on how much better it can be. The advantage
of the advantage function is that it reduces the high
variance of the policy networks and stabilizes the
model. However, the process of learning a good Actor
is still challenging due to the ineffective sampling of
policy-based methods. DeepMind 2016 proposed an
Asynchronous Advantage Actor-Critic (A3C) that
improved this problem by introducing asynchronous
multiple workers in multiple environments for better
exploration of the state-action space in much less time.
The agents are trained in parallel and update
periodically a global network that holds shared
parameters with its gradient:

∇𝜃𝜃𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡 ,𝜃𝜃) = 𝐸𝐸[𝐴𝐴(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡)∇𝜃𝜃 log(𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡))]

≈ �𝑟𝑟𝑡𝑡+1 + 𝛾𝛾𝑉𝑉(𝑠𝑠𝑡𝑡+1) − 𝑉𝑉𝑠𝑠𝑡𝑡�∇𝜃𝜃 log(𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)) (4)

In this work, we leverage A2C into our proposal.

4. Proposal

4.1. Actor Critic-Based Network Modeling

Since each mobile vehicle is equipped with a
sensor, itself can be considered as an agent with two
decisions: activate or deactivate its sensor to monitor
the surrounding air quality. However, in this setting, we
embarked on the multi-agent paradigm which is rather
computationally heavy as each vehicle is limited in
terms of computational resources. Moreover, the
number of vehicles can reach extremely large and thus
makes it difficult to control the performance of the
method.

For this reason, we propose using a centralized
agent that takes observations of the network as input
and output the activation map which is independent of
the number of mobile vehicles currently on the road. By
adopting this design, we can extend the proposal
without the worries about the computational resources
of the agent. This agent can also be viewed as a server
communicating with the mobile vehicles and choosing
which vehicle activates its sensor.

4.2 Actor-Critic Architecture

We employ both convolutional layers for spatial
adaptation and an LSTM block for temporal analysis.
We build our body network with two convolutional
layers activated by ReLU functions, which help
identify and analyze several spatial properties of the
current state such as locations and speeds. Next, we use
a fully connected layer as a preprocessor before
forwarding it to the LSTM block. We intentionally use
an LSTM block to handle the temporal batch of
observation so that many other insights can be
exploited such as the vehicle’s trajectory and
acceleration.

Fig. 1. Actor-Critic architecture

JST: Smart Systems and Devices

 Volume 32, Issue 3, September 2022, 009-016

12

The output of the LSTM block is considered a
spatial-temporal representation of the current state,
concerning previous states. This representation is then
fed into two separate branches: Actor and Critic. The
output of the Actor is an 𝑚𝑚 × 𝑛𝑛 matrix while that of the
Critic is a scalar. It is worth noting that the Actor is
composed of a fully connected layer with a softmax
layer while the Critic is simply a dense layer. The full
demonstration of the Actor-Critic architecture is
depicted in Fig. 1.

4.3. Defining Reinforcement Learning Elements

4.3.1. Environment and the state space

The environment in this problem is defined as the
road and vehicles on the road. Therefore, the state space
we design consists of the following components: an
𝑚𝑚 × 𝑛𝑛 matrix 𝑙𝑙𝑡𝑡 that represents the location of the
vehicle on the road, which can be simply understood as
a binary picture of the road; and a 𝑚𝑚 × 𝑛𝑛 matrix 𝑐𝑐𝑡𝑡 that
demonstrate the covered map at the current time frame.
The observation at time 𝑡𝑡 is represented as the
concatenation of the two matrices 𝑙𝑙𝑡𝑡 and 𝑐𝑐𝑡𝑡 . Fig. 2
demonstrates the formation of the state. The state at
time 𝑡𝑡 is denoted as 𝑠𝑠𝑡𝑡 and is defined as a sequence of
several observations from time 𝑡𝑡 − 𝑧𝑧 up to 𝑡𝑡. The final
state size is (𝑧𝑧 + 1) × 2 × 𝑚𝑚 × 𝑛𝑛.

The reason we design our state as mentioned is
that the problem mimics a partial observation Markov
decision process (POMDP). This means, that one
observation at any given time is insufficient to make the

optimal decision. For example, an observation of the
current road does not tell the velocity of their vehicles
or directions, which is critical to decide which vehicle
should activate its sensor. Therefore, one practical
solution is to combine the current observation with
several previous observations and process them by an
LSTM block.

4.3.2. Action space

Every second, a vehicle must decide whether to
activate its sensor or not. From the point of view of the
agent, an action is to decide which area of the road
needs monitoring.

To realize this intuition, we represent an action
of the agent as a probabilistic map of the road,
sized 𝑚𝑚 × 𝑛𝑛 , is denoted as 𝑎𝑎𝑡𝑡 = �𝑝𝑝𝑖𝑖𝑖𝑖�𝑚𝑚×𝑛𝑛

 in which
𝑝𝑝𝑖𝑖𝑖𝑖 ∈ [0,1] is the probability of the location (𝑖𝑖, 𝑗𝑗) that
needs monitoring. Each vehicle on the road then self-
decides to activate the sensor or not according to the
deduced binary map 𝑏𝑏𝑡𝑡 = �𝑏𝑏𝑖𝑖𝑖𝑖�:

𝑏𝑏𝑖𝑖𝑖𝑖 = 𝑓𝑓�𝑝𝑝𝑖𝑖𝑖𝑖� = �
1, 𝑝𝑝𝑖𝑖𝑖𝑖 ≥ 𝜀𝜀
0, 𝑝𝑝𝑖𝑖𝑖𝑖 < 𝜀𝜀, (5)

where 𝜀𝜀 ∈ [0,1] is the threshold.

Then we have a binary matrix 𝑏𝑏𝑡𝑡 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛 where
1 represents the location that needs monitoring and 0
otherwise. The vehicle at a location whose 𝑏𝑏𝑖𝑖𝑖𝑖 = 1
would activate its sensor.

Fig. 2. The formation of the state

JST: Smart Systems and Devices

 Volume 32, Issue 3, September 2022, 009-016

13

4.3.3. Reward

The reward signal acts as guidance for
optimization in the reinforcement learning process.
Thus, the design of the reward function is essential for
the process to achieve high performance. A good
reward function should reflect entirely the objectives
that need maximizing.

In this problem, the objectives are to minimize
the activation rate of the sensors while maximizing the
coverage. Thus, we design our reward function based
on those two elements. In detail, the reward function is
defined as:

𝑟𝑟(𝑎𝑎𝑡𝑡) =
1

1 + 𝑞𝑞+
(𝛼𝛼𝑅𝑅1 − (1 − 𝛼𝛼)𝑅𝑅2) (6)

where:

1) 𝑅𝑅1 = 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 = ∑(𝑐𝑐𝑡𝑡+1 − 𝑐𝑐𝑡𝑡) is the
coverage area after taking the action 𝑎𝑎𝑡𝑡,

2) 𝑅𝑅2 = (2𝜙𝜙 + 1)2𝑜𝑜+ − 𝜓𝜓 is the overlapped area
caused by performing 𝑎𝑎𝑡𝑡.

The notation of 𝑜𝑜+ and 𝑞𝑞+ represent the total
vehicle on the road and the number of vehicles that
activate their sensor according to the action 𝑎𝑎𝑡𝑡 . 𝜙𝜙
denotes the sensory radius and 𝜓𝜓 the previous
coverage before taking 𝑎𝑎𝑡𝑡 . The rationale behind this
design is to minimize the number of vehicles
participating in activating the sensors each round while
maximizing the coverage area, at the same time
minimizing the overlapping area. The quantities 𝑅𝑅1
and 𝑅𝑅2 hang in balance by a constant 𝛼𝛼 , which is
chosen followed by the description in Table 1.

Table 1. Configuration

Definition Notation Value

Road length 𝑚𝑚 250 𝑚𝑚

Road width 𝑛𝑛 42 𝑚𝑚

Air-quality unchanged
duration 𝑡𝑡0 360 𝑠𝑠

Observation buffer capacity 𝑧𝑧 3

Sensory radius 𝜙𝜙 20 𝑚𝑚

Reward trade-off factor 𝛼𝛼 0.65

5. Evaluation

5.1. Methodology

In this section, we show the experimental results
and discussion about the influence of different
parameters and factors on the performance of our

proposal. In detail, we first compare our proposal to
several setups to verify the learning potential of the
algorithm. Next, we conduct extensive experiments
tuning the parameters of both network configuration
and the Actor-Critic model to study their influence.

With the objective of optimizing coverage and
activation rate, we are to investigate these two metrics
as follows:

1) Coverage is represented as coverage degree and
is defined as the ratio of the covered area over the
total area (the road). This quantity is computed in
a spatial-temporal manner as introduced in
section 1 and described in section 4.2.1.

2) The activation rate is represented as the
probability of activating the sensor at every
action.

The experiments are conducted in a simulator
written in Python running on a multi-processing multi-
GPU machine, the deep reinforcement learning is
implemented with the help of Pytorch. The seed is set
constant among experiments so that the results are
trustworthy.

5.2. Training Strategy

The proposal deep reinforcement learning
method is trained online as follows: during the
simulation, the agent continuously takes actions and
receives corresponding rewards, as well as bulking the
experience buffer with transitioning tuples. When the
buffer is sufficiently large, the training process occurs:
The transitioning tuples (experiences) are taken in
consecutive batches so that our LSTM correctly learns
the pattern of POMDP environmental properties such
as velocity and movement direction. The actor and
critic are updated accordingly. It is worth noticing that
the trained experience is not discarded but restored for
future rehearsals. However, we set a limit for the
experience buffer, at which the buffer discards the
oldest experience recordings. With this, we assure that
the updating process does not cause overtime delays
when updating.

5.3. Experimental Results

In the first experiment, we study the efficiency of
the proposal. We keep the number of vehicles, the
arrival interval, and other environmental factors
constant while varying the sensory radius of
(3,4,6) meters. We compare our performance to that
of the trivial setups: keep the activation rate constant
at (40,50,70,100) %. The results are shown in Fig. 3.
In detail, when the sensory radius is set to 3, our
proposal converges to the solution that activates the
sensors at the rate of 46.76% and has a coverage
degree of 51% and an overlap of 3.8%. This result is
45.6%, 67.1%, and 0.9% when the sensory radius is
set to 4 and 42.9%, 86.96% , and 2.8% when the
radius is set to 6, respectively. Our proposal has

JST: Smart Systems and Devices

 Volume 32, Issue 3, September 2022, 009-016

14

decreased the activation rate throughout the
experiment which is reasonable as a higher sensory
radius requires less sensory activation due to the
expansion of the monitoring area. Other trivial settings
have competitive results in terms of coverage degree
but much worse in overlap and activation rate.

(a)

(b)

(c)

Fig. 3. Effect of Sensory Radius. a. Sensory radius is
set to 3; b. Sensory radius is set to 4; c. Sensory radius
is set to 6.

Next, we study the influence of inner factors on
the performance of the proposal. Firstly, we increase
the observation buffer capacity 𝑧𝑧 from 1 to 6 and
observe the change in behavior of the agent. Recall that
the more consecutive observations used in the process
of making a decision, the more accurate the decision
becomes. However, increasing 𝑧𝑧 leads to more
computational requirements at the LSTM block. The
result in Fig. 4a demonstrates the effect of this
parameter. We can see that increasing 𝑧𝑧 leads to both
higher coverage degree and higher activation rate:
0.703% (± 0.176%) on average for coverage degree
and 0.52% (±0.207%) for activation rate. The
overlap degree remains unchanged at 2.1%.

 The second factor we would like to look at is the
action interval of the agent, which is the amount of
time between two consecutive actions. The lower this
interval the more precise the decision of the agent since
the change in the environment is relatively small. It can
be seen in Fig. 4b that increasing the action interval
leads to worse performance: higher activation rate yet
lower coverage degree. In detail, when this interval is
set to 1 second, the coverage degree is 84.3% and the
activation rate is 50.83% whereas these numbers are
38.39% and 56.29% when the interval is 4 seconds.

The third parameter we study is the learning rate
of the agent, which is also the learning rate of the
Actor-Critic model. We vary this parameter from
0.05 × 10−3 to 0.5 × 10−3 and the results are shown
in Fig. 4c. The results show that, with a higher learning
rate, the model becomes more competent with the
decrease of both coverage and activation rate, but the
decreasing rate of coverage is less than that of the
activation rate. In detail, the change is 0.7% in
coverage and 1.7% inactivation rate. The overlap
degree of these two setups is relatively equal.

The final parameter we would like to look deep
into is the hidden size of the Actor-Critic model, which
is expressed through the number of nodes participating
in building each hidden layer of the model. In this last
experiment, we change this number from 32 to 256,
which consequently increases the complexity of the
model. Thus, the model often takes a longer time and
more experience to attain the knowledge. It is shown
in Fig. 4d that the hidden size of 64 benefits best for
the performance of the Actor-Critic. In detail, when the
hidden size is set at 64, the coverage degree is 84.3%
and the activation rate is 50.83%. When the hidden
size reaches 128 then the activation rate increases up
to 52% while the coverage is roughly unchanged. At
the size of 256 then the activation rate is 50.4% and
the coverage degree is 83.7% . The reason for this
degradation is the lack of data when performing
updates upon the Actor branch.

JST: Smart Systems and Devices

 Volume 32, Issue 3, September 2022, 009-016

15

(a) The number of frames used in a state (b) The amount of time between two consecutive action

(c) The learning rate of Actor-Critic (d) The number of nodes in hidden layers of Actor-Critic

Fig. 4. Effect of inner parameters.

6. Conclusion and Future works

In this paper, we apply the deep reinforcement
learning method to cope with the problem of coverage
and sensor energy optimization in Vehicular Mobile
Networks. The result shows the great potential for
Deep Reinforcement Learning in terms of stability and
adaptivity.

In the future, we are expanding and improving
the method so that it can be applied to various
scenarios where critical constraints of both sensors and
the environment exist. We also consider the
computational resource of the sensor as well as the
vehicle for the multi-agent reinforcement learning
paradigm in future works.

Acknowledgments

This work was funded by Ministry of Education
and Training of Vietnam under grant number B2020-
BKA-13.

References

[1] P. Zhu, J. Xu, J. Li, D. Wang, X. You, Learning-
empowered privacy preservation in beyond 5G edge
intelligence networks. IEEE Wireless
Communications, vol. 28, no. 2, pp. 12-18, April 2021,
https://doi.org/10.1109/MWC.001.2000331.

[2] J. Fu, J. Hua, J. Wen, K. Zhou, J. Li, B. Sheng,
Optimization of achievable rate in the multi-user
satellite IoT system with SWIPT and MEC. IEEE
Trans. Ind. Inform, vol 17, no. 3, pp. 2072-2080,
March 2021,

 https://doi.org/10.1109/TII.2020.2985157.

JST: Smart Systems and Devices

 Volume 32, Issue 3, September 2022, 009-016

16

[3] L. Yang, H. Zhang, M. Li, J. Guo, and H. Ji, Mobile
edge computing empowered energy efficient task
offloading in 5G, IEEE Transactions on Vehicular
Technology, vol. 67, no. 7, pp. 6398-6409, July 2018,

 https://doi.org/10.1109/TVT.2018.2799620.

[4] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek,
Offloading in mobile edge computing: Task allocation
and computational frequency scaling, IEEE
Transactions on Communications, vol. 65, no. 8, Aug.
2017, pp. 3571-3584,
https://doi.org/10.1109/TCOMM.2017.2699660.

[5] F. Wang, J. Xu, X. Wang, and S. Cui, Joint offloading
and computing optimization in wireless powered
mobile-edge computing systems, IEEE Transactions
on Wireless Communications, vol. 17, no. 3, March
2018, pp. 1784-1797,
https://doi.org/10.1109/TWC.2017.2785305.

[6] M. Chen and Y. Hao, Task offloading for mobile edge
computing in software defined ultra-dense network,
IEEE Journal on Selected Areas in Communications,
vol. 36, no. 3, March 2018, pp. 587-597,
https://doi.org/10.1109/JSAC.2018.2815360.

[7] M. Emara, M. C. Filippou, and D. Sabella, MEC-
assisted end-to-end latency evaluations for C-V2X
communications, in 2018 European Conference on
Networks and Communications (EuCNC), Jun. 2018,
pp. 1-9,
https://doi.org/10.1109/EuCNC.2018.8442825.

[8] P. Dong, X. Wang, J. Rodrigues, Deep reinforcement
learning for vehicular edge computing: An intelligent
offloading system, ACM Transactions on Intelligent
Systems and Technology, vol. 10, no. 6, Nov. 2019,
pp. 1-24,
https://doi.org/10.1145/3317572.

[9] H. Zhang, Z. Wang, K. Liu, V2X offloading and
resource allocation in SDN-assisted mec-based
vehicular networks, China Communications, vol. 17,
no. 05, May 2020, pp. 274-291,
https://doi.org/10.23919/JCC.2020.05.020.

[10] Y. Cui, Y. Liang, R. Wang, Resource allocation
algorithm with multi-platform intelligent offloading in
D2D-enabled vehicular networks, IEEE Access, vol. 7,
2019, pp. 21246-21253,
https://doi.org/10.1109/ACCESS.2018.2882000.

[11] X. Xu, Y. Xue, X. Li, L. Qi, S. Wan, A computation
offloading method for edge computing with vehicle-
to-everything, IEEE Access, vol. 7, 2019, pp. 131068-
131077,

 https://doi.org/10.1109/ACCESS.2019.2940295.

[12] Z. Xiao, X. Dai, H. Jiang, D. Wang, H. Chen, L. Yang,
F. Zeng, Vehicular task offloading via heat-aware
MEC cooperation using game-theoretic method, IEEE
Internet of Things Journal, vol. 7, no. 3, March 2020,
pp. 2038-2052,

 https://doi.org/10.1109/JIOT.2019.2960631.

JST: Smart Systems and Devices

 Volume 32, Issue 3, September 2022, 009-016

17

