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Abstract 

This study aims to propose a discrete-time backstepping sliding mode control technique (BSMC) for regulating 
a pneumatic artificial muscle (PAM)-based exoskeleton used in rehabilitating human lower extremities. The 
PAM system is challenging to control due to its high nonlinearity, parameter uncertainty, and significant delay 
resulting from using compressed air. A backstepping control method is a recursive approach that 
systematically designs control laws for nonlinear and complicated systems. This technique ensures stable and 
robust system control, even in uncertain circumstances. Furthermore, the backstepping controller can handle 
high-order systems and guarantee high-precision tracking of a desired trajectory. The incorporation of sliding 
mode control is aimed at enhancing the performance of the robot PAM system by reducing chattering and 
reaching time. The algorithm employs Lyapunov functions and sliding surfaces to design the control signal for 
operating the system. The study concludes with experimental scenarios demonstrating the effectiveness of 
the proposed approach. 
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1. Introduction1 

Rehabilitation robots are often expensive due to 
their high manufacturing cost, mainly because electric 
motors power them [1, 2]. However, a growing interest 
is in developing low-cost robots that can operate 
efficiently. In recent years, pneumatic artificial 
muscles (PAMs) have emerged as one of the most 
promising actuators for simulating human movements. 
PAMs are lightweight, low-cost, and easy to 
manufacture. The power-to-weight ratio is also a 
significant concern. Therefore, researchers are 
increasingly studying PAMs and their applications in 
rehabilitation robots, medical devices for motor 
function recovery, and control programs to enhance 
human safety while working with robots. The 
cylindrical braided muscle [3], known as McKibben’s 
in the 1950s, is currently the most popular type of 
artificial pneumatic muscle. Besides the mentioned 
advantage [4] PAMs have several limitations, 
including high nonlinearity, uncertain parameters, and 
high impact delay. Therefore, modeling and control 
pneumatic artificial muscles have recently become an 
interesting topic for researchers. 

Regarding the design of control algorithms for 
rehabilitation robots using pneumatic artificial 
muscles, we have two main control algorithms: Linear 
and nonlinear control. For linear control, since most of 
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the objects in practice are nonlinear, we often linearize 
these objects to simplify the control. However, the 
system will only work well within certain limits. The 
PAMs system mentioned in this paper is nonlinear, 
with considerable latency and uncertain parameters. 
Such systems always attract great attention from 
researchers. The problem with these systems of PAMs 
is determining a nonlinear mathematical model that 
leads to errors in estimating the system's parameters. 
As a result, PAM-based systems have a lot of unknown 
disturbances. Multiple control methods have been 
offered to solve the problems of pneumatic muscle 
actuator control. The Proportional-Integral-Derivative 
(PID) controller and its enhanced versions are the most 
researched. For example, a nonlinear PID-based 
controller [5, 6] enhances the correction of nonlinear 
hysteresis phenomena and increases robustness. The 
Fuzzy PID controllers [7, 8] are offered to increase the 
trajectory tracking performance. The neural network 
PID controllers [9, 10] are trained to provide the 
optimum value for various set frequencies and load 
conditions. Most of the mentioned controllers have 
decent performance and specific advantages and 
disadvantages. However, the PID controller is also 
unsuitable for objects with high nonlinearity and delay 
characteristics, so it does not guarantee the 
optimization and stability of the system. 
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This paper proposes the BSMC algorithm as one 
of the most widely used approaches for highly 
nonlinear systems. BSMC is a distinct nonlinear 
control technique integrating the backstepping control 
design approach and sliding mode control controller. 
The Backstepping control law, developed in the 1990s 
by Petar V. Kokotovic and other researchers [11], is 
designed to develop stabilizing controls for a particular 
category of nonlinear dynamical systems. It is a 
nonlinear control approach with the primary advantage 
of handling complex nonlinear systems and 
disturbances, making it applicable to various 
applications. 

Moreover, backstepping can be utilized to design 
robust controllers insensitive to modeling errors and 
uncertainties while providing better tracking and 
disturbance rejection performance compared to other 
control techniques. These nonlinear dynamical 
systems are composed of subsystems that extend from 
a primary subsystem, which can be stabilized using 
another method. The recursive structure of the system 
enables the designer to commence the design process 
at the stable subsystem and sequentially stabilize each 
outer subsystem by developing new controllers using 
a "backing out" approach. In this study, we aim to 
stabilize the control variables, such as acceleration, 
velocity, and the joint angle corresponding to the 
robot. The algorithm will rely on the selection of 
Lyapunov functions and sliding surfaces to design the 
control signal that will stabilize the system according 
to Lyapunov [12, 13]. By incorporating backstepping 
and sliding mode control, the proposed algorithm 
provides more effectiveness than the conventional 
sliding control algorithm [14-16]. To summarize, this 
paper makes the following contributions: 

- Development of a discrete-time backstepping 
sliding mode control for a pneumatic artificial 
muscle-based exoskeleton; 

- The proposed controller's effectiveness is 
demonstrated through various experimental 
scenarios to verify its suitability for robotic 
rehabilitation systems utilizing a pneumatic 
artificial muscle actuator. 

The paper's structure is as follows: Section 2 
outlines the experimental platform, equipment, and a 
mathematical model of a PAM-based exoskeleton. 
Section 3 describes the design of the proposed 
controller. Section 4 demonstrates the experimental 
results. Lastly, section 5 summarizes the research and 
discusses possible future work. 

2. Robotic System Modeling 

Fig. 1 illustrates a robot system that utilizes a 
pneumatic artificial muscle actuator. This system is 
designed for lower extremity rehabilitation and 
features a hip and knee joint affixed to a flat surface to 
facilitate movement. A pair of pneumatic artificial 

muscles, installed in an antagonistic configuration 
with one another through a pulley, drive each joint. 
Specifically, a 1-inch-diameter McKibben artificial 
muscle was utilized, which, like human muscles, has a 
maximum contraction of 30% of muscle length. The 
proportional control valve ITV2030-212S-X26 from  
sliding mode control (SMC) is employed for PAMs' 
pressure adjustment.  The rotation angles are measured 
using a WDD35D4 rotary potentiometer coaxially 
mounted to two couplings. 

In addition, loadcell sensors are installed on the 
single-ended muscle tubes to measure the pulling force 
of each muscle. The control algorithm is implemented 
using the NI Myrio platform, developed by National 
Instrument. The NI Myrio control computer acquires 
voltage signals from various sources, including 
loadcells and potentiometers. The control program is 
then developed and compiled using Labview software 
and downloaded to NI Myrio to create a closed-loop 
control system. 

 
Fig. 1. The experimental model of a robot system using 
a pneumatic artificial muscle actuator. 

 

 
                       (a)                                        (b) 

Fig. 2. (a) The schematic diagram of PAM. (b) The 
three-element model of PAM. 
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To model the PAM robot system, we refer to 
Reynolds’s three-element model [17] of a single PAM 
as shown in Fig. 2. Accordingly, the model can be 
represented by the equation: 

 ( ) ( ) ( )M B P K P y F P Mgy y+ + = −   (1) 
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where y  is the amount of the PAM contraction. ( )K P  
( )B P , ( )F P  are the model's spring, damping, and 

contractile elements. P is the input pressure of the 
PAM. The parameter value B  will depend on when 
the PAM contracts iB or deflates jB . 

The robotic system is designed to operate as 
follows: Each joint of the robotic orthosis is actuated 
by two PAMs in an antagonistic setup. In this setup, 
each joint’s anterior and posterior muscles have been 
initially provided with similar pressure 0P . Therefore 
they have the same length. We create rotation by 
increasing the pressure on one side of the muscle while 
the pressure on the other decreases P∆ . Therefore, 

P∆  is the control variable. A detailed description of 
the structure of the robot system is shown in Fig. 3. 

Let the input pressure of the anterior muscles  
( aP ) and posterior muscles ( pP ) are: 

0
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a AP
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= + ∆ +
 = − ∆

  (2) 

The initial different pressure APP  is added so the 
robot is upright at the initial position. 

The contraction of the anterior muscle ( ay ) and 
posterior muscle ( py ) can be determined using the 
following equations: 
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p
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θ
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  (3) 

where R  is the radius of the joint, 0y  is the muscle's 
initial contraction, and θ  is the joint's rotation angle.  

Based on the report [18], the torque generated can 
be expressed as follows: 

( )

( )
T =

       

a a

p p

a a a

p p p

F K y B y

F K y B y R

 − −
− − − 





 (4) 

where ,  a aF K , and aB  depend on the input pressure 
of anterior muscle and ,  p pF K , and pB  depend on the 
input pressure of posterior muscle according to to (1). 
 

 

Fig. 3. The structure of hip and knee muscles with an antagonistic configuration
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Thus,  
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 (5) 
Substituting ay , py  from to (3) into (5). The 

torque T created by anterior and posterior PAMs to the 
joint can be obtained as follows: 
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where  

( )
( )

( )

1 1
2

2 0 1 0 1

2
3 0 0 0 0 0 1

2
4 1 1 1

2 2

2

AP

AP

a p a p a AP

a p

c F P R
c K K P K P R

c B B B B P B P R

c F R B B R θ

=


= + +
  = + + + +  
 = − −



 

From the torque of the PAM-based actuator in 
equation (6), we consider the dynamic behavior of the 
PAM-based 2-DOF robot as the following equation:  

+ + =Hθ Vθ J T   (7) 
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T  represents the torque matrix 

generated by the effects of the PAMs on the robot's 
joints. Additionally H , V , J  denote the inertia, 
viscous moment and radial force matrices, and the 
gravity torque matrix. 

From (6) and (7), we have: 
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P , h , and k  denote the 

hip and knee joints, respectively. By including the term 
( )tψ , which denotes the unknown disturbance that 

exists in the system, the state-space model of the 
dynamic system (9) can be represented as follows: 
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Assume  ( )ky , ( )k1y , ( )k2y  are the muscle's 
matrix, velocity, and acceleration, respectively. The 
discrete-time model for the dynamic system of PAM 
can be obtained from the following: 
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By setting 1 2( ) ( ( ), ( ), ( )) ( ) ( )k k t k k k= + ∆ζ f y y ψ λψ u , 
the model (11) becomes: 
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3. Controller Design  

This section introduces the proposed BSMC 
technique, which has two primary goals: Maintaining 
system stability and regulating the mechanical rotation 
angle  ( ) y k  to track a reference signal ( )* y k , that 
mimics the actual motion of the human foot. Fig. 4 
depicts the control block diagram of the BSMC 
approach. The backstepping control method 
decomposes the second-order system model into 
smaller subsystems. At each stage, the virtual control 
law ( )1y k  and ( )2y k  for the corresponding 
subsystems are developed using the discrete-time 
Lyapunov stability theorem. With strictly Lyapunov 
stability functions, the recursive algorithm assures the 
proposed BSMC strategy's internal dynamic stability. 
In step 3, the sliding-mode control approach 
guarantees that the system state trajectory reaches the 
sliding surface and that the system disturbance current 
tracking error reduces to zero. 

STEP 1: Aims to establish a tracking error vector 
that measures the difference between the controlled 
rotation angle ( )y k  and the reference signal ( )*y k : 

*( ) ( ) ( )e k y k y k= −   (13) 
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Fig. 4. Block diagram of the controller. 

 

Select the initial Lyapunov function candidate as: 
2

1( ) ( )V k e k=                                (14) 
Hence, the variation of ( )1V k  can be obtained as: 
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The initial virtual control law vector is denoted as 
1( )y k can be expressed as the first vector in the 

sequence of virtual control laws, starting with *
1 ( )y k   

in step 1, which is defined as follows: 
*

*
1
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Substituting (16) into (15) yields: 
2* 2

1 1 1( ) ( ) ( ) ( )s sV k T y k T y k e k ∆ = − −    
           2 2 2

1( ) ( )sT e k e k= −        (17) 
STEP 2: To guarantee the convergence of the 

vector 1( )e k to zero, we can choose the second 
Lyapunov function as: 

2
2 1 1( ) ( ) ( )V k e k V k= +   (18) 

Using (13), it is possible to derive the error vector 
for 2  e as: 

       *
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       *
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The derivative of 2 ( )V k can be calculated as: 
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We can define the first virtual control law vector  
( )*

2y k  in step 1 as follows, with ( )2y k  representing 
the initial virtual control law vector: 

*
* 1 1
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Substituting (21) into (20), we have: 
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By examining (22), it becomes evident that 
( )2V k∆  will become negative definite if ( )2e k  

equals 0. Therefore, the next stage is determining the 
vector of ( )2e k  that leads to convergence towards 
zero. 

STEP 3: At this stage, a sliding-mode control 
approach is applied after completing the two steps in 
the backstepping design process. The sliding-surface 
vector is formulated as: 

2 1( ) ( ) ( ) ( )s k e k e k e kα β= + +  (23) 

where α  and β  are positive constants, a third 
candidate for the Lyapunov function is defined as: 

2
3 2( ) ( 1) ( )V k s k V k= − +       (24) 

The derivative of ( )3V k  can be obtained as: 

2 2
3 2( ) ( ) ( 1) ( )V k s k s k V k∆ = − − + ∆                           

                [ ]2 1( ) ( ) ( ) ( )s k e k e k e kα β= + +  
[ ]22

2( 1) ( )ss k T e k− − +      
2 2 2

1(1 ) ( ) ( )sT e k e k− − −         (25)  
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The calculated deviation 2 ( )e k  is: 

 *
2 2 2( ) ( ) ( )e k y k y k= −  

     *
2 ( ) ( ) ( )y k k u kζ λ= − − −          (26) 

In the proposed BSMC method, it is assumed that 
the control law vector has the following structure: 

        ( )1 *
2( ) ( ) ( ) ( )u k y k k sign s kλ ζ ρ− = − − −  

            ( ) 2 12 ( ) ( ) ( )e k e k e kγ α β− + − −   (27) 

where γ  is a positive number added to satisfy the 
condition 3 ( ) 0V k∆ ≤   in equation (29). 

Subsequently, the derivative of 3 ( )V k can be 
represented as: 
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We can arrive at the following equation by 
replacing (28) with (27): 
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Equation (29) enables the selection of a set of 
numbers ,α β  and γ  that ensure the stability of the 
Lyapunov function. Therefore, the proposed 
backstepping sliding mode control guarantees the 
system's stability. 

4. Experimental Results  

We will compare the control performance 
achieved by implementing the BSMC and SMC 

algorithms on the rehabilitation robot to evaluate the 
efficacy of the control methodology presented. The hip 
and knee angle reference trajectories will be adjusted 
for each subject by modifying the gait data profile in 
[19], with the hip and knee flexion/extension angles 
ranging from -13.5º to 16.5º and -40º to 0º, 
respectively. The control algorithm will be developed 
using the Lab-VIEW/MyRIO toolkit and then 
integrated into the MyRIO 1900 controller with a 5 ms  
sampling time. We will test multiple scenarios to 
evaluate and improve the practicality of the control 
method. Specifically, the experiment will be 
conducted at frequencies of 0.2 Hz or 0.5 Hz under two 
scenarios: with and without a load. The parameters for 
both the BSMC and SMC controllers will be fine-
tuned and summarized in Table 1. 

Table 1. Parameters of the BSMC and SMC controllers 

Parameters ρ  α  β γ 

BSMC 0.025 0.1 1 0.5 

SMC 0.025 0.1   

Both control strategies demonstrate effective 
tracking performance in the first scenario without a 
load. The joint angle signals of the robot tracked the 
sample trajectory and achieved a steady state in less 

than 1
4

 cycle gait. However, the BSMC controller 

outperforms the SMC controller with higher 
performance and fewer errors, as demonstrated in 
Fig. 5 and Fig. 6. Specifically, the SMC controller 
exhibits an oscillation amplitude of about 3.8º for the 
hip joint, while the BSMC controller's amplitude is 
only about 1.4º and the deviation value fluctuates 
around 0º. At 0.5 Hz, both control methods exhibit 
reduced performance, but the BSMC controller is still 
better at tracking the trajectory. The effectiveness of 
the proposed controller is further demonstrated by the 
root mean square error (RMSE) values, which are 
3.46° and 2.11° for the hip and knee joints, 
respectively, with the BSMC controller. In 
comparison, the SMC controller produces RMSE 
values of 3.89° and 2.68° for the same joints.  

 

 
(a) Hip joint 

 
(b) Knee joint 

Fig. 5. Experimental results when tracking joint trajectory at 0.2 Hz without a load. 
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(a) Hip joint 

 
(b) Knee joint 

Fig. 6. Experimental results when tracking joint trajectory at 0.5 Hz without a load. 

 
(a) Hip joint 

 
(b) Knee joint 

Fig. 7. Experimental results when tracking joint trajectory at 0.2 Hz with a load. 

 
(a) Hip joint 

 
(b) Knee joint 

Fig. 8. Experimental results when tracking joint trajectory at 0.5 Hz with a load. 

 
In the second scenario, where the rehabilitation 

robot is subjected to external loads, the performance of 
both controllers is decreased but still achieves 
satisfactory accuracy. This scenario is significant 
because rehabilitation robots typically encounter 
external forces and loads in practical applications. The 
load is placed at the position of the lower limb 
exoskeleton robot, and the maximum impact force is 
experienced when the leg is extended forward. We use 
anthropometric data (described in Table 4 in the book 
[20]) to determine the Rated Load to be applied 
quantitatively. Since the study only focused on lower 
extremity rehabilitation, the experiment will be 
implemented with a variable load weighing 60 kg to 80 
kg. The ratio of total leg weight to total body weight is 
0.161. Each robot only controls one human leg, from 
which we calculate the rated Load ranging from 48.3 
N to 64.44 N. The author changed the Load as the Load 
variable with the value from 0 N to 75.44 N. 

Specifically, the explanation was also highlighted on 
page 7 of the revised manuscript. As illustrated in Fig. 
7, when observing the hip and knee angles with a 
frequency of 0.2 Hz, the BSMC controller 
demonstrates faster stabilization times. As the applied 
force gradually increases to the maximum value, the 
tracking error of BSMC stabilizes quickly, while SMC 
spikes up quite high. When monitored at 0.2 Hz, 
SMC's highest deviation of dynamic performance is 
around 9.0º, whereas BSMC's figure is approximately 
5.0º. At a frequency of 0.5 Hz, the BSMC controller 
demonstrates a lower root mean square error (RMSE) 
of 4.30° and 2.65° for the hip and knee joints, 
respectively. In contrast, the SMC controller produces 
RMSE values of 4.79° and 3.26° for the same joints. 
Finally, the RMSE values of BSMC in Table 2 and 
Table 2 demonstrate that it outperforms the SMC 
controller. 



  
JST: Smart Systems and Devices 

Volume 33, Issue 2, May 2023, 026-034 

33 

Table 2. RMSE (°) of two controllers with hip joint 
trajectory input. 

Frequency Without load Load  
BSMC SMC BSMC SMC 

0.2 Hz 2.29 2.61 2.77 3.59 
0.5 Hz 3.46 3.89 4.30 4.79 

 
Table 3. RMSE (°) of two controllers with knee joint 
trajectory input. 

Frequency Without load Load  

BSMC SMC BSMC SMC 
0.2 Hz 1.29 1.59 1.76  2.59 
0.5 Hz 2.11 2.68 2.65 3.26 

 
Table 4. ISE (°) of two controllers with hip joint 
trajectory input. 

Frequency Without load Load  

BSMC SMC BSMC SMC 

0.2 Hz 78.39 112.58 103.36 140.58 

0.5 Hz 104.06 135.62 125.71 154.87 
 

Table 5. ISE (°) of two controllers with knee joint 
trajectory input. 

Frequency Without load Load  
BSMC SMC BSMC SMC 

0.2 Hz 25.20 38.10 30.48  57.50 
0.5 Hz 49.27 109.07 57.20 118.52 

 
Table 6. IAE (°) of two controllers with hip joint 
trajectory input. 

Frequency Without load Load  

BSMC SMC BSMC SMC 
0.2 Hz 18.78 20.35 22.45 29.43 
0.5 Hz 30.43 34.27 32.63 38.10 

 
Table 7. IAE (°) of two controllers with knee joint 
trajectory input. 

Frequency Without load Load  
BSMC SMC BSMC SMC 

0.2 Hz 15.76 20.44  16.67 23.02 
0.5 Hz 22.67 27.79 24.24 31.53 

We calculated additional Integral Absolute Error 
(IAE), Integral Squared Error (ISE) to contrast the 
performance between SMC relatively and suggested 

BSMC. The results in Table 4, Table 5, Table 6, and 
Table 7 still show that the proposed BSMC controller 
performs better. ISE integrates the square of the error 
over time. Therefore, this index will increase sharply 
when a large overshoot. This is most clearly 
demonstrated when observing the knee angles with a 
frequency of 0.5 Hz. While the ISE Index of the BSMC 
controller is 57.20°, that of the SMC controller is up to 
118.52°. IAE integrates the absolute error over time. 
Therefore in the same case, the IAE index will be 
smaller than ISE's. Specifically, the knee angles with a 
frequency of 0.5 Hz is also observed. The ISE Index of 
BSMC and SMC controller is 24.24° and 31.53°, 
respectively. 

5. Conclusion 

This paper proposes and applies the BSMC law to 
the PAM-based robot to aid in the recovery of leg 
muscle function for patients. The proposed controller 
can manage the PAM robot's direction, velocity, and 
acceleration based on desired references. The 
backstepping law aims to mitigate chattering and 
enhance the SMC method's tracking capabilities 
during transient and steady-state operations. The 
tracking precision of the BSMC controller is 
evaluated, and the efficacy of the reaching law is 
confirmed via various experimental scenarios. The 
outcomes of the experiments indicate that the proposed 
controller successfully addresses chattering issues and 
delivers adequate tracking performance. The proposed 
BSMC controller performs similarly with and without 
load compared to SMC. For instance, when tracking a 
knee joint with 0.2 Hz and 40º amplitude without load, 
the BSMC controller's RMSEs reach 1.29º (3.23% of 
amplitude), while the SMC controller achieves an 
accuracy of 5.7%. In summary, the BSMC controller 
reduces tracking errors and enhances performance 
when tracking human gait patterns. The results suggest 
the potential of this controller in rehabilitation robots. 
However, the tracking error remains significant. 
Additional control laws may be necessary to restore 
patient function, such as using neural networks to 
recognize human impedance and tracking errors. 
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