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Abstract 

The paper investigates the lane following and changing maneuvers of autonomous vehicles in the presence 
of unknown disturbances, taking into account the dynamic system states and input constraints. The integrated 
longitudinal-lateral and yaw rate dynamics of the vehicle are simultaneously considered to improve the tracking 
accuracy and system stability when navigating under critical conditions. Then, an adaptive asymmetric time-
varying integral barrier Lyapunov control and dynamic surface control scheme are developed to design the 
active front steering controller, longitudinal controller, and direct yaw moment control controller, which is 
capable of constraining the system states and control signals within the predefined boundary. In addition, the 
radius basis function neural network (RBFNN) is employed to estimate the lumped disturbances caused by 
the parametric uncertainties, external disturbances, and unmodeled dynamics, and the command filter system 
is used to avoid the explosion of terms phenomenon. Due to the fast and accurate torque response 
characteristics of the in-wheel motors, the optimization-based method is then implemented to effectively 
allocate the driving/braking torque to each in-wheel motor so as to improve vehicle performance. The stability 
of the closed-loop system is comprehensively demonstrated by means of the Lyapunov theory. Finally, the 
quantitative and qualitative comparisons in different diving scenarios using the Carim-Simulink joint 
environment are carried out to illustrate the effectiveness and validation of the proposed method. 

Keywords: Autonomous vehicle, asymmetric time-varying integral barrier, command filer system, radius basis 
function neural network, torque allocation, trajectory tracking. 

 

1. Introduction1 

In recent years, the research on the development 
and application of the Advanced Driver Assistance 
System (ADAS) has been gaining increasing attraction 
in many countries, technology companies, and 
education institutes. ADAS is considered a 
breakthrough in the car automation industry because of 
its significant advantages, including lower energy 
consumption, the diminution of air pollution, and the 
improvement of passengers’ comfort. Especially this 
system plays a crucial role in decreasing car accidents 
caused mostly by human errors, thus enhancing overall 
road safety [1]. ADAS, in general, composes a breadth 
of technologies such as lane departure warning, 
adaptive cruise control, automatic emergency braking, 
lane change assistance, traction control system, etc, 
which all incorporate to level up the driving experience 
[2]. Path tracking and stability handling are critical 
study aspects in ADAS involving improving vehicle 
safety and stability, which are primarily based on the 
longitudinal, lateral, and yaw dynamics of the vehicle. 

In a majority of studies, the path tracking 
problem was generally approached as a problem of 
solely steering, neglecting other complexities of 
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vehicle motion [3, 4]. Although the aforementioned 
works achieve important results, there exists a strong 
interdependence between the lateral and longitudinal 
motions of a vehicle, and the neglect of either one will 
adversely impact the vehicle’s performance [5, 6]. 
Therefore, it is necessary to take into account both the 
longitudinal and lateral control simultaneously to 
enhance the control performance in a wide range of 
driving conditions. In [7], the integrated longitudinal 
and lateral dynamic model of the autonomous vehicle 
was presented for the high-speed lane-changing 
maneuver, and then the steering angle and 
traction/braking torque are calculated using the sliding 
mode control (SMC) method. In [8], the interval type-
2 fuzzy sets control approach was developed for the 
integrated dynamic model, enabling the vehicle to 
robustly track the desired longitudinal speed and 
reference path simultaneously. Moreover, when 
navigating through adverse road conditions such as wet 
roads, or during critical maneuvers such as highspeed 
lane changes or high-curved roads, the tires will be 
slipped and express highly nonlinear characteristics, 
and the dynamic coupling effects be-tween the 
longitudinal and lateral motions will be intensified. In 
these cases, direct yaw moment control (DYC) is 
proven to be one of the most effective strategies to 
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maintain vehicle stability and passenger comfort [9]. It 
is developed to exert the longitudinal force of each tire 
such that change the distribution of the driving/braking 
torque. In [10], the super-twisting sliding mode 
controller was developed for path-following 
maneuvers of the vehicle using the DYC and active 
front steering (AFS) integration systems, which 
enhances the accuracy and stability of the vehicle and 
eliminates the chattering phenomenon of the traditional 
SMC method. In [9], the integration model of DYC and 
AFS are controlled by the Takagi-Sugeno fuzzy control 
method considering the norm-bounded uncertainties of 
tire forces and time-varying longitudinal velocity to 
improve vehicle stability and achieve the H-infinity 
performance. 

On the other hand, in practice, autonomous 
vehicles typically operate under a variety of 
constraints, stemming from the limitations of actuators 
such as steering, braking, and throttling systems, as 
well as the dynamic states of the vehicle, such as 
speed, acceleration, and yaw rate, in order to meet 
safety standards and ensure passenger comfort. 
However, in most previous works, these limitations are 
not taken into account. To deal with the constraints 
problem, the MPC method is typically considered a 
promising strategy. In [11], the authors presented an           
improved MPC strategy, which adaptively adjusted the 
weight of the cost function via the fuzzy system, and 
the magnitude of the steering angle and its rate are also 
constrained such that the tracking accuracy and driving 
comfort is enhanced. In [12], the MPC method was 
developed for lateral-longitudinal dynamic control 
problem, which takes into account the constraints of 
side slip angle and the control signals, hence improving 
the vehicle stability and control smoothness. However, 
with the increase in dynamic model complexity, 
system constraints, and prediction horizon, the MPC 
approach will significantly heighten the computational 
burden leading to an intractable problem or local 
optima solutions, despite the advantages in handling 
system constraints. 

Inspired by the aforementioned works, this paper 
aims to address the issues of lane following and 
changing problems in autonomous vehicles by 
simultaneously considering the longitudinal-lateral 
control and DYC in presence of lumped disturbances. 
Furthermore, it is important to note that the                         
constraints on the vehicle’s states and actuators are also 
taken into account. The main contributions of this 
paper are summarized as follows. 

(1) The system constraints problem of the autonomous 
vehicle is transformed into the state constraints 
control problem by extending the original system 
dynamic model. Then an asymmetric integral 
barrier Lyapunov function method is developed to 
ensure that the system states are all confined within 
predefined regions, thus the states and input signals 

of the original system always satisfy their 
respective constraints. In addition, the radial basis 
function neural network which is capable of 
approximating arbitrary nonlinear functions is 
employed to compensate for the lumped 
disturbances caused by the parametric 
uncertainties, external disturbances, and 
unmodeled dynamics, such that improving the 
accuracy and robustness of the system. In addition, 
the command filer system is utilized to estimate the 
derivative of virtual control signals, hence avoiding 
the "explosion of term" phenomenon. 

(2) The comprehensive stability analysis of the closed-
loop system is implemented to illustrate that all 
error signals are uniform ultimate boundedness 
(UUB) and that the constraints on the vehicle’s 
states and actuators are always satisfied. The 
effectiveness of the proposed approach is 
illustrated by using the Carsim-Simulink joint 
environment in different driving scenarios and 
performance evaluation metrics. 

2. Mathematical Model 

In this study, a 7-DOF vehicle handling model of 
the autonomous car is taken into consideration as 
shown in Fig.  1, consisting of three motions on the yaw 
plane (x, y, and ψ) and four motions of vehicle wheels. 
The X-Y indicates the inertial coordinates, and the           
x-y is the vehicle body coordinates attached to the 
center of mass (COG). The mathematical dynamic 
model of the vehicle can be expressed as follows: 

 
Fig. 1. 7-DOF vehicle handling model of the 
autonomous car 

max = (Fxfl+ Fxfr)cosδ – (Fyfl+Fyfr)sinδ 
+ ( Fxrl+ Fxrr)−Fres 

(1) 

may = (Fxfl+Fxfr)sinδ+(Fyfl+ Fyfr)cosδ 
+ (Fyrl + Fyrr) 

(2) 

zI ψ  = l f (Fxfl+Fxfr)sinδ + l f (Fyfl+Fyfr)cosδ 
   − lr (Fyrl+Fyrr) + Mz 

(3) 

where m is the vehicle mass, Iz is the inertial moment 
around the yaw axis. l f and lr are distances from 
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the front and rear axles to the COG. ψ  denotes the 
angular acceleration of the vehicle around the yaw 
axis. Fx, Fy represent the longitudinal and lateral tyre 
forces respectively. The subscripts ( f , l), ( f , r), (r, l), 
and (r, r) refer to the front-left, front-right, rear-left, 
rear-right tyres of the vehicle respectively. tw is the 
distance from the left to the right tire. The direct yaw 
moment Mz considered as an additional control input to 
stabilize the vehicle motions are represented as: 

Mz = l f(Fxfl+Fxfr)sinδ + 0.5tw(-Fxf l + Fxfr)cosδ 

        + 0.5tw(-Fxrl + Fxrr) 

 (4) 

The longitudinal acceleration ax and lateral 
acceleration ay of the COG in the vehicle body 
coordinates are defined as: 

x x y

y y x

a

a
ν ν ψ

ν ν ψ

= −

= −

 

 

          (5) 

where AF is the effective frontal area of the vehicle, ρ 
is the air density. Cd and Crr are the aerodynamic 
drag coefficient an rolling friction coefficient 
respectively. The normal force on each wheel can be 
calculated as: 

1 , 1

1 , 1

fl fr

rl rr

y yx x
z rx x fy z rx x fy

y yx x
z fx x ry z fx x ry

a aa a
F k k k F k k k

g g g g

a aa a
F k k k F k k k

g g g g

      
= − − = − −      
      

      
= − − = − −      
      

 

           (6) 

with  

1 1 1; ; ; ;
2 2 2

fr
rx fx x ry fy

w w

ll h h hk mg k mg k mg k k
l l l t t

= = = = =  

where h denotes the center of gravity height. The 
relationship between longitudinal forces and 
traction/braking torques is illustrated by the torque 
balance equation as: 

( ), , ,. ,rw x w d bI F r T T T
τ ττ τω = − + − + ∆

      (7) 

with τ ∈{ f , r} , ϵ ∈{l, r}. Iw is the moment of inertia 
of the wheel, ω indicates the wheel velocity, rw is the 
effective wheel radius. Td and Tb denote the total 
traction torque and the total braking torque executed 
on each wheel. ∆Tτ,ϵ represents the uncertainty of the 
model. To explicitly express the relationship between 
the driving/braking wheel torque and longitudinal 
velocity, (7) can be rewritten as: 

( ), ,

, ,

, ,
1 1

ˆ

x l w
w w

x x

F T I T
r r

F F

τ τ

τ τ

τ τω= − + ∆

= +∆



 

 

 
  (8) 

where { } { }
, , ,

, , , ,l d bT T T f r l r
τ τ τ

τ= − ∈ ∈
  

 .
,

ˆ
xF
τ 

present the nominal longitudinal forces. Then, 
substituting (8) to (1) yields: 

( )

( )

1 cos cos

1 sin

w fl frl
x xf

w w

w rl rr
xr yf res y

w

IT
F

m r r

I
F F F

m r

ω ω
ν δ δ

ω ω
δ ν ψ

 +
 = − + ∆
  

+ 
− + ∆ − − + 

 

 



 



     

 (9) 

where cos cos
ft fr rl rrl l l l lT T T T Tδ δ= − + + .  

The longitudinal and lateral tire forces are 
expressed as follows [13]:  

( )

( )

,

, , ,

, ,

,

, , ,

, ,

, , 2 2

, , 2 2

cos sin

sin cos

z

x x y

x y

z

y x y

x y

F
F

F
F

τ ε

τ τ ε τ ε

τ ε τ ε

τ ε

τ τ ε τ ε

τ ε τ ε

τ ε τ ε

τ ε τ ε

µ
λ α λ α

λ λ

µ
λ α λ α

λ λ

= +
+

= − +
+





           

 (10) 

where 
, ,

,x yτ ε τ ε
λ λ are the slip ratio of each wheel in 

longitudinal and lateral directions, respectively, ατ,ε is 
slip angle of each tire. Assuming that the slip angle is 
small, (10) can be rewritten as: 

,

, ,,

, ,

, ,

2 2

ˆ

z

k y k

x y

k k

F
F F

F F

τ ε

τ ττ ε

τ ε τ ε

τ τ

µ
λ

λ λ
= + ∆

+

= +∆

 

 

   (11) 

where { }
,

, ,  yk x y F
τ

= ∆

accounts for the uncertainty of 

the model. The slip ratios can be approximated as: 

{ }
,

,

,

,

,max ,
w w

x

w w

r

r
τ ε

τ ε

τ ε

τ ε

τ ε

ω ν
λ

ω ν

−
≈   (12) 

, ,yτ ε τ ελ α≈             (13) 

with 

,
2 2

,
2 2

arctan , arctan

arctan , arctan

fl fr

rl rr

w w
w f w f

w w
w f w f

y f y f
fl fr

x x

y f y f
rl rr

x x

t t
V l V l

t t
V l V l

l l

l l

ν ψ β ν ψ β

ν ψ β ν ψ β

ν ψ ν ψ
α δ α δ

ν ν

ν ψ ν ψ
α α

ν ν

   = − − = + +   
   
   = − + = + −   
   

+ +   
= − = −   

   
− −   

= − = −   
   

 

 

 

 

 

(14) 

Substituting (13) to (2), the lateral dynamic can 
be written as: 
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( ) ( )( )1 sin

arctan

fl fr rl rry x x y y x

y f
y y

x

F F F F m
m

l
G G

ν δ ν ψ

ν ψ
δ

ν

= + + + −

+ 
− + 

 

 



    (15) 

where  

2 2 2 2
cosfl fr

fl fl fr fr

z z
y

x y x y

F F
G

µ µ
δ

λ λ λ λ

 
 = +  + + 

 

3. Problem Formulation 

The control objectives are to follow the desired 
trajectory while maintaining vehicle stability during the 
maneuver. To closely follow the pre-defined 
trajectories, the steering angle is controlled to adjust the 
lateral force of the vehicle to minimize lateral deviation, 
while the longitudinal control is responsible for 
generating driving/braking torque to follow the speed 
profile. However, when the vehicle is in critical 
conditions, the lateral acceleration, yaw rate, and 
sideslip angle will be high, leading to the saturation 
phenomenon of tire lateral forces. In these cases, 
changing the steering angle only cannot improve the 
vehicle's yaw stability, so the DYC control is designed 
to apply the longitudinal force of each tire to change the 
distribution of driving/braking torque to improve the 
vehicle's yaw stability. In addition, since autonomous 
vehicles typically operate under a variety of constraints 
from dynamic states or actuator limitations, it is 
necessary to consider these constraints during the 
control design process. Therefore, this paper considers 
simultaneously longitudinal, lateral, and yaw motion of 
the vehicle to construct the tracking controllers which 
are capable of constraining vehicle states and control 
inputs. 

3.1. Steering Control Formulation 

For the purpose of precise tracking of the 
reference path, the steering control system is designed 
to regulate the steering angle in order to minimize the 
lateral deviation. The lateral tracking error is therefore 
defined as follows: 

( )sin cos
t

y x y d
o

e dt yν ψ ν ψ= + −∫         (16) 

Let ( ) ( )1 2, ,
T T

y y y yx x e e=  , the following system 
can be obtained: 

1 2

2

y y

y ky ky y

x x
x F G Dδ

=

= + +





          (17) 

where 

( )1 ˆ ˆsin cos arctan cos

cos sin sin

y f
ky xf yf y

x

x x y

l
F F F G

m
y

ν ψ
δ ψ ψ

ν
ν ψ ψ ν ψ ν ψ ψ

+ 
= + −  

 
+ + − −



   

 

To enhance the lateral control performance, 
the steering controller is designed to ensure that 
the tracking error is always constrained by

( ) ( ) ( ) ( ) ( ){ }1 1 1y y y ny y pye t e t k t e t k t∈Ω = ∈ < < . 

Assuming that the two desired tracking references 
are given as x1yd and xyd, respectively. The tracking 
error is defined as: 

1 1

2 2

y y yd

y y yd

z x x
z x x

= −

= − 
       (18) 

In addition, the AFS controller designed in this 
research directly controls the front steering wheel 
angles. Hence, to achieve a smooth transition, the 
magnitudes of the steering angle and its rate are 
constrained such that  

( ) ( ) ( ) ( ) ( ){ }3 3 3y ny pyt t k t t k tδ δ δ∈Ω = ∈ < < ,  

( ) ( ) ( ) ( ) ( ){ }4 4 4y ny pyt t k t t k tδ δ δ∈Ω = ∈ < <   .  

To this end, the original lateral dynamic is 
expanded to include the second derivative of the steering 
angle, which allows for the transformation of the input 
constraint into a state constraint problem as follows: 

1 2

2

y y

y ky ky y

y

y y

x x
x F G D

U

δ

δ ω

ω

=

= + +

=

=









 (19) 

Then, the control signal Uy will be designed to 
stabilize this extended lateral system and guarantee the 
satisfaction of the constraints on ey, δ, δ . 

Assumption 1. Since 
,xF

τ 
and { }

,
, , ,yF f r

τ
τ ∈


 

{ },l rε ∈ , are bounded due to limitations of the road 
surface adhesion and tire friction circle constraints, 
and the value of steering angle δ is relatively small in 
normal driving, hence it is feasible to assume that Dy 
is bounded by yD  ≤ λy < ∞. 

3.2. Longitudinal and Direct Yaw Control Formulation 

The longitudinal control generates the 
driving/braking torque Tl to pursue the desired speed, 
while the DYC induces the yaw moment Mz to stabilize 
the vehicle. Let [ ] T

s xx ν ψ=   and the tracking 

reference [ ] T
sd xd dx ν ψ=   , from (3) and (9), the 

following equation can be obtained: 
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sdx  = Fks + GksTs + Ds     (20) 
where 

[ ( ) ( )

( ) ( )
( ) [ ]

( ) ( )

, ,

cos

ˆ sin /

ˆ ˆ ˆ ˆ1/ cos

1/ , 1/ ,

cos

fl fr rl rr

fl fr rl rr

T T T

ks kx k ks kx k s x

kx w fl fr w fl fr

w yf w y

k z f y y f y y

T
kx w k z s l z

x x x x x

F F F G G G D D D

F I I

r F mr

F I l F F l F F

G mr G I T T M

D F F F F

γ γ γ

γ

γ

ω ω δ ω ω

δ ν ψ

δ

δ

     = = =     

= − + + +

+ +

 = + − + 

= = =

= ∆ + ∆ + ∆ + ∆
− ∆

   



( ) ( )
( ) ]

sin /

1/ cos

0.5 sin

f

fl fr rl rr

fl fr

y res

x z f y y f y y

w y y

F F m

D I l F F l F F

t F F

δ

δ

δ

−

= ∆ + ∆ − ∆ + ∆

− −∆ + ∆

 

In addition, for safety reasons, it is 
important to ensure that xs is constrained by  

( ) ( ) ( ) ( ){ }2
1 1 1s s s ns s psx x t k t x t k t∈Ω = ∈ < <

1 1 1

T

ns nx nk k k γ =   , 1 1 1

T

ps px pk k k γ =   . The tracking 

error 1 1 1  
T

s xz z z γ =    is considered as: 

z1s = xs - xsd                 (21) 

Besides, due to the limitations of actuators, the 
control torque Tl and yaw moment Mz are practically 
constrained such that  

2s sT ∈Ω = ( ) ( ) ( ) ( ){ }2
2 2s ns s psT t k t T t k t∈ < < , 

2 2 2

T

ns nx nk k k γ =   , 2 2 2

T

ps px pk k k γ =   .  

For this purpose, the original dynamic system 
(20) is extended to the derivative of Ts to transform the 
input constraint into the state constraint problem as 
follows: 

s ks ks s s

s s

x K G T D

T U

= + +

=





         (22) 

and the final control signal Us is designed to ensure 
convergence of tracking error z1s and the constraints of 
states vx, ψ ,  Tl, Mz of extended system (22). 

Assumption 2. In reality, 
,xF

τ 
and { }

,
, , ,yF f r

τ
τ ∈


 

{ },l rε ∈ , are bounded by restrictions of the road 
surface adhesion and tire friction circle constraints. 
Besides, the total resistance force is also bounded, 
and the value of steering angle δ is relatively small in 
normal driving, hence it is feasible to assume that Ds 
is bounded by |Ds| ≤ λs < ∞. 

4. Controller Design 

In this section, the design of the AFS, 
longitudinal control and DYC is achieved through the 
use of a proposed asymmetric integral barrier 
Lyapunov function control scheme, which takes into 
consideration the constraints of the dynamic states and 
control signals of the vehicle. 

4.1. Active Front Steering Control 

In order to drive the tracking error ey towards 
zero, the following Lyapunov function is considered: 

 ( )
( )( )

1
2

1 1
1

0 1 1

yz
py ny

y
d ny py d

k k
V d

y k k y

σ
σ

σ σ

−
=

+ − − −∫   (23) 

Taking the time derivative of V1y yields: 

1 11 1 2 12 1 13 1 1 14 1 1y x x l y y d y y ny y y pyV z y z y z k z k= Ξ +Ξ +Ξ +Ξ 


    
 (24) 

where Ξ1iy, i = {1, 2, 3, 4} are shown later in (49). Define 
the virtual control α1y as: 

( )
1 1 1 11 11 1

1
11 12 13 1 14 1 1

y y y yd y y

y y d y ny y y py

K z K z

y k z k

α
−

= − −

− +  



Ξ

Ξ Ξ Ξ +Ξ
 (25)  

where K1y, K11yd are positive designed parameters.  
To avoid repeating the calculation of the derivative 
which causes the problem of “explosion of 
complexity”, the following command filtered system is 
designed: 

( )( )
1 1 1

1 1 1 1 1 1 12

y y y

y y y y y y y

α ϖ α

α τ ϖ α ϖ α α

=

= − − −Γ





       (26) 

where α1y and α1y are the outputs of the command 
filter satisfying α1y(0) = 0 and α1y (0) = 0. ϖ1y >0 and 
τ1y ∈ (0, 1] are the designed parameters. Let               
z2y = y2l − 1yα  and 1 1 1 y y yα α−= . Next, consider the 
following Lyapunov function: 

( )
( )( )

2
2

2 2
2 1

0 1 2 1 1

1
2

y

y

z
py ny T

y y y y
y ny py y

k k
V V d W W

k k γ

σ
σ

α σ α σ

 − = +
 + + − −
 
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(27) 

Its derivative is: 

( )2 1 21 2 22 2 1

23 2 2 24 2 2
1 ˆ

y y y y ky ky y y y y

T
y y ny y y py y y

y

V V z F G D z

z k z k W W

δ α

γ

= + + + +

+ + +

  



 


Ξ Ξ

Ξ Ξ
  (28) 

where Ξ2iy, i = {1, 2, 3, 4} are shown in (49). Then, 

define the virtual control α2y and the adaptive law ˆ
yW  

as: 
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( )
( )

1
2 21 11 1 2 2 21 21 2

2 1
22 21 2 21 22 1 23 2 24 2

1 ˆ T
y ky y y y y y y y yd y y

ky

yd y yk y y y y y ny y py

F W z K z K z
G

K G z k k

α

α

−

−

= − + Θ + + +

+ + + + 


Ξ Ξ Ξ

Ξ Ξ Ξ Ξ Ξ

            (29) 

21 2
ˆ

y y y y yW zγ= Θ Ξ   (30) 

where K2y, K21yd, K22yd > 0. Passing α2y through the 
command filtered system yields: 

( )( )
2 2 2

2 2 2 2 2 2 22

y y y

y y y y y y y

α ϖ α

α τ ϖ α ϖ α α

=

= − − −Γ





  (31) 

where α2y and α2y are the outputs of the command 
filter satisfying α2y(0) = 0, α2y(0) = 0, ϖ2y  > 0 and 
τ2y  ∈  (0, 1].  Let z3y  = δ − 2 yα  and 2 2 2 y y yα α−= . 
Consider the following Lyapunov function: 

( )
( )( )

3
2

3 3
3 2

0 2 3 13 2

yz
py ny

y y
y ny py y

k k
V V d

k k

σ
σ

α σ α σ

 − = +
 + + − −
 
∫  

 (32) 
Its derivative is: 

3 2 31 3 32 3 2

33 3 3 34 3 3

y y y y y y y y

y y ny y y py

V V z z

z k z k

ϖ α= + +

+

  

 

Ξ Ξ

+Ξ Ξ
     (33)  

where Ξ3iy, i = {1, 2, 3, 4} are shown later in (49). Then, 
the virtual control signal ϖy is designed as: 

( )
1

3 3 3 31 31 3 31 21 2

1
31 32 2 33 3 34 3

y y y yd y y y y y

y y y y ny y py

K z K z z

k k

α

α

−

−

= − − −

− +  


Ξ Ξ Ξ

Ξ Ξ Ξ +Ξ
  (34) 

where K3y, K31yd > 0.  Passing α3y through command 
filtered system designed as: 

( )( )
3 3 3

3 3 3 3 3 3 32

y y y

y y y y y y y

α ϖ α

α τ ϖ α ϖ α α

=

= − − −Γ





   (35) 

where α3y and α3y are the outputs of the command 
filter satisfying α3y(0) = 0, α3y(0) = 0, ϖ3y  > 0 and 
τ3y ∈  (0,1]. Let z4y   = ϖ − 3 yα   and 3 3 3 y y yα α−= .  
Consider the following Lyapunov function: 

( )
( )( )

4
2

4 4
4 3

0 3 4 14 3

yz
py ny

y y
y ny py y

k k
V V d

k k

σ
σ

α σ α σ

 − =
 + + − −
 
∫   

 (36) 
Its derivative is: 

4 3 41 4 42 4 3

43 4 4 44 4 4

y y y y y y y y

y y ny y y py

V V z z

z k z k

ϖ α= + +

+

  

 

Ξ Ξ

+Ξ Ξ  
  (37) 

where Ξ4iy, i = {1, 2, 3, 4} are shown later in (49). 
From that, the final control signal Uy is designed as: 

( )
1

4 4 41 31 3

1
41 42 2 43 4 44 4

y y z y y y

y y y y ny y py

U K z z

k kα

−

−

= − −

− +  


Ξ Ξ

Ξ Ξ Ξ +Ξ
  (38) 

where K4y > 0. 

4.2.  Longitudinal Control and DYC 

Consider the following Lyapunov function: 

( )
( )( )

( )
( )( )

1

1

2

1 1
1

0 1 1

2

2 1

0 1 1

xz
px nx

s
xd nx px xd

z
p n T

s s s
d n p d

k k
V d

k k

k k
d W W

k k

γ
γ γ

γ γ

σ
σ

ν σ ν σ

σ
σ

ψ σ ψ σ

 − =
 + + − −
 
 − + +
 + − − −
 

∫

∫  

 

Υ

                 

 (39) 

Its derivative is: 

( )1 1 11 1 12

1
1 13 1 1 14 1

ˆ

T T
s s s ks ks s s s s sd

T T T
s s ns s s ps s s s

V z F G M D z x

z k z k W W−

= + + +

+ + +







 


Ξ Ξ

Ξ Ξ Υ
  (40) 

Define the virtual control 1 1 1

T

s x γα α α =    and 

the adaptive law sW  as: 

( ( )
)

1 1
1 11 12 13 1 14 1

1 1 11 11 1 12 11 1

ˆ
s ks ks s s s s sd s ns s ps

T T T
s s sd s s sd ks ks s s

G F W x k k

K z K z K G G z

α − −= − + Θ + + +

+ + +

 

Ξ Ξ Ξ Ξ

Ξ Ξ
 

 (41) 

1
T T

s s s sW z= Θ Υ   (42) 

where K1s = diag(K1x, K1γ), K11sd = diag(K11xd, K11γd), 
K12sd = diag(K12xd, K12γd) are positive designed 
parameters. Passing α1s through command filtered 
system yields: 

( )( )
1 1 1

1 1 1 1 1 1 12
s s s

s s s s s s s

α ϖ α

α τ ϖ α ϖ α α

=

= − − −Γ





  (43) 

where 1sα  and α1s are the outputs of the command 
filter satisfying ( )1 0sα = 0 and α1s(0) = 0. ϖ1s > 0 and                    
τ1s ∈ (0, 1] × (0, 1] are the designed parameters. Let                

2 2 2

T

s xz z z γ =   = Ts − 1sα  and 1 1 1 s s sα α−= .  Next, 
consider the following Lyapunov function: 

( )
( )( )

( )
( )( )

2

2

2

2 2
2

0 1 2 2 1

2

2 2

0 1 2 2 1

xz
px nx

s
x nx px x

z
p n

n p

k k
V d

k k

k k
d

k k

γ
γ γ

γ γ γ γ

σ
σ

α σ α σ

σ
σ

α σ α σ

 − =
 + − − −
 
 − +
 + − − −
 

∫

∫

  (44) 

Taking the time derivative of V2s yields: 

2 1 2 12 2 22 1 2 23 2 2 24 2
T T T T

s s s s s s s s s s ns s s psV V z U z z k z kα= + + + + 
  Ξ Ξ Ξ Ξ

 (45) 

The control law Us is designed as: 

( )
1

2 2 21 11 1

1
21 22 1 23 2 24 2

T T
s s s s ks y s

s s s s ns s ps

U K z z

k kα

−

−

= − −

+ +  


Ξ G Ξ

Ξ Ξ Ξ +Ξ
  (46) 
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where K2s = diag(K2x, K2γ) > 0. 

4.3.  Stability Analysis 

Assumption 3. The initial values of the autonomous 
vehicle’ states χ={x1y, x2y, ,xν ψ , δ,δ , Tl, Mz} satisfy 
χ(0) ∈ Ωa = Ωy1 × Ωy2 × Ωs1 × Ωy3 × Ωy4 × Ωs2. 

Lemma 1.  Consider the following type of asymmetric 
integral barrier Lyapunov function: 

( ) ( )
( )( )

( ) ( )( ) ( )( ) ( )
( )

( )( ) ( )
( )

2

0

( ) ( )
, , ( ), ( )

( ) ( )

= ln

+ ln

z
p n

n p
n p

n
p n n

n

p
p

p

k t k t
V z a k t k t d

k t k t

k t
k t k t k t

k t z

k t
k t

k t z

σ
σ

α σ α σ

α
α

α

α
α

α

 − =
 + − − −
 

 +
− − + +

−
− − − 

∫

 

 (47) 
where z x α= − is the tracking error, α is the desired 
tracking trajectory, ( ), ( )n pk t k t are the time-varying 
constraint function. The following inequalities are 
hold in the set ( ) ( ){ }| n px R k t x k tΩ = ∈ < < : 

( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

222

, , ,
2

p n
n p

n p

z k t k tz V z k t k t
z k t k t z

α
α α

−
≤ ≤

+ − − −
 

 (48) 
Proof of Lemma 1.  

The expressions of Ξijy, Ξijs, i = {1, 2, 3, 4}, j = 
{1, 2, 3, 4}, { }1 2 3, , , ,iy yd y y yxα α α α=

{ } { }1, , , ,ix xd x l x yα ν α γ= = in (24), (28), (33), (37), 
(40), and (45) are given as:  

1 1 1 2 2 2

3 3 3 4 4 4

,

,

T T

i s i s i i s i s i

T T

i s i s i i s i s i

γ γ

γ γ

   = =   

   = =   

Ξ Ξ Ξ Ξ Ξ Ξ

Ξ Ξ Ξ Ξ Ξ Ξ
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2
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il nli il il nli il il
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k z k z
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z k k z

k k k z
z k z k z

kk k
z k z

α α

α α

α α

α
α α

α α
α

−
= −

− − − −

− − −−
=

− − −

−  −
= − − − − − 

−− −
− +

− −

Ξ

Ξ

Ξ

4
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ln ln

il nli il

il nli il il

nli pli pli il il
i s
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pli il pli ilnli il nli il
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k
z k z
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k kk k
z k z z k z

α α
α

α
α α
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−
− −

 + −
= +  − − − − 

− −+ +
+ +

+ + − −

Ξ

(49) 

Let ( ) ( )
2

, , , , , ,
2n p n p
zf z k k V z k kα α= − , Taking 

the partial time derivative of f with respect to z
yields: 

( ) ( ) ( )
( )( )

2 22

2
p n n p

n p

k k k x k xf z
z k x k x

− + − + −∂
= −

∂ − −
      

One can be seen that 

( ) ( ){ }| n px x R k t x k t∀ ∈Ω = ∈ < < , / 0f x∂ ∂ =  

when 0z = , / 0f x∂ ∂ >  when 0z > , / 0f x∂ ∂ < , 
when 0z < .  

It means that ( ) ( ), , , 0, , , 0n p n pf z k k f k kα α≥ = . 

Hence ( )
2

, , ,
2n p
zV z k kα ≥ . 

Define  

( ) ( )
( )( )

2
( ) ( )

, , ,
( ) ( )

p n
n p

n p

k t k t
g k k

k t k t

σ
α σ

α σ α σ

−
=

+ − − −
. 

Taking the partial time derivative of g with respect to 
σ yields: 

( ) ( )( )( )
( ) ( )

2 2

22
0

p n n p

n p

k k k kg

k k

σ α α

σ σ α σ α

− − − −∂
= − >

∂ − − − −
 

Therefore, ( ) ( )
0

, , , , , ,
z

n p n pg k k d zg z k kα σ σ α=∫ , 

which means that: 

( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

22

, , , p n
n p

n p

z k t k t
V z k t k t

z k t k t z
α

α α

−
≤

+ − − −
 

It completes the proof. 

Theorem 1. Considering the closed-loop system of the 
7-DOF autonomous vehicle (19) and (22). With the 
control signals (38), (46), filtering systems (26), (31), 
(35), (43), adaptive laws (30), (42), Assumption 1, and 
appropriately designed parameters, all the signals of 
the closed-loop system are PFS, and furthermore the 
system’s states χ are always constrained by Ωa. 

Proof of Theorem 1.  

The complete Lyapunov function of the system is 
given by: 

Va=V4y+V2s    (C.1) 

Taking   its   time   derivative   and   using   the   
results of (25), (29), (34), (38), (41) and (46), we 
obtain: 
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4 2

2 2 2 2 2 2
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2 2 2 2 2 2 2
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        By making use of Young’s inequality, we obtain: 
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 Then aV  becomes: 
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where ka = min{K1x, K2x, K1y, K2y, K3y, K4y, K1γ, K2γ},  

{ } ( ) ( )2 2
1 11 2 22, ,

1 2 4 4T
a j j y yd y ydj x y

W W K K
γ=

∆ = + +∑      

( ) ( )2 2 1 1
21 3 31 11 124 4 4 4T T

y yd y yd y sd s y sd sK K K Kη η η− −+ + + +    

It completes the proof. 

5.  Evaluation by Co-Simulation 

In this section, the performance of the proposed 
approach is verified by using the Carsim-Matlab joint 
environment. Many automotive manufacturers and 
design companies (such as Toyota, Mitsubishi, Delphi, 
and General Motors, to name a few) use CarSim in 
both model-in-the-loop and hardware-in-the- loop 
tests [14] as it can provide comprehensive full-car 
dynamic model and simulates the sophisticated 
behavior of the vehicle with high fidelity.  While the 
vehicle dynamics are performed by CarSim simulation 
software, Matlab/Simulink is employed to embed the 
controller. 

 

5.1.  Simulation Setting 

The vehicle drives on the dry road (µ = 0.9) and 
executes the double lane change maneuver (DLC) 
while undergoing the changes in longitudinal velocity.   
It starts from 22.3 m/s then increases to 25.8 m/s 
before decreasing to 18.5 m/s so that the DLC is 
performed during both acceleration and deceleration 
cases.  The comparisons are carried out between a 
conventional SMC control scheme that evenly 
distributes the driving/braking torque without using 
DYC, the proposed control method, and an SMC 
control scheme that uses DYC and optimized-based 
torque distribution (SMC+DYC) to evaluate their 
respective performance. To ensure a smooth transition 
and to respect the physical limitations of the 
actuators, the constraints for steering angle δ, 
steering rate δ˙, driving torque Tl, external yaw 
moment Mz are defined as −12o ≤ δ ≤ 12o,  
−25o · s−1≤ δ ≤25o·s−1, −1000N·m ≤ Tl ≤ 1000N·m, 
−4000N·m ≤ Mz ≤ 4000N·m. In terms of system 
constraints, the vehicle’s longitudinal speed is limited 
to the range of 10m · s−1 ≤ vx ≤ 33.3m · s−1. The              
lateral tracking performance is constrained by                 
−ϱ(t) ≤ ey ≤ ϱ(t), where ϱ(t) = 0.2e−2t + 0.05. To 
maintain vehicle stability, the difference between the 
yaw rate and the yaw rate reference must satisfy the 
stability index k, defined as d dkψ ψ ψ− ≤   , where k 
is between 0 and 0.165, and dψ  should satisfy the 
lateral constraint /d xgψ µ ν≤ , as reported in [15].   

Thus  0.165 /d xgψ ψ µ ν− ≤  .  The yaw rate 
limitation in the tolerance is therefore defined as  
max{ ( )d tψ − 0.165 / xgµ ν , − / xgµ ν } ≤ ( )tψ ≤ min{

( )d tψ  + 0.165 / xgµ ν , / xgµ ν }. The parameters of 
the proposed controller are chosen as K1y = 0.2,  
K2y = 5, K3y = 50, K4y = 100, K1s = diag(10, 2.5),  
K2s = diag (50, 50), ϖ1y = ϖ2y = ϖ3y = 500, τ1y  = τ2y 
= τ3y = 0.9, ϖ1s  = diag(500, 500), τ1s  =  diag(0.9, 
0.9), γy = 0.5, sΥ = diag(0.01, 0.01). 

5.2.  Result and Discussion 

The vehicle starts with an initial speed of                      
22.3 m · s−1 and an initial lateral offset error of 0.15 m 
on the dry road (µ = 0.9). The vehicle then accelerates 
to 25.8  m · s−1 by increasing its speed by 1 m · s−1 while 
making a lane change to the left lane. After that, the 
vehicle decelerates to 18.5 m · s−1 by decreasing its 
speed by 2 m · s−1 during another right lane change.  

The reference trajectory for the lane change 
maneuver is designed via five-degree polynomial 
function:
 ( ) 5 4 3 2

5 4 3 2 1 0y t a t a t a t a t a t a= + + + + +   

with the initial condition: 
ot t oy y= = , 0, 0

o ot t t ty y= == = 

, and the terminal condition: ,
ft t fy y= =
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0, 0
f ft t t ty y= == =  . The length of the lane change 

maneuver is 2.5 seconds with 0oy = , and 3.75fy =

for standard lane width. Then, the desired yaw rate is 
determined by d xVψ ρ=  where ρ is the curvature of 
the desired trajectory. 

 Fig. 2 shows the lateral tracking error of the 
vehicle.  From the result, one can see that the 
proposed method can guarantee the tracking error 
always evolve within the performance boundary and 
converge to zeros at the end. Meanwhile, the SMC 
control scheme generates larger errors that go beyond 
the boundary and exhibits a slower convergence rate. 

 

 
Fig. 2. Lateral error 

 

 
Fig. 3. Yaw rate error 

 

 
Fig. 4. Yaw rate 

 

 
Fig. 5. Yaw angle 

 
Fig. 6. Longitudinal velocity 

 

 
Fig. 7. Global position 

 
Fig. 8. Steering angle 

 
Fig. 9. Rate of steering angle 
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The comparisons of yaw angle, yaw rate, and 
yaw rate error are displayed in Fig. 3, 4, and 5 
respectively. The results show that with the DYC and 
the torque allocation algorithm, the vehicle can 
minimize the deviation of the yaw rate and ensure that 
the yaw rate is within the allowable range, thus 
increasing the stability of the vehicle. In comparison, 
the absence of the DYC component results in greater 
fluctuations and errors in the yaw rate and yaw angle, 
which has a negative impact on the stability of the 
vehicle. For the speed tracking performance, the 
results in Fig. 6 indicate that all control schemes 
allow the vehicle to closely track the desired velocity 
profile during the maneuver, but the proposed method 
exhibits a higher level of accuracy. Fig. 7 shows the 
global trajectory of the vehicle. It can be observed that 
by using the proposed method, the vehicle can achieve 
faster and more precise lane change maneuvers.  
Additionally, the overshoot and tracking error is 
significantly reduced, demonstrating the effectiveness 
of the proposed method in enhancing the vehicle’s 
performance. The steering angle and steering rate are 
shown in Fig. 8 and 9. Since there is an initial lateral 
offset error, the SMC controller generates a fast and 
large steering angle to steer the vehicle to the reference 
trajectory, but it causes a significantly high steering 
rate, which can damage the actuator. In contrast, the 
proposed method effectively limits the steering rate 
within the specified bounds, while simultaneously 
achieving a higher level of tracking performance. This 
can result in smoother and more controlled lane 
changes, which can improve passenger comfort and 
extend actuator life. 

6.  Conclusion 

In this paper, the integrated longitudinal-lateral 
and yaw rate dynamics of the vehicle are considered 
simultaneously in the control design to enhance the 
vehicle’s performance in harsh driving conditions. 
The new adaptive asymmetric time-varying integral 
barrier Lyapunov control and dynamic surface control 
are proposed for AFS, longitudinal control, and DYC 
controller design, such that the system’ states and 
control input signals are guaranteed to be strictly 
bounded within allowable ranges, while the lumped 
disturbances are compensated by the RBFNN to 
enhance the system robustness. Besides, the 
optimization-based torque allocation algorithm is 
introduced to effectively distribute driving/braking 
torque to each in-wheel motor.  The simulation results 
demonstrate the effectiveness and superiority of the 
proposed control scheme through both quantitative 
and qualitative comparisons in various driving 
scenarios when compared to the SMC method. 

References 

[1] C. Gkartzonikas and K. Gkritza, What have we 
learned? A review of stated preference and choice 
studies on autonomous vehicles, Transportation 

Research Part C: Emerging Technologies, vol. 98, pp. 
323-337, 2019, 

 https://doi.org/10.1016/j.trc.2018.12.003 

[2] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, 
A survey of autonomous driving: Common practices 
and emerging technologies, IEEE access, vol. 8, pp. 
58443-58469, 2020, 

 https://doi.org/10.1109/ACCESS.2020.2983149 

[3] D. Ao, W. Huang, P. K. Wong, and J. Li, Robust 
backstepping super-twisting sliding mode control for 
autonomous vehicle path following, IEEE Access, vol. 
9, pp. 123165-123177, 2021, 

 https://doi.org/10.1109/ACCESS.2021.3110435 

[4] X. Ji, X. He, C. Lv, Y. Liu, and J. Wu, Adaptive-
neural-network-based robust lateral motion control for 
autonomous vehicle at driving limits, Control 
Engineering Practice, vol. 76, pp. 41-53, 2018, 

 https://doi.org/10.1016/j.conengprac.2018.04.007 

[5] Y. Wang, S. Shi, S. Gao, Y. Xu, P. Wang, Active 
steering and driving/braking coupled control based on 
flatness theory and a novel reference calculation 
method, IEEE Access, vol.7, pp.180661-180670,  

 https://doi.org/10.1109/ACCESS.2019.2959941 

[6] N. Tork, A. Amirkhani, and S. B. Shokouhi, An 
adaptive modified neural lateral-longitudinal control 
system for path following of autonomous vehicles, 
Engineering Science and Technology, an International 
Journal, vol. 24, no. 1, pp. 126-137, 2021, 

 https://doi.org/10.1016/j.jestch.2020.12.004 

[7] H. Sazgar, S. Azadi, R. Kazemi, A. K. Khalaji, 
Integrated longitudinal and lateral guidance of vehicles 
in critical high speed manoeuvres, Proc. of the 
Institution of Mechanical Engineers, Part K: Journal of 
Multi-body Dynamics, vol. 233, no. 4, pp. 994-1013, 
2019, 

 https://doi.org/10.1177/1464419319847916 

[8] H. Pang, R. Yao, P. Wang, and Z. Xu, Adaptive 
backstepping robust tracking control for stabilizing 
lateral dynamics of electric vehicles with uncertain 
parameters and external disturbances, Control 
Engineering Practice, vol. 110, p. 104781, 2021, 

 https://doi.org/10.1016/j.conengprac.2021.104781 

[9] X. Jin, Z. Yu, G. Yin, and J. Wang, Improving vehicle 
handling stability based on combined AFS and DYC 
system via robust Takagi-Sugeno fuzzy control, IEEE 
Transactions on Intelligent Transportation Systems, 
vol. 19, no. 8, pp. 2696-2707, 2017, 

 https://doi.org/10.1109/TITS.2017.2754140 

[10] J. Liu, L. Gao, J. Zhang, and F. Yan, Super-twisting 
algorithm second-order sliding mode control for 
collision avoidance system based on active front 
steering and direct yaw moment control, Proceedings 
of the Institution of Mechanical Engineers, Part D: 
Journal of Automobile Engineering, vol. 235, no. 1, pp. 
43-54, 2021, 

 https://doi.org/10.1177/0954407020948298 

[11] H. Wang, B. Liu, X. Ping, and Q. An, Path tracking 
control for autonomous vehicles based on an improved 
MPC, IEEE Access, vol. 7, pp. 161064-161073, 2019, 

 https://doi.org/10.1109/ACCESS.2019.2944894 



  
JST: Smart Systems and Devices 

Volume 33, Issue 2, May 2023, 058-068 

68 

[12] H. Wu, Z. Si, and Z. Li, Trajectory tracking control for 
four-wheel independent drive intelligent vehicle based 
on model predictive control, IEEE Access, vol. 8, pp. 
73071-73081, 2020, 

 https://doi.org/10.1109/ACCESS.2020.2987812 

[13] A.-T. Nguyen, B.-M. Nguyen, T. Vo-Duy, and M. C. 
Ta, Steering vector control for lateral force distribution 
of electric vehicles, in 2022 IEEE Vehicle Power and 
Propulsion Conference (VPPC), 2022, pp. 1-6: IEEE, 

 https://doi.org/10.1109/VPPC55846.2022.10003321 

[14] K. Akka and F. Khaber, Optimal fuzzy tracking control 
with obstacles avoidance for a mobile robot based on 

Takagi-Sugeno fuzzy model, Transactions of the 
Institute of Measurement and Control, vol. 41, no. 10, 
pp. 2772-2781, 2019. 

 https://doi.org/10.1177/0142331218811462 

[15] L. Zhai, T. Sun, and J. Wang, Electronic stability 
control based on motor driving and braking torque 
distribution for a four in-wheel motor drive electric 
vehicle, IEEE Transactions on Vehicular Technology, 
vol. 65, no. 6, pp. 4726-4739, 2016. 

 https://doi.org/10.1109/TVT.2016.2526663 

 


	1. Introduction0F
	4. Controller Design

