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Abstract 

In the present paper, the evolutionary algorithm for single-objective optimization is developed using a genetic 
algorithm and employing polynomial-based (PARSEC) and radial basis function (RBF) functions for NACA 
2412 airfoil parameterization. The determination of the objective functions, being aerodynamic coefficients, 
are performed using the Lagrangian vortex particle method. The results of the lift coefficient at the wide range 
of angle of attack using the vortex particle method shows a good agreement with experimental data listed in 
the literature. For the optimization results, the lift coefficient obtained from the PARSEC method is optimized 
to be larger for the whole range of angle of attack; while it still keeps the stall region at the upper surface of 
the airfoil to be the same as that of the original airfoil. In addition, the RBF method illustrates the lift coefficients 
larger at the range of angle of attack from -50 to 140 but stall occurs earlier than the original airfoil. 

Keywords: PARSEC paramterization, single-objective optimization, genetic algorithm, vortex particle method. 

 

1. Introduction1 

Aviation is currently expanding dramatically all 
over the world. Therefore, air transportation has 
become comparable to rail and automotive transport. 
As a result, massive amounts of carbon dioxide 
emissions released by aircraft engines increases global 
warming. In order to reduce these emissions, the 
aircraft design optimization is required. Aircraft wing 
shape optimization is today a common method used in 
the fields of mechanical and aerospace engineering. 
Aircraft wing aerodynamics design can be divided into 
two main approaches: Inverse Design (ID) and Direct 
Number Optimization (DNO). The first method 
involves finding the wing shape that can respond to 
fluid dynamics (such as pressure or surface friction 
distribution); whereas, DNO methods combine 
geometry definition and aerodynamic analysis code in 
an iterative process to produce optimal design subject 
to various constraints.  

However, both approaches share the need to 
modify the wing shape to achieve the goal. Depending 
on whether the goal is achieved through a small local 
airfoil modification or a completely new design, 
different methods of shape parameterization must be 
employed. Local airfoil shape modifications are 
usually obtained by smooth perturbations of  
the original airfoil coordinates through analytical 
function, such as Legendre, Chebyschev or Bernstein 
polynomials [1-3]. These methods have the advantage 
of smooth local modifications, although they have no 
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direct relation to geometry and this could lead to 
undulating curves [3]. 

Historically, the design of the airfoil family 
requires a parameterized method suitable for each 
airfoil. Some of the airfoil profile parameters can be 
found in the literature. An investigation of the 
parameterization method is referred to as Samareh [4]. 
Bezier [5, 6] built through the interpolation method as 
the curves of B-spline. Due to their visualization and 
flexibility, they have been applied to a wide range of 
applications with widespread use during shape 
optimization but caused some problems due to the 
difficulty in managing the relative position of the 
control point. Hicks and Henne's [7] gives strong 
evidence to represent some control points of airfoils, 
but it is not helpful in designing a new idea. The 
orthogonal basis function method (OBF method) [8] 
uses an orthogonal polynomial to describe the upper 
and lower surfaces of the airfoil, and the shape of the 
airfoil is determined by five coefficients of the upper 
surface and lower surface of the airfoil. A commonly 
used method, which approximates each surface with a 
sixth-order polynomial, presented by Sobieski [9], is 
called the PARSEC method. This method uses 
geometrical properties such as the top position, 
curvature, and thickness of the airfoil as design 
variables, allowing for more intuitive shape control. 
Since this method is limited to only 12 design 
variables, it does not provide the scope or flexibility in 
the fidelity offered by many alternatives found in other 
parts of the aircraft’s components. Hence, the multi-
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variable-based radial basis function (RBF) can 
represent nonlinear transformations of the complex 
geometries [10]. Using these transformations, this 
method can quickly estimate the output. Nonlinear 
transformations or mapping functions are determined 
by equations by solving a linear system. Moreover, the 
combination of PARSEC parameterization and a 
genetic algorithms (GA) optimization method to find a 
Nash equilibrium solution is also performed by 
Sobieski. Previous optimization processes extensively 
adopt PARSEC parameterization [11, 12] procedure 
within GA evolutionary [13, 14]; while the use of RBF 
has not been employed.    

In optimization process, finding the objective 
functions plays a crucial role in estimating the evident 
optimized aerodynamic coefficients. The objective 
functions include games theory [15], grid-based [16] 
and meshfree methods [17]. To obtain the high 
accuracy optimization results, the objective functions 
should satisfy the severe requirements, such as fast 
computation, high accuracy, easy coupling with 
paramterization methods. To satisfy those 
requirements, the meshfree-based vortex particle 
method is employed in this work [18]. The vortex 
method simulates external boundary layer flow around 
complex geometry by tracking local velocities and 
vorticities of particles, introduced within the fluid 
domain. The viscous effect is modeled using a core 
spreading method coupled with the splitting and 
merging spatial adaptation scheme. The particle’s 
velocity is calculated using the Biot-Savart 
formulation. 

In the present work, we have proposed an 
evolutionary algorithm based on a genetic algorithm 
(GA) [19] for optimizing the lift coefficient of an 
airfoil of aircraft wing employing a polynomial-based 
(PARSEC) [5] and Radial Basis Function (RBF) [10] 
shape-parameterized functions. The purpose of the 
PARSEC function is to parameterize the airfoil family; 
meanwhile, the RBF function is not only for airfoil 
shape parameterization but also for other complex 
shapes of aircraft’s component optimization, such as 
nacelle, winglet, engine, and fuselage. The objective 
function to find the values of lift and drag coefficients 
is developed using vortex particle method [18].  

In this paper, evolutionary optimization 
procedures for the aircraft’s airfoil family during level 
flight (low angle of attack) are discussed. That is 
because in other flight conditions, such as take-off, 
climb, descend, landing, the level flight condition 
takes most of the time of economic flight. This 
optimization process is based on the combination of 
the GA algorithm with two parameterized methods, 
PARSEC and RBF to optimize an aircraft’s airfoil with 
the maximized lift. GA is a method of finding an 
adaptive heuristic search based on genetic principles 
and natural selection. Similar to organisms that live in 
nature, GA allows the evolution of a population 

according to specific rules of the selection mutation 
process. Therefore, they move towards maximization 
of objectives (lift and drag coefficients), as described 
in Section 1. Next, based on the selectively evolved 
sample set, Sections 2 and 3 discuss about the 
parameterization function through the discussion of 
the PARSEC and RBF parametric methods. 
Accordingly, the evolutionary solution results are then 
compared with each other to declare the best fitness 
shape function for airfoil optimization. 

 
Fig. 1. The evolutionary genetic algorithm 

 
2. Genetic Algorithm 

Genetic algorithm (GA) [19, 20] is an 
evolutionary optimization method based on natural 
selection that simulates the biological evolution of 
chromosomes. The algorithm repeatedly modifies the 
set of individual solutions. Similarly, for the airfoil 
optimization, at each step, the genetic algorithm 
randomly selects airfoils from the current population 
and uses them as parental airfoils to generate child 
airfoils for the next generation. Through successive 
generations, the wing profile evolved towards the 
optimal solution. 

In the initialization process, for airfoil 
configurations, these are parameterized by either the 
PARSEC and RBF shape function. As those 
parameters are randomly changed, they create new 
airfoil generations, which is then intruded into the new 
population. The new generation of the new airfoil has 
a closer shape to the airfoil that we are trying to 
approach the solution. In a selection process, for each 
airfoil profile, we will find their lift coefficient as an 
objective function using the vortex panel method 
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mentioned above. Since then, we can evaluate which 
configuration of the airfoil has a better lift coefficient.  

Genetic operators [21] include the crossover and 
mutation process. In the crossover, we select two 
airfoils that we have the corresponding PARSEC and 
RBF parameters. Then, we select one parameter in the 
parameter domain and then cross the front-side 
parameters over the backside parameters of the 
selected parameter. In mutation, we choose an optional 
profile from the set created in the initialization process. 
Then, modify the value of a randomly chosen 
PARSEC and RBF parameter. In termination, these 
previous processes are repeated until the end of the 
program. Possible termination conditions are 
followings: a solution is found that satisfies minimum 
criteria; a fixed number of generations is reached; 
allocated computation time is reached; the optimized 
solution's fitness is reached or has reached a plateau 
such that successive iterations no longer produce better 
results. 

3. PARSEC Parameterization 

The first idea of parameterizing the airfoil by 
polynomial function comes from Sobieczky [11]. 
Initially, this method only used 11 parameters, these 
parameters were used to determine the geometric 
shape of the airfoil. In addition, it also includes 
physical significance, such as leading-edge radius, 
maximum thickness, trailing edge angles. In this study, 
we use a subsequently modified 12-parameter 
PARSEC method [22], which allows the independent 
determination of the radius of the leading edge, for 
both the upper and lower surfaces. 

Table 1. PARSEC parameters 

Parsec 
parameter 

Definition 

𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 Leading edge radius upper surface 

𝑥𝑥𝑙𝑙𝑙𝑙 Upper crest position in horizontal 
coordinates  

𝑧𝑧𝑙𝑙𝑙𝑙 Upper crest position in vertical coordinates 

𝑧𝑧𝑋𝑋𝑋𝑋𝑢𝑢𝑢𝑢 Upper crest curvature  

𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 Leading edge radius lower surface 

𝑥𝑥𝑙𝑙𝑙𝑙 Lower crest position in horizontal 
coordinates 

𝑧𝑧𝑙𝑙𝑙𝑙 Lower crest position in vertical coordinates 

𝑧𝑧𝑋𝑋𝑋𝑋𝑙𝑙𝑙𝑙 Lower crest curvature 

𝑧𝑧𝑡𝑡𝑙𝑙 Trailing edge offset in vertical sense 

∆𝑧𝑧𝑡𝑡𝑙𝑙 Trailing edge thickness 

𝛼𝛼𝑡𝑡𝑙𝑙 Trailing edge direction 

𝛽𝛽𝑡𝑡𝑙𝑙  Trailing edge wedge angle 

 

 
Fig. 2. PARSEC airfoil parameterization with 12 
variables expressing the shape of airfoil family. 

 
Fig. 2 and Table 1 show the definitions for the 12 

PARSEC parameters. As shown in table 1, a total of 
12 variables are used. Fig. 2 illustrates the approach of 
PARSEC parameterization [22]. 

Thus, a total of 12 variables are used. The method 
applied here uses a linear combination of the shape 
functions to define the upper and lower surfaces [23]. 
These linear combinations are given by 

Upper: 𝑍𝑍𝑙𝑙𝑙𝑙 = ∑ 𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖−
1
2𝑛𝑛=6

𝑖𝑖=1    

Lower: 𝑍𝑍𝑙𝑙𝑙𝑙 = ∑ 𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖−
1
2𝑛𝑛=6

𝑖𝑖=1  
(1) 

 
where: 𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖  and 𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖  are coefficients which are 
determined by a function of the 12 described 
geomettric parameters, solving two systems of linear 
equations: 

𝒁𝒁 = 𝑨𝑨𝑨𝑨 (2) 

where: 

𝑨𝑨 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝑥𝑥1

0.5 𝑥𝑥11.5 𝑥𝑥12.5 𝑥𝑥13.5 𝑥𝑥14.5 𝑥𝑥15.5

𝑥𝑥20.5 𝑥𝑥21.5 𝑥𝑥22.5 𝑥𝑥23.5 𝑥𝑥24.5 𝑥𝑥25.5

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑥𝑛𝑛−10.5 𝑥𝑥𝑛𝑛−11.5 𝑥𝑥𝑛𝑛−12.5 𝑥𝑥𝑛𝑛−13.5 𝑥𝑥𝑛𝑛−14.5 𝑥𝑥𝑛𝑛−15.5

𝑥𝑥𝑛𝑛0.5 𝑥𝑥𝑛𝑛1.5 𝑥𝑥𝑛𝑛2.5 𝑥𝑥𝑛𝑛3.5 𝑥𝑥𝑛𝑛4.5 𝑥𝑥𝑛𝑛5.5 ⎦
⎥
⎥
⎥
⎥
⎤

 

𝒁𝒁 =

⎣
⎢
⎢
⎢
⎡
𝑧𝑧1
𝑧𝑧2
⋮

𝑧𝑧𝑛𝑛−1
𝑧𝑧𝑛𝑛 ⎦

⎥
⎥
⎥
⎤

, 𝑨𝑨 =

⎣
⎢
⎢
⎢
⎡
𝑎𝑎1
𝑎𝑎2
⋮
𝑎𝑎5
𝑎𝑎6⎦
⎥
⎥
⎥
⎤
 

The Parsec coefficients can be obtained by 
transposing and inverting the matrix 𝑨𝑨 in: 

         𝑨𝑨 = (𝑨𝑨𝑇𝑇𝑨𝑨)−1(𝑨𝑨𝑇𝑇𝒁𝒁)                              (3) 

Then, the PARSEC parameters are determined by 
equation (4) to equation (7). The value of 𝑥𝑥𝑙𝑙𝑙𝑙 can be 
defined by the differential of equation (1). Iterative 
mathods, such as the Newton-Raphson, can be utilized 
to obtain the value of 𝑥𝑥𝑙𝑙𝑙𝑙 from equation (4): 
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𝑑𝑑𝑧𝑧𝑙𝑙𝑙𝑙
𝑑𝑑𝑥𝑥

= �𝑎𝑎𝑙𝑙𝑙𝑙,𝑛𝑛

6

𝑛𝑛=1

(𝑛𝑛 − 0.5)𝑥𝑥𝑛𝑛−1.5 = 0 

(4) 
𝑑𝑑𝑧𝑧𝑙𝑙𝑙𝑙
𝑑𝑑𝑥𝑥

= �𝑎𝑎𝑙𝑙𝑙𝑙,𝑛𝑛

6

𝑛𝑛=1

(𝑛𝑛 − 0.5)𝑥𝑥𝑛𝑛−1.5 = 0 

 The value of 𝑧𝑧𝑙𝑙𝑙𝑙 is determined by substituting the 
value of 𝑥𝑥𝑙𝑙𝑙𝑙, 𝑥𝑥𝑙𝑙𝑙𝑙 obtained in equation (4) into equation 
(1); then, for a curvature of upper surface, the second 
differential of equation (1) at the 𝑥𝑥𝑙𝑙𝑙𝑙, 𝑥𝑥𝑙𝑙𝑙𝑙 is applied to 
determine the value of 𝑧𝑧𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙 , 𝑧𝑧𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙. The leading edge 
radius, 𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and 𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, is simply defined by equation 
(6) as: 

𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
𝑎𝑎𝑙𝑙𝑙𝑙,1
2

2
  ,      𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =

𝑎𝑎𝑙𝑙𝑙𝑙,1
2

2
 (5) 

 Finally, a trailing edge shape is determined by 
𝛼𝛼𝑡𝑡𝑙𝑙 and 𝛽𝛽𝑡𝑡𝑙𝑙: 
𝑑𝑑𝑧𝑧𝑢𝑢𝑢𝑢
𝑑𝑑𝑥𝑥

= ∑ 𝑎𝑎𝑙𝑙𝑙𝑙,𝑛𝑛(𝑛𝑛 − 0.5) = tan �𝛼𝛼𝑡𝑡𝑙𝑙 −
𝛽𝛽𝑡𝑡𝑡𝑡
2
�6

𝑛𝑛=1   (6) 

𝑑𝑑𝑧𝑧𝑙𝑙𝑙𝑙
𝑑𝑑𝑥𝑥

= ∑ 𝑎𝑎𝑙𝑙𝑙𝑙,𝑛𝑛(𝑛𝑛 − 0.5) = tan �𝛼𝛼𝑡𝑡𝑙𝑙 + 𝛽𝛽𝑡𝑡𝑡𝑡
2
�6

𝑛𝑛=1  (7) 

 Finally, PARSEC parameters are interpolated 
back to the linear equations (1). The objective function 
is determined using the vortex particle method [18] as 
mentioned hereafter. 

4. Radial Basis Function Parameterization 

Let us consider the scalar valued function 𝑓𝑓 
observed without error, according to the sampling plan                   
𝑨𝑨 = �𝑥𝑥(1), 𝑥𝑥(2), 𝑥𝑥(3), … , 𝑥𝑥(𝑛𝑛)�

𝑇𝑇
, yielding the responses 

𝒀𝒀 = �𝑦𝑦(1),𝑦𝑦(2),𝑦𝑦(3), … ,𝑦𝑦(𝑛𝑛)�
𝑇𝑇
. We seek a radial basis 

function approximation to 𝑓𝑓 of the fixed form. 

𝑓𝑓(𝒙𝒙) = 𝒘𝒘𝑇𝑇𝝍𝝍 = ∑ 𝑤𝑤𝑖𝑖𝜓𝜓��𝒙𝒙 − 𝒄𝒄(𝑖𝑖)��𝑛𝑛𝑐𝑐
𝑖𝑖=1   (8) 

where 𝒄𝒄(𝒊𝒊) denotes the 𝑖𝑖𝑡𝑡ℎ of the 𝑛𝑛𝑐𝑐 basis function 
centres and 𝝍𝝍 is the 𝑛𝑛𝑐𝑐-vector containing the values of 
the basis functions 𝜓𝜓 themselves, evaluated at the 
Euclidean distances between the prediction site 𝒙𝒙 and 
the centres 𝒄𝒄(𝒊𝒊) of the basis functions.  

 
Fig. 3. Airfoil parameterization using radial basic 
function method. 

Thus far, the number of undetermined parameters 
stands at one per basis function. In this paper, we use 
the Gaussian-based function (𝑒𝑒−𝑟𝑟2/(2𝜎𝜎2) ). Whether we 
choose a set of parametric basis functions or fixed 
ones. The good news is that the term 𝒘𝒘 is easy to 
estimate. This can be done via the interpolation 
condition 

𝑓𝑓�𝒙𝒙(𝑗𝑗)� = ∑ 𝑤𝑤𝑖𝑖𝜓𝜓��𝒙𝒙(𝒋𝒋) − 𝒄𝒄(𝑖𝑖)�� = 𝑦𝑦(𝑗𝑗) 𝑛𝑛𝑐𝑐
𝑖𝑖=1  (9) 

where 𝑗𝑗 = 1,𝑛𝑛𝑐𝑐 

Herein lies the beauty of radial basis function 
approximations. Equation (9) is linear in terms of the 
basis function weights 𝒘𝒘, yet the predictor 𝑓𝑓 can 
express highly nonlinear responses! It is easy to see 
that one of the conditions of obtaining a unique 
solution is that the system (9) must be ‘square’, that is 
𝑛𝑛𝑐𝑐 = 𝑛𝑛. It simplifies things if the bases actually 
coincide with the data points, that is 𝒄𝒄(𝑖𝑖) = 𝒙𝒙(𝑖𝑖), 
∀𝑖𝑖 = 1, … ,𝑛𝑛���������, which leads to the matrix equation: 

𝚿𝚿𝒘𝒘 = 𝒚𝒚           (10) 

where 𝚿𝚿 denotes the so-called Gram matrix and it is 
defined as 𝚿𝚿𝑖𝑖,𝑗𝑗 = 𝜓𝜓��𝒙𝒙(𝒊𝒊) − 𝒙𝒙(𝑗𝑗)��, 𝑖𝑖, 𝑗𝑗 = 1, … ,𝑛𝑛. 
Since Ψ is a weak matrix, finding 𝒘𝒘 is very difficult. 
Hence, we've used the generalized minimal residual 
method (GMRES) to solve the linear system (10) [24]. 

5. Vortex Particle Method 

        The vortex methods are based on the momentum 
equation and the continuity equation for an 
incompressible flow which are written in vector form 
as follows: 

𝜕𝜕𝒖𝒖
𝜕𝜕𝑡𝑡

+ (𝒖𝒖.∇)𝒖𝒖 = − 1
𝜌𝜌
∇𝑝𝑝 + 𝜈𝜈∇2𝒖𝒖             (11) 

∇.𝒖𝒖 = 0                                (12) 

        Taking the curl and divergence of equation (11) 
and simplify using equation (12): 

𝜕𝜕𝝎𝝎
𝜕𝜕𝑡𝑡

+ (𝒖𝒖.∇)𝝎𝝎 = (𝝎𝝎.∇)𝒖𝒖 + 𝜈𝜈∇2𝝎𝝎           (13) 

∇2𝑝𝑝=- 𝜌𝜌∇. (𝒖𝒖∇𝒖𝒖)                        (14) 

where 𝒖𝒖 is velocity vector, 𝑝𝑝the pressure, and 𝜌𝜌 the 
density. The vorticity 𝝎𝝎 is defined as  

𝝎𝝎 =  ∇ ×  𝒖𝒖                              (15) 

        The pressure 𝑝𝑝 can be independently calculated 
by the Poisson equation (14) once needed. The 
lagrangian expression for the vorticity transport 
expressed in equation (13) is then given by 

𝑑𝑑𝝎𝝎
𝑑𝑑𝑡𝑡

= (𝝎𝝎.∇)𝒖𝒖 + 𝜈𝜈∇2𝝎𝝎                     (16) 

        When a two-dimensional flow is dealt with the 
stretching term, which is the first term on the right-
hand side of equation (16), disappears and the two-
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dimensional vorticity transport equation is simply 
reduced to diffusion equation: 

𝑑𝑑𝝎𝝎
𝑑𝑑𝑡𝑡

= 𝜈𝜈∇2𝝎𝝎                             (17) 

        This equation is solved numerically, by using a 
viscous splitting algorithm. The algorithm includes 
two steps. The first step, the so-called convection step, 
is to track particle elements, containing the certain 
value of vorticity, with their own local convective 
velocity by using the Biot-Savart formulation  

𝒖𝒖(𝒙𝒙, 𝑡𝑡) = 1
2 ∫

𝒖𝒖�𝒙𝒙′,𝑡𝑡�×(𝒙𝒙−𝒙𝒙′)
|𝒙𝒙−𝒙𝒙′|3

                  (18) 

where 𝒙𝒙 is the position vector. The term inside integral 
in equation (18) is integrated over all particles within 
the computational domain. 

6. Results and Discussions 

The case study in this paper is considered as 
follows. The NACA 2412 is chosen to be the case 
because the aerodynamic coefficients are available in 
the literature. The number of panels of an airfoil is 35. 
The Reynolds number is set to be 106. The airfoil is 
stationed and immersed in the computational domain 
with the 50 angles of attack (AoA). For the inputs of 
the genetic algorithm, the population size and number 
of generations to mate are set to be 50 and 40 
respectively. The transcendence percentage to choose 
the group of a dominant airfoil is 5%. Percentages of 
crossover and mutation process are chosen to be 75% 
and 20%, respectively. The maximum thickness of the 
airfoil is constrained to be 0.1 chord length of the 
airfoil for the convergence of the GA. 

Fig. 4 depicts the lift coefficient in the increment 
of the angle of attack. The in-door code’s results, based 
on the vortex particle method, are in good agreement 
with experimental results [25] at angle of attack 
ranging from -50 to 80. From angle of attack of 100, a 
stall occurs at 200 and 160 for present and experimental 
results, respectively. That is because, at the operating 
Reynolds number of 106, the inherent vortex blob 
generation of the vortex method shows a thicker 
boundary layer compared to the Kolmogorov scale. As 
a result, the present results at large AoA have deviated 
from experimental results. Hence, in our optimization 
algorithm, the AoAs are chosen to be less than 80. In 
other words, the AoA is 50 for the lift coefficient 
optimization in the present work. 

Fig. 5 shows the evolution of airfoil based on 
PARSEC and RBF methods. Fig. 5(a) shows the 
pressure coefficient distribution on the airfoil surface, 
and Fig. 5(b) shows the airfoil shapes before and after 
evolutionary optimization. The diamond dashed line 
represents airfoil after being evolved by GA with the 
PARSEC method, while the circle dashed represents 
airfoil after the evolution with the RBF method and the 
squared dashed line stands for the original airfoil. The 

PARSEC results show that the pressure coefficients of 
the lower surface are extended larger than RBF results, 
while that of the upper surface is lower than RBF 
results. Accordingly, the pressure coefficients on the 
upper and lower surfaces of the airfoil are both wider 
when using both methods compared to that of the 
original airfoil. 

 
Fig. 4. Lift coefficient versus angle of attack (AoA). 
Diamond dashed line: the experimental results, star 
dashed line: the present results 

  
(a) 

 
(b) 

Fig. 5. Optimized airfoil by PARSEC and RBF 
parameterization methods. (a) Pressure coefficient 
distribution, (b) Airfoil shapes before and after 
evolutionary optimization 
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Fig. 6. The evolution of the lift coefficient. 

 
Fig. 7. Lift coefficient versus angle of attack. 
Diamond, circle dashed lines: the lift coefficient 
results obtained from PARSEC, RBF 
parameterization, respectively. Square dashed line: the 
result of the original airfoil. 

 Fig. 6 shows an evolution of the lift coefficient 
using PARSEC and RBF parametric methods. 
Accordingly, the results obtained from PARSEC and 
RBF methods have higher lift coefficients than 
initially when undergoing evolutionary cycles. It can 
be seen that the PARSEC method gives better lift 
coefficient results than the RBF method. After 40 
evolutionary cycles, the PARSEC method shows the 
lift coefficient of 𝐶𝐶𝐶𝐶 = 1.177 and the RBF method 
shows the lift coefficient of  𝐶𝐶𝐶𝐶 = 0.992. 

Fig. 7 depicts the lift coefficient versus the 
incremental change of AoA. Diamond and circle 
dashed lines show the lift coefficient results obtained 
from PARSEC and RBF parameterization, 
respectively. Square dashed line shows the result of the 
original airfoil. As demonstrated from the figure, the 
lift coefficient obtained from the PARSEC method is 
optimized to be larger for the whole range of AoAs; 
while it still keeps the stall region at the upper surface 
of the airfoil to be the same as that of the original 
airfoil. However, the RBF method illustrates the lift 
coefficients larger at the range of AoA from -50 to 140 
and stall occurs earlier than the original airfoil.  

As this result shows, the method of changing the 
parsec coefficients seems to have significantly 
increased the lift force coefficient compared with the 
RBF method when experiencing the same number of 
evolutionary cycles. However, the reason we use RBF 
in this case is not only for airfoil evolutionary 
optimization but also for evolving other complex 
surfaces often found in aircraft design, such as nacelle, 
winglet, engine, and fuselage. 

For further investigation, we select the angle of 
attack of 150 to examine the aerodynamic performance 
of three airfoil designs, including original airfoil of 
NACA 2412, optimized airfoil using PARSEC 
paramterization, and optimized airfoil using RBF 
paramterization. In this case, the Reynolds number is 
500 and the grid is applied following the resolution 
which were carefully examined with direct numerical 
simulation [18]. Fig. 8 shows the pressure contours 
(left column) and vorticity contour (right column) of 
three airfoils. As shown in pressure contour figures, 
the negative pressure region of PARSEC airfoil on the 
upper surface is larger than that of original and RBF 
airfoils. In addition, the positive pressure region of 
PARSEC airfoil on the lower surface is also larger than 
that of original airfoil, following the RBF airfoil. This 
observation is consistent with what was discussed 
above, where the PARSEC airfoil expresses the 
excellent optimization of lift coefficient. In the 
vorticity contour, the boundary layer developed at the 
upper and lower surfaces seems thinner than that of 
original and RBF airfoils, thus showing the smaller 
skin friction drag and larger lift coefficient of 
PARSEC airfoil.  

 
Fig. 8. (a), (c), (e): pressure contours; (b), (d), (f): 
vorticity contours. 
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Fig. 9. Streamline contours. (a): original airfoil, (b) : 
optimized airfoil using PARSEC, (c) : optimized 
airfoil using RBF. 

This can be observed more clearly in Fig. 9, 
where the wake region of PARSEC and original 
airfoils is smaller than that of RBF airfoil. It is 
interesting to note that the separation point on the 
upper surface of PARSEC airfoil occurs more 
upstream than that of original airfoil, creating the 
higher lift coefficient of PARSEC airfoil compared to 
original airfoil. Furthermore, the separation point of 
RBF and PARSEC airfoils are nearly the same 
position. Hence, it is fair to conclude that in order to 
optimize the lift coefficient of airfoil, the upstream 
movement of the separation point of the boundary 
layer on the upper surface plays a significant role. 

7. Conclusion 

The indoor evolutionary algorithm for single-
objective optimization is proposed using a genetic 
algorithm and employing polynomial-based and radial 
basis function functions for NACA 2412 airfoil 
parameterization. The determination of the objective 
functions (aerodynamic coefficients) are performed 
using the Lagrangian vortex particle method. The 
results of the lift coefficient at the wide range of angles 
of attack using the vortex particle method show a good 
agreement with experimental data listed in the 
literature.  

For the optimization results, the pressure 
coefficients on the upper and lower surfaces of the 
airfoil are both wider when using both methods 
compared to that of the original airfoil. It is fair to say 
that the PARSEC method gives better lift coefficient 

results than the RBF method. After 40 evolutionary 
cycles, the PARSEC method shows the lift coefficient 
of 𝐶𝐶𝐶𝐶 = 1.177 and the RBF method shows the lift 
coefficient of 𝐶𝐶𝐶𝐶 = 0.992. The lift coefficients 
obtained from the PARSEC method are optimized to 
be larger for the whole range of AoAs, while it still 
keeps the stall region at the upper surface of the airfoil 
to be the same as that of the original airfoil. In addition, 
the RBF method illustrates the lift coefficients larger 
at the range of AoA from -50 to 140 and stall occurs 
earlier than the original airfoil. 

In the future work, we are going to apply the RBF 
parameterization method for more complex shapes 
found in engineering due to its characteristic of highly 
nonlinear response. In addition, the multi-objective 
optimization algorithm based on GA is also developed 
for more objectives in which the optimal engineering 
designs are always needed. 
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