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Abstract 

The movement of the liquid inside the container, known as sloshing, is usually undesired. Thus, there is the 
necessity to keep under control the peaks that the liquid free-surface exhibits during motion. This paper aims 
at providing a solution for suppressing sloshing liquid in horizontally moving cylindrical container. After 
introducing equivalent discrete models based on a mass-spring-damper system introduced by the literature 
(non-linear model), the identification and utilization of flat outputs is presented to generate rest-to-rest 
trajectories in sloshing liquid systems, which is ensure the equilibrium of the sloshing height at both initial and 
final points. Moreover, a sliding-mode controller is described to solve the trajectory tracking problem. The 
effectiveness of the proposed approach is demonstrated through numerical simulations comparisons with a 
model predictive controller (MPC). This research contributes to the advancement of control techniques for 
anti-sloshing technology systems, enabling enhanced stability, performance, and safety in various engineering 
applications. 
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1. Introduction1 

Sloshing, which refers to the motion of liquid in 
a container, is a phenomenon encountered in various 
engineering systems such as liquid-filled industrial 
equipment, spacecraft, and automotive fuel tanks. The 
significant challenges in controlling and predicting the 
behavior of the liquid, thereby impacting the stability 
and performance of the overall system. To address 
these challenges, it is important to accurately estimate 
the movement of liquid inside the container to prevent 
the liquid from overflowing. Thus, modeling and 
control techniques are crucial. 

In recent years, there have been many research 
papers on developing nonlinear models for sloshing 
liquids that capture the complex dynamics and 
nonlinearity associated with this phenomenon. A novel 
approach, based on the mass-spring-damper model [1], 
is proposed in [2] for the sloshing-height estimation. 
The generalized coordinates describing the system are 
the mass displacements from the reference position. 
This model provides a more realistic representation of 
sloshing behavior compared to linear models, enabling 
better prediction and control strategies. However, the 
control design for nonlinear sloshing systems remains 
a challenging task due to their complex dynamics. The 
purpose of control is to move the container to the 
desired position without causing the liquid to vibrate 
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with a large amplitude, or at least to suppress the 
sloshing at the beginning and end of the point-to-point 
transfer. As a result, generating a trajectory that 
matches all the requirements becomes part of the 
problem. The mass-spring-damper model is validated 
for 1-dimensional motions in [2], and it is exploited in 
[3] and [4] to plan anti-sloshing trajectories. The same 
technique is used in a software application presented 
in [5] to execute simulations of liquid sloshing in 
cylindrical and rectangular containers. 

The concept of "flatness" has emerged as a 
powerful tool for the analysis and control of nonlinear 
systems [6, 7]. Flatness theory aims to identify a set of 
variables called flat outputs, which can be explicitly 
expressed as a function of the system's state and 
control inputs [8-10]. By leveraging this property, the 
control problem can be transformed into a trajectory 
tracking problem for the flat outputs, simplifying the 
design and implementation of control strategies. [11] 
showed that the liquid sloshing suppression problem 
can be viewed as one of appropriate flat output 
trajectory planning. However, this approach still lacks 
high accuracy because it uses a linear model for 
simplicity, and hence tracking errors may appear. 

The goal of this paper is to investigate the flat 
output characterization of sloshing liquid nonlinear 
models. The key variables that exhibit flatness 
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properties in sloshing systems are defined, and their 
effect on the system's overall behavior is analyzed. 
Furthermore, the implications of flatness in the design 
of control strategies for sloshing liquid systems, 
including trajectory planning and tracking, are 
implemented by using sliding mode control (SMC), 
which is known to be robust [12] and can be used to 
yield robust performance against model inaccuracy 
and uncertainties. It is one of the best-known and most 
effective robust control methods for nonlinear 
uncertain systems. This elegant approach has been 
intensively developed and applied to a wide spectrum 
of system types, see, for example, [13-18]. The ability 
to globally stabilize the system and its inherent 
insensitivity to a class of disturbance signals are core 
properties of the theory. 

The paper is structured as follows: Section 2 
presents the liquid sloshing non-linear model 
borrowed from the work of and the equations of 
motion (EOMs) in terms of the corresponding 
generalized coordinates. In Section 3, the flatness of 
the adopted non-linear model is established, and the 
sloshing suppression problem as a rest-to-rest transfer 
problem for the flat output is clarified. A sliding-mode 
controller is developed in Section 4. The effectiveness 
of the proposed approach through numerical 
simulations and comparisons with Model Predictive 
Controller (MPC) is shown in Section 5. Finally, in 
Section 6, conclusions are drawn and suggestions for 
future developments are given. 

2. Mathematical Model 

The sloshing estimation in liquid transfer is 
modelled in several recent studies. In this paper, we 
borrowed the non-linear model introduced, and 
experimentally justified in [2]. Liquid sloshing 
dynamics is modeled by mass-spring-damper shown 
by Fig. 1. 

 
Fig. 1. Non-linear equivalent model and representation 
of the free surface of the liquid 

2.1. Model Parameters 

The moving container used in the model is 
cylindrical type with radius 𝑅𝑅, filled with a liquid of 
height ℎ and mass 𝑚𝑚𝐹𝐹. The equivalent discrete model 
used to describe the motion of the free surface is a 

mass-spring-damper model comprises a rigid mass 𝑚𝑚0 
(whose signed vertical distance from the liquid’s 
centre of gravity G is ℎ0) that moves rigidly with the 
container, and a series of moving masses 𝑚𝑚𝑛𝑛, with 
each one of them representing the equivalent mass of 
a sloshing mode (Fig. 1). Each modal mass 𝑚𝑚𝑛𝑛 is 
restrained by a spring 𝑘𝑘𝑛𝑛 and a damper 𝑐𝑐𝑛𝑛, and its 
signed vertical distance from G is ℎ𝑛𝑛. 

The model parameters are provided in [20] as 
follows: 

𝑚𝑚𝑛𝑛 = 𝑚𝑚𝐹𝐹
2𝑅𝑅

𝜉𝜉1𝑛𝑛ℎ(𝜉𝜉1𝑛𝑛2 − 1) tanh �𝜉𝜉1𝑛𝑛
ℎ
𝑅𝑅
�     (1) 

𝜔𝜔𝑛𝑛2 =
𝑘𝑘𝑛𝑛
𝑚𝑚𝑛𝑛

= 𝑔𝑔
𝜉𝜉1𝑛𝑛
𝑅𝑅

tanh �𝜉𝜉1𝑛𝑛
ℎ
𝑅𝑅
�                 (2) 

In (1), (2), 𝜉𝜉1𝑛𝑛 is a constant parameter known for 
every sloshing mode, which represent the root of the 
derivative of the Bessel function of the first kind with 
respect to the radial coordinate 𝑟𝑟, for the 1st 
circumferential mode and the 𝑛𝑛th radial mode, and 𝑔𝑔 is 
the gravity acceleration. 

The damping ratio depends on the liquid height 
ℎ, liquid kinematic viscosity 𝜐𝜐, and tank diameter 𝑅𝑅 
[21]: 

𝜁𝜁 =
2.89
𝜋𝜋 �

𝜐𝜐
𝑅𝑅3/2𝑔𝑔1/2                                    (3) 

2.2. The Equation of the Free Surface 

In this non-linear model, the sloshing mass 𝑚𝑚𝑛𝑛 
slides on a parabolic surface. The parabolic surface's 
analytical formula (Fig. 1) is given as follow: 

𝑧𝑧𝑛𝑛 =
𝐶𝐶𝑛𝑛
2𝑅𝑅

𝑥𝑥𝑛𝑛2                                                     (4) 

where 𝐶𝐶𝑛𝑛 = 𝜔𝜔𝑛𝑛2𝑅𝑅/𝑔𝑔 and the time derivative of (4) 
gives: 

�̇�𝑧𝑛𝑛 =
𝐶𝐶𝑛𝑛
𝑅𝑅
𝑥𝑥𝑛𝑛�̇�𝑥𝑛𝑛                                                 (5) 

The equation of motion can be obtained by the 
Lagrange equation: 

𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝜕𝜕𝜕𝜕
𝜕𝜕�̇�𝑥𝑛𝑛

� −
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑛𝑛

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑛𝑛

= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑛𝑛

             (6) 

where: 

𝜕𝜕 is the kinetic energy of the 𝑛𝑛th sloshing mass: 

𝜕𝜕 =
1
2
𝑚𝑚𝑛𝑛[(�̇�𝑥0 + �̇�𝑥𝑛𝑛)2 + �̇�𝑧𝑛𝑛2]                     (7) 

𝜕𝜕 is the potential energy considers the contribution of 
gravity and the non-linear-spring forces: 

𝜕𝜕 = 𝑚𝑚𝑛𝑛𝑔𝑔𝑧𝑧 + � 𝛼𝛼𝑛𝑛𝑘𝑘𝑛𝑛𝑟𝑟𝑛𝑛2𝑤𝑤−1𝑑𝑑𝑟𝑟𝑛𝑛
𝑟𝑟𝑛𝑛

0
           (8) 
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𝜕𝜕 is the Rayleigh function accounts for energy 
dissipation: 

𝜕𝜕 =
1
2
𝑐𝑐𝑛𝑛(�̇�𝑥𝑛𝑛2 + �̇�𝑧𝑛𝑛2)                                       (9) 

Substitute (7), (8) and (9) to (6), we obtain the 
equation of motion for the non-linear model: 

(1 +  𝛽𝛽𝑥𝑥𝑛𝑛2)�̈�𝑥𝑛𝑛 + (2𝜔𝜔𝑛𝑛𝜁𝜁𝑛𝑛(1 + 𝛽𝛽𝑥𝑥𝑛𝑛2) + 𝛽𝛽𝑥𝑥𝑛𝑛�̇�𝑥𝑛𝑛)�̇�𝑥𝑛𝑛  

+𝜔𝜔𝑛𝑛2 �1 + 𝛼𝛼
𝑥𝑥𝑛𝑛2𝑤𝑤−2

𝑅𝑅2
� 𝑥𝑥𝑛𝑛  + �̈�𝑥0 =  0 (10) 

where 𝛽𝛽 = 𝜔𝜔𝑛𝑛4/𝑔𝑔2, 𝜔𝜔𝑛𝑛 and 𝜁𝜁𝑛𝑛 are provided in (2) and 
(3). Constant 𝛼𝛼 is a dimensionless constant of the non-
linear spring. We choose the value of 𝑤𝑤 and 𝛼𝛼 the same 
as in [2]: 𝑤𝑤 = 2,𝛼𝛼 = 0.58.  

2.3. Sloshing-Height Estimation 

According to [21], the planar function describes 
the shape of the liquid free surface: 

𝑧𝑧(𝑟𝑟, 𝜃𝜃, �̅�𝜂𝑛𝑛) = ��̅�𝜂𝑛𝑛
𝑛𝑛

𝐽𝐽1 �𝜉𝜉1𝑛𝑛
𝑟𝑟
𝑅𝑅�

𝐽𝐽1(𝜉𝜉1𝑛𝑛) cos(𝜃𝜃) (11) 

where 𝐽𝐽1 is the Bessel function of order 1. �̅�𝜂𝑛𝑛 is the 
sloshing height at the container wall in the 
motion plane associated with the n-th mode. 

From Fig. 1, consider the conservation of the 
centre of gravity 𝑥𝑥-coordinate between the continuum 
model and the equivalent model: 

𝑥𝑥𝐺𝐺𝑚𝑚𝑓𝑓 = �𝑥𝑥𝑛𝑛
𝑛𝑛

𝑚𝑚𝑛𝑛                                  (12) 

The position of the centre of mass 𝑥𝑥𝐺𝐺  is: 

𝑥𝑥𝐺𝐺 =
1

𝜋𝜋𝑅𝑅2ℎ
� � � 𝑟𝑟2𝑠𝑠𝑠𝑠𝑛𝑛𝜃𝜃𝑑𝑑𝑧𝑧𝑑𝑑𝜃𝜃𝑑𝑑𝑟𝑟

ℎ
2+𝑧𝑧(𝑟𝑟,𝜃𝜃,𝜂𝜂�𝑛𝑛)

−ℎ2

2𝜋𝜋

0

𝑅𝑅

0
 

=
𝑅𝑅
ℎ
�

�̅�𝜂𝑛𝑛
𝜉𝜉1𝑛𝑛2𝑛𝑛

                                           (13) 

Finally, the sloshing height estimation for non-
linear model is obtained by substitute (11), (13) to 
(12): 

𝜂𝜂 =
𝜉𝜉1𝑛𝑛2 ℎ𝑚𝑚𝑛𝑛

𝑚𝑚𝐹𝐹𝑅𝑅
𝑥𝑥𝑛𝑛 = 𝛾𝛾𝑥𝑥𝑛𝑛                           (14) 

3. Flat Output Characterizations 

3.1. Preliminaries 

 Consider a general system: 

�̇�𝒙(𝑑𝑑) = 𝐹𝐹�𝒙𝒙(𝑑𝑑),𝒖𝒖(𝑑𝑑)�                             (15) 
with 𝒙𝒙(𝑑𝑑) ∈ ℝ𝑛𝑛 and 𝒖𝒖(𝑑𝑑)  ∈ ℝ𝑚𝑚 are the state vector 
and the input vector, respectively. The nonlinear 
system (15) is called differentially flat if there exists a 

set of independent variables referred to as flat output 
𝒚𝒚(𝑑𝑑) ∈ ℝ𝑚𝑚: 

𝒚𝒚(𝑑𝑑) = ℎ0 �𝒙𝒙(𝑑𝑑),𝒖𝒖(𝑑𝑑), �̇�𝒖(𝑑𝑑), … ,𝒖𝒖(𝑞𝑞)(𝑑𝑑)� (16) 

such that every other system variable (including the 
input variables) is a function of the flat output and a 
finite number of its successive time derivatives. 

𝒙𝒙(𝑑𝑑) = ℎ1 �𝒚𝒚(𝑑𝑑), �̇�𝒚(𝑑𝑑), … ,𝒚𝒚(𝑞𝑞)(𝑑𝑑)�      (17.1) 

𝒖𝒖(𝑑𝑑) = ℎ2 �𝒚𝒚(𝑑𝑑), �̇�𝒚(𝑑𝑑), … ,𝒚𝒚(𝑞𝑞+1)(𝑑𝑑)� (17.2) 

Remark 1. A system's flatness and controllability 
characteristics are closely connected. A linear system 
is verified to be flat if and only if it is controllable. 
Furthermore, the number of flat outputs is equal to the 
number of inputs for any system which accepts a 
flatness-based representation. 

3.2. Flat Output of the Nonlinear Sloshing Model 

Set 𝛽𝛽 = 𝜔𝜔𝑛𝑛4/𝑔𝑔2, the equation of motion (10) can 
be rewritten as follows: 

𝑀𝑀(𝑥𝑥𝑛𝑛)�̈�𝑥𝑛𝑛 + 𝑟𝑟(𝑥𝑥𝑛𝑛 , �̇�𝑥𝑛𝑛)�̇�𝑥𝑛𝑛 + 𝑘𝑘(𝑥𝑥𝑛𝑛)𝑥𝑥𝑛𝑛 = −�̈�𝑥0 (18) 

where: 

𝑀𝑀(𝑥𝑥𝑛𝑛) = 1 + 𝛽𝛽𝑥𝑥𝑛𝑛2                                (19) 

𝑟𝑟(𝑥𝑥𝑛𝑛 , �̇�𝑥𝑛𝑛) = 2𝜔𝜔𝑛𝑛𝜁𝜁𝑛𝑛𝑀𝑀 + 𝛽𝛽𝑥𝑥𝑛𝑛�̇�𝑥𝑛𝑛          (20) 

𝑘𝑘𝑥𝑥(𝑥𝑥𝑛𝑛) = 𝜔𝜔𝑛𝑛2 �1 +
𝛼𝛼
𝑅𝑅2

𝑥𝑥𝑛𝑛
2(𝑤𝑤−1)�          (21) 

𝑢𝑢 = �̈�𝑥0                                                     (22) 

According to [11], we can choose the flat output 
in the form of:  

𝑦𝑦 = 𝑥𝑥0 −
𝑟𝑟
𝑘𝑘𝑥𝑥
�̇�𝑥0 + �𝑀𝑀 −

𝑟𝑟2

𝑘𝑘𝑥𝑥
� 𝑥𝑥𝑛𝑛 −

𝑀𝑀𝑟𝑟
𝑘𝑘𝑥𝑥

�̇�𝑥𝑛𝑛 (23) 

To express the states 𝑥𝑥𝑛𝑛 , 𝑥𝑥0, 𝜂𝜂 and input 𝑢𝑢 as a 
function of 𝑦𝑦: 

𝑥𝑥𝑛𝑛 = −
1
𝑘𝑘𝑥𝑥
�̈�𝑦 = −

1

𝜔𝜔𝑛𝑛2 �1 + 𝛼𝛼
𝑅𝑅2 𝑥𝑥𝑛𝑛

2(𝑤𝑤−1)�
�̈�𝑦 (24) 

𝑥𝑥0 = −
1
𝑘𝑘𝑥𝑥

(𝑀𝑀�̈�𝑦 + 𝑟𝑟�̇�𝑦 + 𝑘𝑘𝑥𝑥𝑦𝑦)             (25) 

𝑢𝑢 = −(𝑀𝑀�̈�𝑥𝑛𝑛 + 𝑟𝑟�̇�𝑥𝑛𝑛 + 𝑘𝑘𝑥𝑥𝑥𝑥𝑛𝑛)               (26) 

𝜂𝜂 = −
𝛾𝛾
𝑘𝑘𝑥𝑥
�̈�𝑦                                             (27) 

Since 𝑤𝑤 = 2, (24) becomes a 3-degree equation:  

𝜔𝜔𝑛𝑛2
𝛼𝛼
𝑅𝑅2

𝑥𝑥𝑛𝑛3 + 𝜔𝜔𝑛𝑛2𝑥𝑥𝑛𝑛 + �̈�𝑦 = 0                     (28) 

with only one solution: 
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𝑥𝑥𝑛𝑛 =
𝑅𝑅

√3𝛼𝛼 
��𝑘𝑘 + �𝑘𝑘2 + 1
3

+ �𝑘𝑘 − �𝑘𝑘2 + 1
3

� = 𝑓𝑓0(�̈�𝑦)
                                                                                   

 

(29) 

with: 𝑘𝑘(�̈�𝑦) = − 3√3𝛼𝛼
2𝑅𝑅𝜔𝜔𝑛𝑛2

�̈�𝑦. 

The first and second order derivatives of 𝑥𝑥𝑛𝑛 are: 

�̇�𝑥𝑛𝑛 =
𝑅𝑅

√3𝛼𝛼 

�𝑘𝑘 + √𝑘𝑘2 + 1
3

− �𝑘𝑘 − √𝑘𝑘2 + 1
3

3√𝑘𝑘2 + 1
𝑘𝑘�𝑦𝑦(3)�  

= 𝑓𝑓1��̈�𝑦,𝑦𝑦(3)�                                                                  (30) 

�̈�𝑥𝑛𝑛 = 

𝑅𝑅
√3𝛼𝛼 

�
�𝑘𝑘 + √𝑘𝑘2 + 1
3

− �𝑘𝑘 − √𝑘𝑘2 + 1
3

3√𝑘𝑘2 + 1
𝑘𝑘�𝑦𝑦(4)�

+ �
�𝑘𝑘 − √𝑘𝑘2 + 1
3

+ �𝑘𝑘 + √𝑘𝑘2 + 1
3

9(𝑘𝑘2 +  1)

+
𝑘𝑘 ��𝑘𝑘 − √𝑘𝑘2 + 1

3
−  �𝑘𝑘 + √𝑘𝑘2 + 1

3
�

3�(𝑘𝑘2 + 1)3
� 𝑘𝑘�𝑦𝑦(3)��

= 𝑓𝑓2��̈�𝑦,𝑦𝑦(3),𝑦𝑦(4)�                                                        (31) 

Substitute (29), (30) to (19), (20) and (21), we obtain: 

𝑀𝑀(�̈�𝑦) = 1 +
𝐶𝐶𝑛𝑛2

𝑅𝑅2
�𝑓𝑓0(�̈�𝑦)�2                    (32) 

𝑟𝑟��̈�𝑦,𝑦𝑦(3)� = 2𝜔𝜔𝑛𝑛𝜁𝜁𝑛𝑛𝑀𝑀(�̈�𝑦) +
𝐶𝐶𝑛𝑛2

𝑅𝑅2
𝑓𝑓0(�̈�𝑦)𝑓𝑓1��̈�𝑦,𝑦𝑦(3)� (33) 

𝑘𝑘𝑥𝑥(�̈�𝑦) = 𝜔𝜔𝑛𝑛2 �1 +
𝛼𝛼
𝑅𝑅2

�𝑓𝑓0(�̈�𝑦)�2�           (34) 

and yields: 

𝑥𝑥0 = −
1

𝑘𝑘𝑥𝑥(�̈�𝑦) �𝑀𝑀
(�̈�𝑦)�̈�𝑦 + 𝑟𝑟��̈�𝑦, 𝑦𝑦(3)��̇�𝑦 + 𝑘𝑘(�̈�𝑦)𝑦𝑦� (35) 

𝑢𝑢 = −� 𝑀𝑀(�̈�𝑦)𝑓𝑓2��̈�𝑦,𝑦𝑦(3),𝑦𝑦(4)� + 𝑟𝑟��̈�𝑦, 𝑦𝑦(3)�𝑓𝑓1��̈�𝑦,𝑦𝑦(3)�

+ 𝑘𝑘𝑥𝑥(�̈�𝑦)𝑓𝑓0(�̈�𝑦)�                             (36) 

which proves that all state can be expressed as 
functions of 𝑦𝑦 and a finite number of its derivatives, 
and thus the system (10) is flat with 𝑦𝑦 as the flat output. 

3.3. Rest-to-Rest Trajectory Planning 

Traditionallly, rest-to-rest trajectory planning 
does not consider the internal dynamics. However in 
this study, since all the system variables can be 
expressed as functions of this flat output and a finite 
number of its successive derivatives, the sloshing 
height 𝜂𝜂 can be ensured to reach a stationary condition 
when the end point is attained.  

We want to generate displacements of the stage 
from one steady state to another one with the base also 
in steady state at the stage’s final position. In rest 
positions, it suffices to generate a polynomial 
trajectory for 𝑦𝑦 with respect to time, interpolating the 
initial and final conditions: 

𝑥𝑥0(𝑑𝑑0) = 𝑥𝑥0, �̇�𝑥0(𝑑𝑑0) = 0, 𝑥𝑥𝑛𝑛(𝑑𝑑0) = 0,
�̇�𝑥𝑛𝑛(𝑑𝑑0) = 0, 𝑢𝑢(𝑑𝑑0) = 0 

𝑥𝑥0(𝑑𝑑1) = 𝑥𝑥1, �̇�𝑥0(𝑑𝑑1) = 0, 𝑥𝑥𝑛𝑛(𝑑𝑑1) = 0,
�̇�𝑥𝑛𝑛(𝑑𝑑1) = 0, 𝑢𝑢(𝑑𝑑1) = 0 

Thus 

𝑦𝑦0(𝑑𝑑0) = 𝑥𝑥0, �̇�𝑦0(𝑑𝑑0) = 0, �̈�𝑦(𝑑𝑑0) = 0,
𝑦𝑦(3)(𝑑𝑑0) = 0, 𝑦𝑦(4)(𝑑𝑑0) = 0 

𝑦𝑦0(𝑑𝑑1) = 𝑥𝑥1, �̇�𝑦0(𝑑𝑑1) = 0, �̈�𝑦(𝑑𝑑1) = 0,
𝑦𝑦(3)(𝑑𝑑1) = 0, 𝑦𝑦(4)(𝑑𝑑1) = 0 

Since there are 10 initial and final conditions, the 
minimal degree of an interpolating polynomial is equal 
to 9. According to [19], we get the interpolation 
polynomials: 

𝑦𝑦 = 𝑥𝑥0 + (𝑥𝑥1 − 𝑥𝑥0)(126 − 420𝜏𝜏 + 540𝜏𝜏2 − 315𝜏𝜏3
+ 70𝜏𝜏4)𝜏𝜏5 

(37) 

with 𝜏𝜏 = (𝑑𝑑 - 𝑑𝑑0)/(𝑑𝑑1  - 𝑑𝑑0). To maintain smoothness 
and stability at the start and end points, it is essential 
to set all derivatives of 𝑦𝑦 to zero. To achieve this, it is 
possible to introduce extra null derivatives of order 
four or higher at both the start and end points. This 
approach helps prevent oscillations or unstable 
behaviours at the end point. One current drawback of 
the method is that the length of time the trajectory will 
take must be known a prior to satisfy the initial 
conditions. 

 
Fig. 2. Control Scheme for Sloshing Liquid Containers 



  
JST: Smart Systems and Devices 

Volume 33, Issue 3, September 2023, 041-048 

45 

 In practice, it has been observed that trajectories 
with inappropriate time and distance can cause the 
nonlinear sloshing model to exceed the safe domain. 
Therefore, it is important to choose reasonable 
durations and distances to avoid strongly nonlinear 
motion, where the liquid free-surface exhibits 
instantaneous peaks, characterized by swirling shapes. 

The corresponding solution is then stored as the 
reference trajectory used for the trajectory controller 
which will be designed in the next section. The control 
structure is shown in Fig. 2. 

4. Sliding Mode Controller Design 

Consider the non-linear sloshing system with 
output variable 𝒁𝒁𝟏𝟏 = [𝑥𝑥0 𝜂𝜂]𝑇𝑇. We need to make output 
𝒁𝒁𝟏𝟏 track the desired trajectory 𝒁𝒁𝟏𝟏𝟏𝟏 = [𝑥𝑥0𝑑𝑑  𝜂𝜂𝑑𝑑]𝑇𝑇, which 
designed through flat output 𝑦𝑦 in the previous section.  

Define
𝒁𝒁𝟐𝟐 = [�̇�𝑥0 �̇�𝜂]𝑇𝑇                                             (38) 

Equation (18) is rewritten as follow: 

�̇�𝒁𝟏𝟏 = 𝒁𝒁𝟐𝟐                                                     (39) 

�̇�𝒁𝟐𝟐 = −𝒇𝒇 + 𝒈𝒈𝑢𝑢                                         (40) 

where: 

𝒇𝒇 = �
0 0

0
𝑘𝑘𝑥𝑥
𝑀𝑀
�𝒁𝒁𝟏𝟏 + �

0 0
0

𝑟𝑟
𝑀𝑀
�𝒁𝒁𝟐𝟐              (41) 

𝒈𝒈 = � 1
−𝛾𝛾/𝑀𝑀�                                             (42) 

Define 𝒆𝒆 = 𝒁𝒁𝟏𝟏 − 𝒁𝒁𝟏𝟏𝟏𝟏 as the tracking error. Then 
the sliding surface is design as: 

𝒔𝒔 = 𝝀𝝀𝒆𝒆 + �̇�𝒆                                              (43) 

where 𝜆𝜆 is a designed positive definite diagonal matrix. 
Take the time derivative we obtain that: 

�̇�𝒔 = 𝝀𝝀�̇�𝒆 + �̈�𝒆 = 𝝀𝝀�̇�𝒆 + �̈�𝒁𝟏𝟏 − �̈�𝒁𝟏𝟏𝟏𝟏 = 𝝀𝝀�̇�𝒆 + �−𝒇𝒇 + 𝒈𝒈𝑢𝑢 −
�̈�𝒁𝟏𝟏𝟏𝟏�   (44) 

The sliding mode controller is proposed as 
follows: 

𝑢𝑢 = 𝒈𝒈−𝟏𝟏�𝒇𝒇 + �̈�𝒁𝟏𝟏𝟏𝟏 − 𝝀𝝀�𝒁𝒁𝟐𝟐 − �̇�𝒁𝟏𝟏𝟏𝟏� − 𝒌𝒌𝟏𝟏𝒔𝒔 −
𝒌𝒌𝟐𝟐𝑠𝑠𝑠𝑠𝑔𝑔𝑛𝑛(𝒔𝒔)�           (45) 

where 𝒌𝒌𝟏𝟏, 𝒌𝒌𝟐𝟐 is the positive definite switching gain 
matrices. 𝒈𝒈−𝟏𝟏 = � 𝑀𝑀2

𝛾𝛾2+ 𝑀𝑀2 ,− 𝛾𝛾𝑀𝑀
𝛾𝛾2 + 𝑀𝑀2� is pseudoinverse 

matrix of 𝒈𝒈. Select the Lyapunov function as 

𝐿𝐿 =
1
2
𝒔𝒔𝑻𝑻𝒔𝒔                                                   (46) 

Therefore, we have: 

�̇�𝐿 = 𝒔𝒔𝑻𝑻�̇�𝒔 = 𝒔𝒔𝑇𝑇�𝝀𝝀�̇�𝒆 + �−𝒇𝒇 + 𝒈𝒈𝑢𝑢 − �̈�𝒁𝟏𝟏𝟏𝟏��                (47)
= 𝒔𝒔𝑇𝑇�−𝒌𝒌𝟏𝟏𝒔𝒔 − 𝒌𝒌𝟐𝟐𝑠𝑠𝑠𝑠𝑔𝑔𝑛𝑛(𝒔𝒔)�
≤ −𝜆𝜆𝑚𝑚𝑚𝑚𝑛𝑛(𝒌𝒌𝟏𝟏)‖𝒔𝒔‖𝟐𝟐 − 𝜆𝜆𝑚𝑚𝑚𝑚𝑛𝑛(𝒌𝒌𝟐𝟐)‖𝒔𝒔‖
≤ 0 ��̇�𝐿 = 0 ⟺ 𝒔𝒔 = 𝟎𝟎2×1� 

where 𝜆𝜆𝑚𝑚𝑚𝑚𝑛𝑛(∙) represents the minimum eigenvalue of 
a matrix.  

5. Simulation results and Comparisons 

In this Section, we first present simulation results 
of our proposed approach introduced in Section 3, 4. 
Then, various comparisons of our contributions with 
other approaches are provided. 

5.1. Flat output characterization results 

In this section, we carry out some simulations 
with a cylindrical container and the chosen liquid is 
water with the dynamic viscosity 𝜐𝜐 and 
density 𝜌𝜌, respectively. All the parameters used in the 
paper are given in Table 1. 
Table 1. Parameters of Sloshing Liquid Simulation 

Parameter Value Unit 

R 50 mm 

h 70 mm 

g 9.81 m/s2 

𝜌𝜌 997 kg/m3 

𝜐𝜐 0.001 Pa∙s 

𝛼𝛼 0.58 − 

𝑤𝑤 2 − 

𝜉𝜉1𝑛𝑛 1.841 − 
The trajectories are planned so that the container 

will move from initial point 𝑥𝑥0 = 0 to the final point 
𝑥𝑥𝑚𝑚 = 1.5 in 𝜕𝜕 = 10  [s]. A 2-1-2 trajectory will be used 
to compared with the flatness-based trajectory. The 
input acceleration is set as: 

          𝑢𝑢0(2−1−2)(𝑑𝑑) = �
0.1         ∀ 1 < 𝑑𝑑 ≤ 4
−0.1      ∀ 6 < 𝑑𝑑 ≤ 9

0          𝑜𝑜𝑑𝑑ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑠𝑠𝑠𝑠𝑒𝑒
          (48) 

The rest-to-rest trajectory designed in Section 3 
is shown in Fig. 2. We then deduce the corresponding 
trajectories for 𝑥𝑥0, �̇�𝑥0, 𝑥𝑥𝑛𝑛 , 𝜂𝜂,𝑢𝑢 and their comparisons as 
depicted in Fig. 3-7.  

 As shown in Fig. 3, both trajectories guide the 
containers to reach their destination points in a defined 
time. Although the 2-1-2 trajectory has a lower 
velocity and acceleration input, which is shown in  
Fig. 4, 5, the maximum sloshing height sometimes 
reaches outside the 0.6 [mm] range, which may cause 
the overflow phenomenon. Also the sloshing height 
does not reach zero when the container stops at the 
final point, whereas the rest-to-rest trajectory ensures 
that the equilibrium of the sloshing height at both 
initial and final points is equal to 0 during the 
simulation time. This state does not reach zero 
throughout the simulation time but is bound in an 
allowed range. 
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Fig. 3. Rest-to-rest Flat Output Trajectory 

 
Fig. 4. Container Position 

 
Fig. 5. Maximum Sloshing Height 

 
Fig. 6. Motion of Equivalent Mass 

 

 
Fig. 7. Container Velocity 

5.2. Controller Comparison 

In this section, the tracking performance between 
SMC and MPC controller of sloshing liquid will be 
compared. In practice, systems have various physical 
limits such as response time, designed operating 
capacity, and more. Hence, Nonlinear Model 
Predictive Control (NMPC) is widely researched and 
applied. The advantage of NMPC lies in its ability to 
explicitly consider constraints, especially in complex 
systems that require meeting numerous conditions. 

This makes it a valuable approach for controlling 
complex systems with multiple constraints, providing 
a more effective and robust control solution. 
Furthermore, based on the prediction horizon, NMPC 
can show an optimal solution to optimize the future 
system behavior and feedforward disturbance 
compensation can be easily integrated into NMPC 
formulation.  

To guarantee the operation of the system, we will 
consider the maximum acceleration of the system. And 
in this study, we use the Nonlinear MPC Toolbox 
integrated in MATLAB-Simulink to simulation. But the 
proposed general NMPC scheme is obtained by 
solving the following optimal control problem: 

Minimize 

             𝐽𝐽 = �‖𝒘𝒘𝒆𝒆(𝑘𝑘 + 𝑗𝑗)‖2 + 

𝑁𝑁𝑝𝑝

𝑘𝑘=0

 �‖𝜆𝜆𝑢𝑢‖2 

𝑁𝑁𝑝𝑝

𝑘𝑘=0

         (49) 

Subject to 

|𝑢𝑢| ≤ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥  

where the weighted matrix is 𝒘𝒘 = [180 180],  
𝜆𝜆 = 0.1, and the predicted error output matrix is  
𝒆𝒆 = 𝒁𝒁𝟏𝟏𝟏𝟏(𝑘𝑘 + 𝑗𝑗) − 𝒁𝒁𝟏𝟏(𝑘𝑘 + 𝑗𝑗) at sampling (𝑘𝑘 + 𝑗𝑗). 
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These two inequality constraints are set the upper and 
the lower bound of the control acceleration, ensuring 
the optimal control solutions are admissible. 

Comparative results in Fig. 9-12 indicate that 
both controllers have good tracking performance, but 
the SMC has higher tracking accuracy than the MPC. 

Both the container position and the sloshing height of 
the liquid can robustly track the planned trajectory in 
Section 3 using the SMC and MPC. The control input 
is plotted in Fig. 8. There are still a few errors 
compared with the acceleration input in Fig. 5. But 
these errors are allowed to remain within a limited 
range.

 
Fig. 8. Acceleration Input 

 
Fig. 9. Control Inputs 

 
Fig. 10. Container Position Comparisons with Flat 
Reference 

 
Fig. 11. Maximum Sloshing Height Comparisons 

 

 
Fig. 12. Sloshing Height Errors 

 
Fig. 13. Position Errors 
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6. Conclusion 

In this paper, we have investigated the 
characterization of flat outputs for sloshing liquid 
nonlinear models to achieve rest-to-rest trajectories. 
Sloshing phenomena in liquid containers present 
significant challenges in engineering applications, and 
accurate control of sloshing dynamics is crucial for 
system stability and performance. By leveraging the 
concept of flatness theory, we have proposed a novel 
approach to identify key variables that exhibit flatness 
properties in sloshing systems. Next two control 
strategies are provided and compared to obtain robust 
trajectory tracking for container position and liquid 
sloshing height.  Future work will expand the proposed 
flat output approach for 2-dimensional motion of 
liquid container and use an observer to obtain 
unmeasured state for controller. 
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