GO gle DeepMind 2024-8-1

Jumping Ahead: Improving Reconstruction
Fidelity with JumpReLU Sparse Autoencoders

Senthooran Rajamanoharan”’, Tom Lieberum®, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, Janos
Kramar and Neel Nanda
*: Core contributor. T: Core infrastructure contributor.

Sparse autoencoders (SAEs) are a promising unsupervised approach for identifying causally relevant
and interpretable linear features in a language model’s (LM) activations. To be useful for downstream
tasks, SAEs need to decompose LM activations faithfully; yet to be interpretable the decomposition
must be sparse — two objectives that are in tension. In this paper, we introduce JumpReLU SAEs, which
achieve state-of-the-art reconstruction fidelity at a given sparsity level on Gemma 2 9B activations,
compared to other recent advances such as Gated and TopK SAEs. We also show that this improvement
does not come at the cost of interpretability through manual and automated interpretability studies.
JumpReLU SAEs are a simple modification of vanilla (ReLU) SAEs — where we replace the ReLU with a
discontinuous JumpReLU activation function — and are similarly efficient to train and run. By utilising
straight-through-estimators (STEs) in a principled manner, we show how it is possible to train JumpReLU
SAEs effectively despite the discontinuous JumpReLU function introduced in the SAE’s forward pass.
Similarly, we use STEs to directly train LO to be sparse, instead of training on proxies such as L1, avoiding
problems like shrinkage.

1. Introduction reconstruction fidelity.

One strand of recent research in training SAEs
on LM activations (Gao et al., 2024; Rajamanoha-
ran et al.,, 2024; Taggart, 2024) has been on
finding improved SAE architectures and training
methods that push out the Pareto frontier balanc-
ing these two objectives, while preserving other
less quantifiable measures of SAE quality such as

for tasks such as circuit analysis (Marks et al the interpretability or functional relevance of dic-

2024) and model steering (Conmy and Nanda tionary directions. A common thread connecting
2024) " these recent improvements is the introduction of

a thresholding or gating operation to determine

SAEs work by finding approximate, sparse, lin- which SAE features to use in the decomposition.
ear decompositions of language model (LM) ac-

tivations in terms of a large dictionary of basic
“feature” directions. Two key objectives for a good
decomposition (Bricken et al., 2023) are that it
is sparse — i.e. that only a few elements of the
dictionary are needed to reconstruct any given
activation — and that it is faithful — i.e. the approx-
imation error between the original activation and
recombining its SAE decomposition is “small” in
some suitable sense. These two objectives are
naturally in tension: for any given SAE training
method and fixed dictionary size, it is typically
not possible to increase sparsity without losing

Sparse autoencoders (SAEs) allow us to find
causally relevant and seemingly interpretable di-
rections in the activation space of a language
model (Bricken et al., 2023; Cunningham et al.,
2023; Templeton et al., 2024). There is interest
within the field of mechanistic interpretability in
using sparse decompositions produced by SAEs

In this paper, we introduce JumpReLU SAEs —
a small modification of the original, ReLU-based
SAE architecture (Ng, 2011) where the SAE en-
coder’s ReLU activation function is replaced by
a JumpReLU activation function (Erichson et al.,
2019), which zeroes out pre-activations below a
positive threshold (see Fig. 1). Moreover, we train
JumpReLU SAEs using a loss function that is sim-
ply the weighted sum of a L2 reconstruction error
term and a LO sparsity penalty, eschewing easier-
to-train proxies to L0, such as L.1, and avoiding
the need for auxiliary tasks to train the threshold.

Corresponding authors: srajamanoharan@google.com and neelnanda@google.com
© 2024 Google DeepMind. All rights reserved

Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders

Raw pre-activations

ReLU(pre-activations)

X False positives

ReLU(pre-activations - offset)

X Shrinkage v

JumpReLU(activations)

Figure 1 | A toy model illustrating why JumpReLU (or similar activation functions, such as TopK)
are an improvement over ReLU for training sparse yet faithful SAEs. Consider a direction in which
the encoder pre-activation is high when the corresponding feature is active and low, but not always
negative, when the feature is inactive (far-left). Applying a ReLU activation function fails to remove all
false positives (centre-left), harming sparsity. It is possible to get rid of false positives while maintaining
the ReLU, e.g. by decreasing the encoder bias (centre-right), but this leads to feature magnitudes
being systematically underestimated, harming fidelity. The JumpReLU activation function (far-right)
provides an independent threshold below which pre-activations are screened out, minimising false
positives, while leaving pre-activations above the threshold unaffected, improving fidelity.

Our key insight is to notice that although such
a loss function is piecewise-constant with respect
to the threshold — and therefore provides zero
gradient to train this parameter — the derivative
of the expected loss can be analytically derived,
and is generally non-zero, albeit it is expressed
in terms of probability densities of the feature
activation distribution that need to be estimated.
We show how to use straight-through-estimators
(STEs; Bengio et al. (2013)) to estimate the gra-
dient of the expected loss in an efficient manner,
thus allowing JumpReLU SAEs to be trained using
standard gradient-based methods.

We evaluate JumpReLU, Gated and TopK (Gao
etal., 2024) SAEs on Gemma 2 9B (Gemma Team,
2024) residual stream, MLP output and attention
output activations at several layers (Fig. 2). At
any given level of sparsity, we find JumpReLU
SAEs consistently provide more faithful recon-
structions than Gated SAEs. JumpReLU SAEs also
provide reconstructions that are at least as good
as, and often slightly better than, TopK SAEs. Sim-
ilar to simple ReLU SAEs, JumpReLU SAEs only
require a single forward and backward pass dur-
ing a training step and have an elementwise ac-
tivation function (unlike TopK, which requires a
partial sort), making them more efficient to train
than either Gated or TopK SAEs.

Compared to Gated SAEs, we find both TopK

and JumpReLU tend to have more features that
activate very frequently — i.e. on more than 10%
of tokens (Fig. 5). Consistent with prior work
evaluating TopK SAEs (Cunningham and Conerly,
2024) we find these high frequency JumpReLU
features tend to be less interpretable, although
interpretability does improve as SAE sparsity
increases. Furthermore, only a small propor-
tion of SAE features have very high frequencies:
fewer than 0.06% in a 131k-width SAE. We also
present the results of manual and automated in-
terpretability studies indicating that randomly
chosen JumpReLU, TopK and Gated SAE features
are similarly interpretable.

2. Preliminaries

SAE architectures SAEs sparsely decompose
language model activations x € R" as a linear
combination of a dictionary of M > n learned fea-
ture directions and then reconstruct the original
activations using a pair of encoder and decoder
functions (f, x) defined by:

f(x) := 0 (WencX + benc) , (1)
)A((f) = Wdecf + bdec- (2)
In these expressions, f(x) € RM is a sparse, non-
negative vector of feature magnitudes present

in the input activation x, whereas X(f) € R" is
a reconstruction of the original activation from

Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders

layer=9 layer=20 layer=31
5 SAE Type
—e— Gated (Original)

" 5 —e— Gated (RI-L1)
3 —e— JumpReLU
; 0.1 —o— TopK (AuxK)
-
3 5
]
[a)

2

0.01
10 2 5 100 2 10 2 5 100 2 10 2 5 100 2
LO LO LO

Figure 2 | JumpReLU SAEs offer reconstruction fidelity that equals or exceeds Gated and TopK SAEs
at a fixed level of sparsity. These results are for SAEs trained on the residual stream after layers 9, 20
and 31 of Gemma 2 9B. See Fig. 10 and Fig. 11 for analogous plots for SAEs trained on MLP and

attention output activations at these layers.

a feature representation f € R™. The columns
of Wyee, which we denote by d; fori = 1...M,
represent the dictionary of directions into which
the SAE decomposes x. We also use s(x) in this
text to denote the encoder’s pre-activations:

()

7(X) := WeneX + bene.

Activation functions The activation function
o varies between architectures: Bricken et al.
(2023) and Templeton et al. (2024) use the
ReLU activation function, whereas TopK SAEs
(Gao et al., 2024) use a TopK activation func-
tion (which zeroes out all but the top K pre-
activations). Gated SAEs (Rajamanoharan et al.,
2024) in their general form do not fit the speci-
fication of Eq. (1); however with weight sharing
between the two encoder kernels, they can be
shown (Rajamanoharan et al., 2024, Appendix E)
to be equivalent to using a JumpReLU activation
function, defined as

JumpRelLU,(z) := 2 H(z — 0) “4)
where H is the Heaviside step function! when
0 > 0 is the JumpReLU’s threshold, below which
pre-activations are set to zero, as shown in Fig. 3.

LH(z) is one when z > 0 and zero when z < 0. Its value
when z = 0 is a matter of convention — unimportant when
H appears within integrals or integral estimators, as is the
case in this paper.

JumpRelLUy(z)

z

Figure 3 | The JumpReLU activation function ze-
roes inputs below the threshold, 6, and is an iden-
tity function for inputs above the threshold.

Loss functions Language model SAEs are
trained to reconstruct samples from a large
dataset of language model activations x ~ D
typically using a loss function of the form

LX) := [[x - %(E X)) I3+ 1 SF (%) +Laux, (5)
B e

LFSCOHS[I‘UCt Lsparsity

where S is a function of the feature coefficients
that penalises non-sparse decompositions and the
sparsity coefficient A sets the trade-off between
sparsity and reconstruction fidelity. Optionally,
auxiliary terms in the loss function, Ly,x may
be included for a variety of reasons, e.g. to help
train parameters that would otherwise not re-
ceive suitable gradients (used for Gated SAEs) or
to resurrect unproductive (“dead”) feature direc-

Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders

tions (used for TopK). Note that TopK SAEs are
trained without a sparsity penalty, since the TopK
activation function directly enforces sparsity.

Sparsity penalties Both the ReLU SAEs of
Bricken et al. (2023) and Gated SAEs use the
L1-norm S(f) := ||f||; as a sparsity penalty. While
this has the advantage of providing a useful gra-
dient for training (unlike the LO-norm), it has the
disadvantage of penalising feature magnitudes in
addition to sparsity, which harms reconstruction
fidelity (Rajamanoharan et al., 2024; Wright and
Sharkey, 2024).

The L1 penalty also fails to be invariant under
reparameterizations of a SAE; by scaling down en-
coder parameters and scaling up decoder parame-
ters accordingly, it is possible to arbitrarily shrink
feature magnitudes, and thus the L1 penalty, with-
out changing either the number of active features
or the SAF’s output reconstructions. As a result, it
is necessary to impose a further constraint on SAE
parameters during training to enforce sparsity:
typically this is achieved by constraining columns
of the decoder weight matrix d; to have unit norm
(Bricken et al., 2023). Conerly et al. (2024) in-
troduce a modification of the L1 penalty, where
feature coefficients are weighted by the norms of
the corresponding dictionary directions, i.e.

M
Swena(f) =) filldilly (6)

i=1

We call this the reparameterisation-invariant L1
(RI-L1) sparsity penalty, since this penalty is in-
variant to SAE reparameterisation, making it un-
necessary to impose constraints on ||d;||5.

Kernel density estimation Kernel density esti-
mation (KDE; Parzen (1962); Wasserman (2010))
is a technique for empirically estimating prob-
ability densities from a finite sample of obser-
vations. Given N samples x;_y of a random
variable X, one can form a kernel density esti-
mate of the probability density px(x) using an
estimator of the form py(x) := &= YN | K (¥22),
where K is a non-negative function that satis-
fies the properties of a centred, positive-variance

probability density function and ¢ is the kernel

bandwidth parameter.? In this paper we will be
actually be interested in estimating quantities
like v(y) = E[f(X,Y)|Y = y]py(y) for jointly dis-
tributed random variables X and Y and arbitrary
(but well-behaved) functions f. Following a sim-
ilar derivation as in Wasserman (2010, Chapter
20), it is straightforward to generalise KDE to
estimate v(y) using the estimator

S

N
00) = 3 flre Kk (X22). @)
a=1

3. JumpReLU SAEs

A JumpReLU SAE is a SAE of the standard form
Eq. (1) with a JumpReLU activation function:

f(x) := JumpReLUg (WepcX + bene) . (8)

Compared to a ReLU SAE, it has an extra positive
vector-valued parameter 0 € R that specifies,
for each feature i, the threshold that encoder pre-
activations need to exceed in order for the feature
to be deemed active.

Similar to the gating mechanism in Gated SAEs
and the TopK activation function in TopK SAEs,
the threshold 0 gives JumpReLU SAEs the means
to separate out deciding which features are active
from estimating active features’ magnitudes, as
illustrated in Fig. 1.

We train JumpReLU SAEs using the loss func-
tion

L(x) =[x - XE) 3+ A IE®lo. (9
—_—— | ——

Lreconstruct -Csparsity

This is a loss function of the standard form Eq. (5)
where crucially we are using a LO sparsity penalty
to avoid the limitations of training with a L1 spar-
sity penalty (Rajamanoharan et al., 2024; Wright
and Sharkey, 2024). Note that we can also ex-
press the LO sparsity penalty in terms of a Heavi-
side step function on the encoder’s pre-activations
7(X):

M
Lsparsity 1= A [EX)llo = 4) H(m:i(x) - 6)). (10)

i=1

2Le. K(x) > 0, /_0:0 K(x)dx =1, /_O:OXK(X)dx = 0 and
/_0:0 x2K (x)dx > 0.

Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders

JumpRelug(z)
—— dJumpReluy(z)/80

0

/
U

—— H(z-0)
—— 3H(z-0)/30

Figure 4 | The JumpReLU activation function (left) and the Heaviside step function (right) used
to calculate the sparsity penalty are piecewise constant with respect to the JumpReLU threshold.
Therefore, in order to be able to train a JumpReLU SAE, we define the pseudo-derivatives illustrated in
these plots and defined in Eq. (11) and Eq. (12), which approximate the Dirac delta functions present
in the actual (weak) derivatives of the JumpReLU and Heaviside functions. These pseudo-derivatives
provide a gradient signal to the threshold whenever pre-activations are within a small window of
width ¢ around the threshold. Note these plots show the profile of these pseudo-derivatives in the z,
not O direction, as z is the stochastic input that is averaged over when computing the mean gradient.

The relevance of this will become apparent
shortly.

The difficulty with training using this loss func-
tion is that it provides no gradient signal for
training the threshold: 6 appears only within
the arguments of Heaviside step functions in
both Lreconstruer and Lgparsiy-> Our solution is
to use straight-through-estimators (STEs; Bengio
et al. (2013)), as illustrated in Fig. 4. Specifi-
cally, we define the following pseudo-derivative
for JumpReLUy(2):*

o) 0 (z-6
@JumpReLUe(z) = _EK(
and the following pseudo-derivative for the Heav-
iside step function appearing in the LO penalty:
0 1 (z-6
—H(z-0) :=-=K .
oe} (z-9) € (£)
In these expressions, K can be any valid kernel
function (see Section 2) —i.e. it needs to satisfy

) (11)

(12)

3The LO sparsity penalty also provides no gradient signal
for the remaining SAE parameters, but this is not necessarily
a problem. It just means that the remaining SAE parameters
are encouraged purely to reconstruct input activations faith-
fully, not worrying about sparsity, while sparsity is taken
care of by the threshold parameter 6. This is analogous
to TopK SAEs, where similarly the main SAE parameters
are trained solely to reconstruct faithfully, while sparsity is
enforced by the TopK activation function.

4We use the notation 8/8z to denote pseudo-derivatives,
to avoid conflating them with actual partial derivatives for
these functions.

the properties of a centered, finite-variance prob-
ability density function. In our experiments, we

use the rectangle function, rect(z) := H (z + %) -

H (z - %) as our kernel; however similar results

can be obtained with other common kernels, such
as the triangular, Gaussian or Epanechnikov ker-
nel (see Appendix H). As we show in Section 4,
the hyperparameter ¢ plays the role of a KDE
bandwidth, and needs to be selected accordingly:
too low and gradient estimates become too noisy,
too high and estimates become too biased.®

Having defined these pseudo-derivatives, we
train JumpReLU SAEs as we would any differen-
tiable model, by computing the gradient of the
loss function in Eq. (9) over batches of data (re-
membering to apply these pseudo-derivatives in
the backward pass), and sending the batch-wise
mean of these gradients to the optimiser in order
to compute parameter updates.

In Appendix J we provide pseudocode for the
JumpReLU SAFE’s forward pass, loss function and
for implementing the straight-through-estimators
defined in Eq. (11) and Eq. (12) in an autograd
framework like Jax (Bradbury et al., 2018) or

5For the experiments in this paper, we swept this param-
eter and found ¢ = 0.001 (assuming a dataset normalised
such that Ex [xz] = 1) works well across different models,
layers and sites. However, we suspect there are more princi-
pled ways to determine this parameter, borrowing from the
literature on KDE bandwidth selection.

Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders

PyTorch (Paszke et al., 2019).

4. How STEs enable training through
the jump

Why does this work? The key is to notice that
during SGD, we actually want to estimate the
gradient of the expected loss, Ex [Lg(x)], in order
to calculate parameter updates;® Although the
loss itself is piecewise constant with respect to the
threshold parameters — and therefore has zero
gradient — the expected loss is not.

As shown in Appendix B, we can differentiate
expected loss with respect to @ analytically to
obtain

dlEx [-£9 (X)]

%, = (Ex [I;(X)|m;(X) = 6;] — 1) p;(6:),

(13)
where p; is the probability density function for
the distribution of feature pre-activations x;(x)

and
I;(x) :=26,d; - (x - X(f(x))), (14)

recalling that d; is the column of W, correspond-
ing to feature i.”

In order to train JumpReLU SAEs, we need to
estimate the gradient as expressed in Eq. (13)
from batches of input activations, X1, Xa, ..., Xy.
To do this, we can use a generalised KDE estima-
tor of the form Eq. (7). This gives us the following
estimator of the expected loss’s gradient with re-
spect to O:

7 (Xq) —91')_ (15)

1 N
N—gé{n(m—am(;

As we show in Appendix C, when we instruct
autograd to use the pseudo-derivatives defined in

6In this section, we write the JumpReLU loss as Lg(x) to
make explicit its dependence on the threshold parameter 0.

7Intuitively, the first term in Eq. (13) measures the rate
at which the expected reconstruction loss would increase if
we increase 6; — thereby pushing a small number of features
that are currently used for reconstruction below the updated
threshold. Similarly, the second term is —A multiplied by
the rate at which the mean number of features used for
reconstruction (i.e. mean L0O) would decrease if we increase
the threshold 6;. The density p;(6;) comes into play because
impact of a small change in 9; on either the reconstruction
loss or sparsity depends on how often feature activations
occur very close to the current threshold.

Egs. (11) and (12) in the backward pass, this is
precisely the batch-wise mean gradient that gets
calculated — and used by the optimiser to update
0 — in the training loop.

In other words, training with straight-through-
estimators as described in Section 3 is equivalent
to estimating the true gradient of the expected
loss, as given in Eq. (13), using the kernel density
estimator defined in Eq. (15).

5. Evaluation

In this section, we compare JumpReLU SAEs to
Gated and TopK SAEs across a range of evaluation
metrics.®

To make these comparisons, we trained mul-
tiple 131k-width SAEs (with a range of sparsity
levels) of each type (JumpReLU, Gated and TopK)
on activations from Gemma 2 9B (base). Specifi-
cally, we trained SAEs on residual stream, atten-
tion output and MLP output sites after layers 9,
20 and 31 of the model (zero-indexed).

We trained Gated SAEs using two different loss
functions. Firstly, we used the original Gated SAE
loss in Rajamanoharan et al. (2024), which uses
a L1 sparsity penalty and requires resampling
(Bricken et al., 2023) — periodic re-initialisation
of dead features — in order to train effectively. Sec-
ondly, we used a modified Gated SAE loss function
that replaces the L1 sparsity penalty with the RI-
L1 sparsity penalty described in Section 2; see
Appendix D for details. With this modified loss
function, we no longer need to use resampling to
avoid dead features.

We trained TopK SAEs using the AuxK aux-
iliary loss described in Gao et al. (2024) with
Kaux = 512, which helps reduce the number of
dead features. We also used an approximate
algorithm for computing the top K activations
(Chern et al., 2022) — implemented in JAX as
jax.lax.approx_max_k — after finding it pro-
duces similar results to exact TopK while being

8We did not include ProLU SAEs (Taggart, 2024) in our
comparisons, despite their similarities to JumpReLU SAEs,
because prior work has established that ProLU SAEs do not
produce as faithful reconstructions as Gated or TopK SAEs
at a given sparsity level (Gao et al., 2024).

Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders

much faster (Appendix E).

All SAFs used in these evaluations were trained
over 8 billion tokens; by this point, they had all
converged, as confirmed by inspecting their train-
ing curves. See Appendix I for further details of
our training methodology.

5.1. Evaluating the sparsity-fidelity trade-off

Methodology For a fixed SAE architecture and
dictionary size, we trained SAEs of varying levels
of sparsity by sweeping either the sparsity coeffi-
cient A (for JumpReLU or Gated SAEs) or K (for
TopK SAEs). We then plot curves showing, for
each SAE architecture, the level of reconstruction
fidelity attainable at a given level of sparsity.

Metrics We use the mean LO-norm of feature
activations, Ey [|f(x)||, as a measure of sparsity.
To measure reconstruction fidelity, we use two
metrics:

* Our primary metric is delta LM loss, the in-
crease in the cross-entropy loss experienced
by the LM when we splice the SAE into the
LM’s forward pass.

* As a secondary metric, we also present in
Fig. 12 curves that use fraction of variance
unexplained (FVU) - also called the normal-
ized loss (Gao et al., 2024) as a measure
of reconstruction fidelity. This is the mean
reconstruction 10ss Lreconstruct Of @ SAE nor-
malised by the reconstruction loss obtained
by always predicting the dataset mean.

All metrics were computed on 2,048 sequences of
length 1,024, after excluding special tokens (pad,
start and end of sequence) when aggregating the
results.

Results Fig. 2 compares the sparsity-fidelity
trade-off for JumpReLU, Gated and TopK SAEs
trained on Gemma 2 9B residual stream activa-
tions. JumpReLU SAEs consistently offer similar
or better fidelity at a given level of sparsity than
TopK or Gated SAEs. Similar results are obtained
for SAEs of each type trained on MLP or attention
output activations, as shown in Fig. 10 and Fig. 11
in Appendix G.

5.2. Feature activation frequencies

For a given SAE, we are interested in both the
proportion of learned features that are active very
frequently and the proportion of features that are
almost never active (“dead” features). Prior work
has found that TopK SAEs tend to have more high
frequency features than Gated SAEs (Cunning-
ham and Conerly, 2024), and that these features
tend to be less interpretable when sparsity is also
low.

Methodology We collected SAE feature activa-
tion statistics over 10,000 sequences of length
1,024, and computed the frequency with which
individual features fire on a randomly chosen to-
ken (excluding special tokens).

Results Fig. 5 shows, for JumpReLU, Gated and
TopK SAEs, how the fraction of high frequency
features varies with SAE fidelity (as measured by
delta LM loss). TopK and JumpReLU SAEs consis-
tently have more very high frequency features —
features that activate on over 10% of tokens (top
plot) — than Gated SAEs, although the fraction
drops close to zero for SAEs in the low fidelity /
high sparsity regime. On the other hand, look-
ing at features that activate on over 1% of tokens
(a wider criterion), Gated SAEs have comparable
numbers of such features to JumpReLU SAEs (bot-
tom plot), with considerably more in the low delta
LM loss / higher LO regime (although all these
SAEs have LO less than 100, i.e. are reasonably
sparse). Across all layers and frequency thresh-
olds, JumpReLU SAEs have either similar or fewer
high frequency features than TopK SAEs. Finally,
it is worth noting that in all cases the number of
high frequency features remains low in propor-
tion to the widths of these SAEs, with fewer than
0.06% of features activating more than 10% of
the time even for the highest LO SAEs.

Fig. 13 compares the proportion of “dead” fea-
tures — which we defined to be features that
activate on fewer than one in 107 tokens — be-
tween JumpReLU, Gated and TopK SAEs. Both
JumpReLU SAEs and TopK SAEs (trained with the
AuxK loss) consistently have few dead features,
without the need for resampling.

Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders

_g layer=9 layer=20 layer=31
+~ 0
35 SAE Type
@ xo —e— Gated (Original)
S
El w 0.04% —e— Gated (RI-L1)
® © —e— JumpRelLU
bl —o— TopK (AuxK)
5= 0.02% P
59
£ o
§ S 0.00%
& 2 5 0.1 2 5 2 5 0.1 2 5 2 5 0.1 2 5
Delta LM loss Delta LM loss Delta LM loss
_% layer=9 layer=20 layer=31
5
S % SAE Type
@ < 0.60% —e— Gated (Original)
E hes —e— Gated (RI-L1)
o
S o 040% —e— JumpRelLU
s . —o— TopK (AuxK)
c o 0.20%
o >
5 0
[
25 0.00%
g 2 5 0.1 2 5 2 5 0.1 2 5 2 5 0.1 2 5
Delta LM loss Delta LM loss Delta LM loss

Figure 5 | The proportion of features that activate very frequently versus delta LM loss by SAE type for
Gemma 2 9B residual stream SAEs. TopK and JumpReLU SAEs tend to have relatively more very high
frequency features — those active on over 10% of tokens (top) — than Gated SAEs. If we instead count
features that are active on over 1% of tokens (bottom), the picture is more mixed: Gated SAEs can
have more of these high (but not necessarily very high) features than JumpReLU SAEs, particularly in

the low loss (and therefore lower sparsity) regime.

5.3. Interpretability of SAE features

Exactly how to assess the quality of the features
learned by an SAE is an open research ques-
tion. Existing work has focused on the activa-
tion patterns of features with particular empha-
sis paid to sequences a feature activates most
strongly on (Bills et al., 2023; Bricken et al., 2023;
Cunningham et al., 2023; Rajamanoharan et al.,
2024; Templeton et al., 2024). The rating of a
feature’s interpretability is usually either done by
human raters or by querying a language model.
In the following two sections we evaluate the
interpretability of JumpReLU, Gated and TopK
SAE features using both a blinded human rat-
ing study, similar to Bricken et al. (2023); Raja-
manoharan et al. (2024), and automated ratings
using a language model, similar to Bills et al.
(2023); Bricken et al. (2023); Cunningham et al.
(2023); Lieberum (2024).

5.3.1. Manual Interpretability

Methodology Our experimental setup closely
follows Rajamanoharan et al. (2024). For each
sublayer (Attention Output, MLP Output, Resid-
ual Stream), each layer (9, 20, 31) and each ar-
chitecture (Gated, TopK, JumpReLU) we picked
three SAEs to study, for a total of 81 SAEs. SAEs
were selected based on their average number of
active features. We selected those SAEs which
had an average number of active features closest
to 20, 75 and 150.

Each of our 5 human raters was presented with
summary information and activating examples
from the full activation spectrum of a feature. A
rater rated a feature from every SAE, presented in
a random order. The rater then decided whether
a feature is mostly monosemantic based on the
information provided, with possible answer op-
tions being ‘Yes’, ‘Maybe’, and ‘No’, and supplied a
short explanation of the feature where applicable.
In total we collected 405 samples, i.e. 5 per SAE.

Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders

0.8 SAE Type
B Gated (RI-L1)
M JumpRelu
0.6 H TopK (AuxK)
>
o
C
S
o 0.4
o
[
0.2 iii i
0 i
YES MAYBE NO
Rating

Figure 6 | Human rater scores of feature inter-
pretability. Features from all SAE architectures
are rated as similarly interpretable by human
raters.

Results In Fig. 6, we present the results of the
manual interpretability study. Assuming a bino-
mial 1-vs-all distribution for each ordinal rating
value, we report the 2.5th to 97.5th percentile
of this distribution as confidence intervals. All
three SAE varieties exhibit similar rating distri-
butions, consistent with prior results comparing
TopK and Gated SAEs (Cunningham and Conerly,
2024; Gao et al., 2024) and furthermore showing
that JumpReLU SAEs are similarly interpretable.

5.3.2. Automated Interpretability

In contrast to the manual rating of features, au-
tomated rating schemes have been proposed to
speed up the evaluation process. The most promi-
nent approach is a two step process of generating
an explanation for a given feature with a language
model and then predicting the feature’s activa-
tions based on that explanation, again utilizing
a language model. This was initially proposed
by Bills et al. (2023) for neurons, and later em-
ployed by Bricken et al. (2023); Cunningham
et al. (2023); Lieberum (2024) for learned SAE
features.

Methodology We used Gemini Flash (Gemini
Team, 2024) for explanation generation and acti-
vation simulation. In the first step, we presented
Gemini Flash with a list of sequences that activate
a given feature to different degrees, together with

the activation values. The activation values were
binned and normalized to be integers between 0
and 10. Gemini Flash then generated a natural
language explanation of the feature consistent
with the activation values.

In the second step we asked Gemini Flash to
predict the activation value for each token of the
sequences that were used to generate the expla-
nations’. We then computed the correlation be-
tween the simulated and ground truth activation
values. We found that using a diverse few-shot
prompt for both explanation generation and ac-
tivation simulation was important for consistent
results.

We computed the correlation score for 1000 fea-
tures of each SAE, i.e. three architectures, three
layers, three layers/sub-layers and five or six spar-
sity levels, or 154 SAEs in total.

Results We show the distribution of Pearson cor-
relations between language model simulated and
ground truth activations in Fig. 7. There is a small
but notable improvement in mean correlation
from Gated to JumpReLU and from JumpReLU.
Note however, that the means clearly do not cap-
ture the extent of the within-group variation. We
also report a baseline of explaining the activa-
tions of a randomly initialized JumpReLU SAE for
the layer 20 residual stream — effectively produc-
ing random, clipped projections of the residual
stream. This exhibits markedly worse correlation
scores, though notably with a clearly non-zero
mean. We show the results broken down by site
and layer in Fig. 15. Note that in all of these
results we are grouping together SAEs with very
different sparsity levels and corresponding per-
formances.

6. Related work

Recent interest in training SAEs on LM activa-
tions (Bricken et al., 2023; Cunningham et al.,
2023; Sharkey et al., 2022) stems from the twin
observations that many concepts appear to be lin-
early represented in LM activations (Elhage et al.,

9Note that the true activation values were not known to
the model at simulation time.

Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders

SAE Type
[Gated (RI-L1)
[JumpReLU
[0 TopK (AuxK)
Random Init
0.5

Pearson Correlation

-0.5

Gated (RI-L1) JumpRelLU
SAE Type

TopK (AuxK) Random Init

Figure 7 | Pearson correlation between LM-
simulated and ground truth activations. The
dashed lines denote the mean per SAE type. Val-
ues above 1 are an artifact of the kernel density
estimation used to produce the plot.

2021; Gurnee et al., 2023; Olah et al., 2020; Park
et al., 2023) and that dictionary learning (Mallat
and Zhang, 1993; Olshausen and Field, 1997)
may help uncover these representations at scale.
It is also hoped that the sparse representations
learned by SAEs may be a better basis for iden-
tifying computational subgraphs that carry out
specific tasks in LMs (Conmy et al., 2023; Dunef-
sky et al., 2024; Wang et al., 2023) and for finer-
grained control over LMs’ outputs (Conmy and
Nanda, 2024; Templeton et al., 2024).

Recent improvements to SAE architectures — in-
cluding TopK SAEs (Gao et al., 2024) and Gated
SAEs (Rajamanoharan et al., 2024) — as well as
improvements to initialization and sparsity penal-
ties. Conerly et al. (2024) have helped ameliorate
the trade-off between sparsity and fidelity and
overcome the challenge of SAE features dying dur-
ing training. Like JumpReLU SAEs, both Gated
and TopK SAEs possess a thresholding mecha-
nism that determines which features to include
in a reconstruction; indeed, with weight shar-
ing, Gated SAEs are mathematically equivalent to
JumpReLU SAEs, although they are trained using
a different loss function. JumpReLU SAEs are also
closely related to ProLU SAEs (Taggart, 2024),
which use a (different) STE to train an activation
threshold, but do not match the performance of
Gated or TopK SAEs (Gao et al., 2024).

The activation function defined in Eq. (4) was

named JumpReLU in Erichson et al. (2019), al-
though it appears in earlier work, such as the
TRec function in Konda et al. (2015). Both TopK
and JumpReLU activation functions are closely
related to activation pruning techniques such as
ASH (Djurisic et al., 2023).

The term straight through estimator was intro-
duced in Bengio et al. (2013), although it is an
old idea.'® STEs have found applications in areas
such as training quantized networks (e.g. Hubara
et al. (2016)) and circumventing defenses to ad-
versarial examples (Athalye et al., 2018). Our
interpretation of STEs in terms of gradients of the
expected loss is related to Yin et al. (2019), al-
though they do not make the connection between
STEs and KDE. Louizos et al. (2018) also show
how it is possible to train models using a LO spar-
sity penalty — on weights rather than activations
in their case — by introducing stochasticity in the
weights and taking the gradient of the expected
loss.

7. Discussion

Our evaluations show that JumpReLU SAEs pro-
duce reconstructions that consistently match or
exceed the faithfulness of TopK SAEs, and ex-
ceed the faithfulness of Gated SAEs, at a given
level of sparsity. They also show that the average
JumpReLU SAE feature is similarly interpretable
to the average Gated or TopK SAE feature, ac-
cording to manual raters and automated evalu-
ations. Although JumpReLU SAEs do have rel-
atively more very high frequency features than
Gated SAEs, they are similar to TopK SAEs in this
respect.

In light of these observations, and taking
into account the efficiency of training with the
JumpRelLU loss — which requires no auxiliary
terms and does not involve relatively expensive
TopK operations — we consider JumpReLU SAEs
to be a mild improvement over prevailing SAE
training methodologies.

Nevertheless, we note two key limitations with

10Even the Perceptron learning algorithm (Rosenblatt,
1958) can be understood as using a STE to train through a
step function discontinuity.

10

Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders

our study:

* The evaluations presented in this paper con-
cern training SAEs on several sites and lay-
ers of a single model, Gemma 2 9B. This
does raise uncertainty over how well these
results would transfer to other models — par-
ticularly those with slightly different archi-
tectural or training details. In mitigation, al-
though we have not presented the results in
this paper, our preliminary experiments with
JumpReLU on the Pythia suite of models (Bi-
derman et al., 2023) produced very similar
results, both when comparing the sparsity-
fidelity trade off between architectures and
comparing interpretability. Nevertheless we
would welcome attempts to replicate our re-
sults on other model families.

* The science of principled evaluations of SAE
performance is still in its infancy. Although
we measured feature interpretability — both
assessed by human raters and by the abil-
ity of Gemini Flash to predict new activa-
tions given activating examples — it is unclear
how well these measures correlate to the
attributes of SAEs that actually make them
useful for downstream purposes. It would
be valuable to evaluate these SAE varieties
on a broader selection of metrics that more
directly correspond to the value SAEs add by
aiding or enabling downstream tasks, such
as circuit analysis or model control.

Finally, JumpReLU SAEs do suffer from a few
limitations that we hope can be improved with
further work:

* Like TopK SAEs, JumpReLU SAEs tend to
have relatively more very high frequency fea-
tures — features that are active on more than
10% of tokens — than Gated SAEs. Although
it is hard to see how to reduce the preva-
lence of such features with TopK SAEs, we
expect it to be possible to further tweak the
loss function used to train JumpReLU SAEs
to directly tackle this phenomenon.!!

11 Although, it could be the case that by doing this we
end up pushing the fidelity-vs-sparsity curve for JumpReLU
SAEs back closer to those of Gated SAEs. Le. it is plausible
that Gated SAEs are close to the Pareto frontier attainable
by SAEs that do not possess high frequency features.

* JumpReLU SAEs introduce new hyperparam-
eters — namely the initial value of @ and
the bandwidth parameter ¢ — that require
selecting. In practice, we find that, with
dataset normalization in place, the default
hyperparameters used in our experiments
(Appendix I) transfer quite reliably to other
models, sites and layers. Nevertheless, there
may be more principled ways to choose these
hyperparameters, for example by adopting
approaches to automatically selecting band-
widths from the literature on kernel density
estimation.

* The STE approach introduced in this paper
is quite general. For example, we have also
used STEs to train JumpReLU SAEs that have
a sparsity level closed to some desired target

Lg’lrget by using the sparsity loss

2
Loparsicy (%) = A (IE0llp /167 = 1),
(16)
much as it is possible to fix the sparsity of

a TopK SAE by setting K (see Appendix F).

STEs thus open up the possibility of training

SAEs with other discontinuous loss functions

that may further improve SAE quality or us-

ability.

8. Acknowledgements

We thank Lewis Smith for reviewing the paper,
including checking its mathematical derivations,
and for valuable contributions to the SAE train-
ing codebase. We also thank Tom Conerly and
Tom McGrath for pointing out errors in an earlier
version of Appendix J. Finally, we are grateful to
Rohin Shah and Anca Dragan for their sponsor-
ship and support during this project.

9. Author contributions

Senthooran Rajamanoharan (SR) conceived the
idea of training JumpReLU SAEs using the gra-
dient of the expected loss, and developed the
approach of using STEs to estimate this gradient.
SR also performed the hyperparameter studies
and trained the SAEs used in all the experiments.
SAEs were trained using a codebase that was de-
signed and implemented by Vikrant Varma and

11

Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders

Tom Lieberum (TL) with significant contributions
from Arthur Conmy, which in turn relies on an
interpretability codebase written in large part by
Janos Kramdr. TL was instrumental in scaling
up the SAE training codebase so that we were
able to iterate effectively on a 9B sized model for
this project. TL also ran the SAE evaluations and
manual interpretability study presented in the
Evaluations section. Nicolas Sonnerat (NS) and
TL designed and implemented the automated fea-
ture interpretation pipeline used to perform the
automated interpretability study, with NS also
leading the work to scale up the pipeline. SR led
the writing of the paper, with the interpretability
study sections and Appendix G contributed by
TL. Neel Nanda provided leadership and advice
throughout the project and edited the paper.

References

A. Athalye, N. Carlini, and D. Wagner. Obfus-
cated gradients give a false sense of security:
Circumventing defenses to adversarial exam-
ples, 2018. URL https://arxiv.org/abs/
1802.00420.

Y. Bengio, N. Léonard, and A. Courville. Es-
timating or propagating gradients through
stochastic neurons for conditional computation,
2013. URLhttps://arxiv.org/abs/1308.
3432.

S. Biderman, H. Schoelkopf, Q. G. Anthony,
H. Bradley, K. O’Brien, E. Hallahan, M. A. Khan,
S. Purohit, U. S. Prashanth, E. Raff, et al. Pythia:
A suite for analyzing large language models
across training and scaling. In International
Conference on Machine Learning, pages 2397—
2430. PMLR, 2023.

S. Bills, N. Cammarata, D. Mossing, H. Till-
man, L. Gao, G. Goh, I. Sutskever, J. Leike,
J. Wu, and W. Saunders. Language models
can explain neurons in language mod-
els. https://openaipublic.blob.
core.windows.net/neuron-explainer/
paper/index.html, 2023.

J. Bradbury, R. Frostig, P. Hawkins, M. J.
Johnson, C. Leary, D. Maclaurin, G. Necula,

A. Paszke, J. VanderPlas, S. Wanderman-Milne,
and Q. Zhang. JAX: composable transforma-
tions of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

T. Bricken, A. Templeton, J. Batson, B. Chen,
A. Jermyn, T. Conerly, N. Turner, C. Anil,
C. Denison, A. Askell, R. Lasenby, Y. Wu,
S. Kravec, N. Schiefer, T. Maxwell, N. Joseph,
Z. Hatfield-Dodds, A. Tamkin, K. Nguyen,
B. McLean, J. E. Burke, T. Hume, S. Carter,
T. Henighan, and C. Olah. Towards monose-
manticity: Decomposing language models
with dictionary learning. Transformer Cir-
cuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-
features/index.html.

F. Chern, B. Hechtman, A. Davis, R. Guo, D. Ma-
jnemer, and S. Kumar. Tpu-knn: K nearest
neighbor search at peak flop/s, 2022. URL
https://arxiv.org/abs/2206.14286.

T. Conerly, A. Templeton, T. Bricken, J. Marcus,
and T. Henighan. Update on how we train
SAEs. Transformer Circuits Thread, 2024.
URL https://transformer-circuits.
pub/2024/april-update/index.html#
training-saes.

A. Conmy and N. Nanda. Activation steering with
SAEs. Alignment Forum, 2024. Progress Update
#1 from the GDM Mech Interp Team.

A. Conmy, A. N. Mavor-Parker, A. Lynch,
S. Heimersheim, and A. Garriga-Alonso. To-
wards automated circuit discovery for mecha-
nistic interpretability, 2023.

H. Cunningham and T. Conerly. Circuits Up-
dates - June 2024: Comparing TopK and
Gated SAEs to Standard SAEs. Trans-
former Circuits Thread, 2024. URL
https://transformer-circuits.
pub/2024/june-update/index.html#
topk-gated-comparison.

H. Cunningham, A. Ewart, L. Riggs, R. Huben,
and L. Sharkey. Sparse autoencoders find
highly interpretable features in language mod-
els, 2023.

12

https://arxiv.org/abs/1802.00420
https://arxiv.org/abs/1802.00420
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
http://github.com/google/jax
https://arxiv.org/abs/2206.14286
https://transformer-circuits.pub/2024/april-update/index.html#training-saes
https://transformer-circuits.pub/2024/april-update/index.html#training-saes
https://transformer-circuits.pub/2024/april-update/index.html#training-saes
https://transformer-circuits.pub/2024/june-update/index.html#topk-gated-comparison
https://transformer-circuits.pub/2024/june-update/index.html#topk-gated-comparison
https://transformer-circuits.pub/2024/june-update/index.html#topk-gated-comparison

Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders

A. Dijurisic, N. Bozanic, A. Ashok, and R. Liu.
Extremely simple activation shaping for out-
of-distribution detection, 2023. URL https:
//arxiv.org/abs/2209.09858.

J. Dunefsky, P. Chlenski, and N. Nanda.
Transcoders find interpretable llm feature cir-
cuits, 2024. URLhttps://arxiv.org/abs/
2406.11944.

N. Elhage, N. Nanda, C. Olsson, T. Henighan,
N. Joseph, B. Mann, A. Askell, Y. Bai, A. Chen,
T. Conerly, N. DasSarma, D. Drain, D. Gan-
guli, Z. Hatfield-Dodds, D. Hernandez,
A. Jones, J. Kernion, L. Lovitt, K. Ndousse,
D. Amodei, T. Brown, J. Clark, J. Kaplan,
S. McCandlish, and C. Olah. A mathemat-
ical framework for transformer circuits.
Transformer Circuits Thread, 2021. URL
https://transformer-circuits.pub/
2021/framework/index.html.

N. B. Erichson, Z. Yao, and M. W. Mahoney.
Jumprelu: A retrofit defense strategy for ad-
versarial attacks, 2019.

L. Gao, T. D. la Tour, H. Tillman, G. Goh, R. Troll,
A. Radford, I. Sutskever, J. Leike, and J. Wu.
Scaling and evaluating sparse autoencoders,
2024. URLhttps://arxiv.org/abs/2406.
04093.

Gemini Team. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of con-
text, 2024. URL https://arxiv.org/abs/
2403.05530.

Gemma Team. Gemma 2: Improving
open language models at a practical
size, 2024. URL https://storage.

googleapis.com/deepmind-media/
gemma/gemma-2-report.pdf.

W. Gurnee, N. Nanda, M. Pauly, K. Harvey,
D. Troitskii, and D. Bertsimas. Finding neu-

rons in a haystack: Case studies with sparse
probing, 2023.

L. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv,
and Y. Bengio. Quantized neural networks:
Training neural networks with low precision
weights and activations, 2016. URL https:
//arxiv.org/abs/1609.07061.

D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization, 2017. URL https:
//arxiv.org/abs/1412.6980.

K. Konda, R. Memisevic, and D. Krueger. Zero-
bias autoencoders and the benefits of co-
adapting features, 2015. URL https://
arxiv.org/abs/1402.3337.

T. Lieberum. Interpreting sae features with gem-
ini ultra. Alignment Forum, 2024. Progress
Update #1 from the GDM Mech Interp Team.

C. Louizos, M. Welling, and D. P. Kingma.
Learning sparse neural networks through [
regularization. In 6th International Confer-
ence on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenRe-
view.net, 2018. URL https://openreview.
net/forum?id=H1Y8hhgOb.

S. Mallat and Z. Zhang. Matching pursuits with
time-frequency dictionaries. IEEE Transactions
on Signal Processing, 41(12):3397-3415, 1993.
doi: 10.1109/78.258082.

S. Marks, C. Rager, E. J. Michaud, Y. Belinkov,
D. Bau, and A. Mueller. Sparse feature circuits:
Discovering and editing interpretable causal
graphs in language models, 2024.

A. Ng. Sparse autoencoder. http:
//web.stanford.edu/class/cs294a/
sparseAutoencoder.pdf, 2011. CS294A
Lecture notes.

C. Olah, N. Cammarata, L. Schubert, G. Goh,
M. Petrov, and S. Carter. Zoom in: An in-
troduction to circuits. Distill, 2020. doi:
10.23915/distill.00024.001.

C. Olah, A. Templeton, T. Bricken, and A. Jermyn.
Open Problem: Attribution Dictionary Learning.
Transformer Circuits Thread, 2024. URLhttps:
//transformer-circuits.pub/2024/
april-update/index.html#attr-dl.

B. A. Olshausen and D. J. Field. Sparse coding
with an overcomplete basis set: A strategy em-
ployed by v1? Vision Research, 37(23):3311-
3325, 1997. doi: 10.1016/50042-6989(97)
00169-7.

13

https://arxiv.org/abs/2209.09858
https://arxiv.org/abs/2209.09858
https://arxiv.org/abs/2406.11944
https://arxiv.org/abs/2406.11944
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://storage.googleapis.com/deepmind-media/gemma/gemma-2-report.pdf
https://storage.googleapis.com/deepmind-media/gemma/gemma-2-report.pdf
https://storage.googleapis.com/deepmind-media/gemma/gemma-2-report.pdf
https://arxiv.org/abs/1609.07061
https://arxiv.org/abs/1609.07061
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1402.3337
https://arxiv.org/abs/1402.3337
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=H1Y8hhg0b
http://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf
http://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf
http://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf
https://transformer-circuits.pub/2024/april-update/index.html#attr-dl
https://transformer-circuits.pub/2024/april-update/index.html#attr-dl
https://transformer-circuits.pub/2024/april-update/index.html#attr-dl

Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders

K. Park, Y. J. Choe, and V. Veitch. The linear
representation hypothesis and the geometry of
large language models, 2023.

E. Parzen. On Estimation of a Probability Den-
sity Function and Mode. The Annals of Math-
ematical Statistics, 33(3):1065 — 1076, 1962.
doi: 10.1214/aoms/1177704472. URL https:
//doi.org/10.1214/aoms/1177704472.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Py-
torch: An imperative style, high-performance
deep learning library, 2019. URL https://
arxiv.org/abs/1912.01703.

S. Rajamanoharan, A. Conmy, L. Smith,
T. Lieberum, V. Varma, J. Kramar, R. Shah, and
N. Nanda. Improving dictionary learning with
gated sparse autoencoders, 2024.

F. Rosenblatt. The perceptron: A probabilistic
model for information storage and organiza-
tion in the brain. Psychological Review, 65
(6):386-408, 1958. ISSN 0033-295X. doi:

10.1037/h0042519. URL http://dx.doi.

org/10.1037/h0042519.

L. Sharkey, D. Braun, and B. Millidge. [interim
research report] taking features out of super-
position with sparse autoencoders, 2022.

G. M. Taggart. Prolu: A nonlinearity for sparse
autoencoders. Alignment Forum, 2024.

A. Templeton, T. Conerly, J. Marcus, J. Lindsey,
T. Bricken, B. Chen, A. Pearce, C. Citro,
E. Ameisen, A. Jones, H. Cunningham, N. L.
Turner, C. McDougall, M. MacDiarmid, C. D.
Freeman, T. R. Sumers, E. Rees, J. Batson,
A. Jermyn, S. Carter, C. Olah, and T. Henighan.
Scaling monosemanticity: Extracting in-
terpretable features from claude 3 sonnet.
Transformer Circuits Thread, 2024. URL
https://transformer-circuits.pub/

2024/scaling-monosemanticity/index.

html.

K. R. Wang, A. Variengien, A. Conmy, B. Shlegeris,
and J. Steinhardt. Interpretability in the

wild: a circuit for indirect object identifica-
tion in GPT-2 small. In The Eleventh In-
ternational Conference on Learning Represen-
tations, 2023. URL https://openreview.
net/forum?id=NpsVSN6o4ul.

L. Wasserman. All of statistics : a concise course in
statistical inference. Springer, New York, 2010.
ISBN 9781441923226 1441923225.

B. Wright and L. Sharkey. Addressing feature
suppression in saes. Al Alignment Forum, Feb
2024.

P. Yin, J. Lyu, S. Zhang, S. Osher, Y. Qi, and
J. Xin. Understanding straight-through esti-
mator in training activation quantized neural
nets, 2019. URL https://arxiv.org/abs/
1903.05662.

A. Differentiating integrals involving
Heaviside step functions

We start by reviewing some results about differ-
entiating integrals (and expectations) involving
Heaviside step functions.

Lemma 1. Let X be a n-dimensional real random
variable with probability density px and let Y =
g(X) for a differentiable function g : R™ — R. Then
we can express the probability density function of
Y as the surface integral

py(y>='/° px(x)ds 17)
v (y)

where 3V (y) is the surface g(x) = y and dS is its
surface element.

Proof. From the definition of a probability density
function:

pr(y) i= 2B (Y <) (18)
Yy

px(x)d"x (19

B 5 V(y)
where V(y) is the volume g(x) < y. Eq. (17) fol-
lows from an application of the multidimensional
Leibniz integral rule. O

14

https://doi.org/10.1214/aoms/1177704472
https://doi.org/10.1214/aoms/1177704472
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1037/h0042519
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://arxiv.org/abs/1903.05662
https://arxiv.org/abs/1903.05662

Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders

Theorem 1. Let X and y once again be defined as
in Lemma 1. Also define

A(y) =E[f(X)H(g(X) - y))] (20)
where H is the Heaviside step function for some
function f : R" — R. Then, as long as f is differ-
entiable on the surface g(x) = y, the derivative of
A at y is given by

A(y) =-E[fX)|Y =y] pr(¥) 21

Proof. We can express A(y) as the volume integral

Aly) = / fOpx®dx (22
V(y)

where V(y) is now the volume g(x) > y. Applying
the multidimensional Leibniz integral rule (not-
ing that f is differentiable on the boundary of
V(y), we therefore obtain

A(y) =- f(x)px(x)ds (23)

v (y)

where 8V is the surface g(x) = y. Eq. (21) follows
by noting that px(x) = px|y=y(X)py(y) and thus
substituting Eq. (17) into Eq. (23). O

Lemma 2. With the same definitions as in Theo-
rem 1, the expected value

B(y) :=E [f(X)H(g(X) - ¥)?], 24)

which involves the square of the Heaviside step func-

tion, is equal to A(y).

Proof. Expressed in integral form, both A(y) and
B(y) have the same domains of integration (the
volume g(x) > y) and integrands; therefore their
values are identical. m|

B. Differentiating the expected loss
The JumpReLU loss is given by

Lo(x) =[x - kE@)I5+ A ®)o. (9)

By substituting in the following expressions for
various terms in the loss:

fi(X) = MR H(m(x) - 0;), (25)
M

() =)" fi(x)d; + bgec, (26)
l;[l

If®)lo = D H(m(x) = 6), (27)
i=1

taking the expected value, and differentiating
(making use of the results of the previous section),
we obtain

dEx [LB (X)]

leh = (Ex [Ji(x)|m;(x) = 0;] — A) pi(6;)

(28)
where p; is the probability density function for
the pre-activation s;(x) and

Ji(X) := 20;d; - |X — bgec — 56:d;

M
= D (A H (%) - 0)]. (29)
j#i
We can express this derivative in the more suc-
cinct form given in Eq. (13) and Eq. (14) by defin-
ing

I;(x) :=26;d; - [x — X(f(x))] (30)

= 29id1~ . [X - bdec (31)

M
= Y w0 diH((x) - 6)) .

j=1

and adopting the convention H(0) := % ; this
means that I;(x) = J;(x) whenever x;(x) = 6;,
allowing us to replace J; by I; within the condi-

tional expectation in Eq. (28).

C. Using STEs to produce a kernel den-
sity estimator

Using the chain rule, we can differentiate the
JumpReLU loss function to obtain the expression

0Lo(x) [(Li(x)) 2
36, __(0;)H_&JumpReLUei(”i(X))

0
+ Aa—el_H(ﬂi(X) -0;) (32)

15

Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders

where I;(x) is defined as in Eq. (14). If we replace
the partial derivatives in Eq. (32) with the pseudo-
derivatives defined in Eq. (11) and Eq. (12), we
obtain the following expression for the pseudo-

gradient of the loss:
K (ﬂi(x) - 91‘) ‘
&

0Lp(x) Li(x)—A
691' &
Computing this pseudo-gradient over a batch of
observations X1, X, ..., Xy and taking the mean,
we obtain the kernel density estimator

1 & i (Xe) — 0
Iy e

(33)

(15)

D. Combining Gated SAEs with the RI-
L1 sparsity penalty
Gated SAEs compute two encoder pre-activations:

(34)
(35)

Tgate (X) 1= WgareX + bgate:

Mmag(X) := WagX + bmag-
The first of these is used to determine which fea-
tures are active, via a Heaviside step activation
function, whereas the second is used to deter-
mine active features’ magnitudes, via a ReLU step
function:
(36)
(37)

fgate (X) := H(mgate (X))
fmag(x) := ReLU (/rmag(X)).

The encoder’s overall output is given by the ele-
mentwise product f(X) := fgaee (X) © finag(x). The
decoder of a Gated SAE takes the standard form

)A((f) = Wdecf + bdec- (2)

As in Rajamanoharan et al. (2024), we tie the
weights of the two encoder matrices, parameter-
ising Winag in terms of W,ee and a vector-valued
rescaling parameter I'mag:

(Wmag)i]‘ = (eXp(l‘mag))i (Wgate)ij- (38)

The loss function used to train Gated SAEs in
Rajamanoharan et al. (2024) includes a L1 spar-
sity penalty and auxiliary loss term, both involv-
ing the positive elements of mgace, as follows:

Lgate = X = %(£(X))I3 + 4 |ReLU (7 gae (%)),
+ ”X -)A(frozen(ReLU(ﬂ'gate (X)))H; (39)

TopK variant

—eo— TopK

—e— TopK (approx)

—e— TopK + AuxK (approx)

w & uo

2

) \
)
8

10 < 5 100 2
LO

Reconstruction loss

Figure 8 | Using an approximation of TopK leads
to similar performance as exact TopK. Adding the
AuxK term to the loss function slightly improves
fidelity at a given level of sparsity.

where Xg,0n iS @ frozen copy of the decoder, so
that Wye. and bg.. do not receive gradient up-
dates from the auxiliary loss term.

For our JumpReLU evaluations in Section 5,
we also trained a variant of Gated SAEs where
we replace the L1 sparsity penalty in Eq. (39)
with the reparameterisation-invariant L1 (RI-L1)
sparsity penalty Sgr11 defined in Eq. (6), i.e. by
making the replacement |ReLU(mgare(X)||;, —
Sri-L1(7gate (X)), as well as unfreezing the decoder
in the auxiliary loss term. As demonstrated in
Fig. 2, Gated SAEs trained this way have a similar
sparsity-vs-fidelity trade-off to SAEs trained us-
ing the original Gated loss function, without the
need to use resampling to avoid the appearance
of dead features during training.

E. Approximating TopK

We used the approximate TopK approximation
jax.lax.approx_max_k (Chern et al., 2022)
to train the TopK SAEs used in the evaluations in
Section 5. Furthermore, we included the AuxK
auxiliary loss function to train these SAEs. Sup-
porting these decisions, Fig. 8 shows:

* That SAEs trained with an approximate TopK
activation function perform similarly to those
trained with an exact TopK activation func-
tion;

* That the AuxK loss slightly improves recon-
struction fidelity at a given level of sparsity.

16

Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders

Loss function
—e— JumpReLU (original)
—eo— JumpRelLU (target LO)

0.18|
0.16/ |
0.14] !

0.12| !

0.1 !

Reconstruction loss

LO

Figure 9 | By using the sparsity penalty in Eq. (40),
we can train JumpReLU SAEs to minimize recon-
struction loss while maintaining a desired target
level of sparsity. The vertical dashed grey lines
indicate the target LO values used to train the
SAEs represented by the red dots closest to each
line. These SAEs were trained setting A = 1.

F. Training JumpReLU SAEs to match
a desired level of sparsity

Using the same pseudo-derivatives defined in Sec-
tion 3 it is possible to train JumpReLU SAEs with
other loss functions. For example, it may be desir-
able to be able to target a specific level of sparsity
during training — as is possible by setting K when
training TopK SAEs — instead of the sparsity of
the trained SAE being an implicit function of the
sparsity coefficient and reconstruction loss.

A simple way to achieve this is by training
JumpReLU SAEs with the loss

2
f
L(x) = [|x - R(E(X))||2+ A (“Lt(a):;flzlto -1
° (40)

Training SAEs with this loss on Gemma 2 9B’s
residual stream after layer 20, we find a simi-
lar fidelity-to-sparsity relationship to JumpReLU
SAEs trained with the loss in Eq. (9), as shown
in Fig. 9. Moreover, by using with the above loss,
we are able to train SAEs that have LOs at conver-
gence that are close to their targets, as shown by
the proximity of the red dots in the figure to their
respective vertical grey lines.

G. Additional benchmarking results

Fig. 10 and Fig. 11 plot reconstruction fidelity
against sparsity for SAEs trained on Gemma 2 9B
MLP and attention outputs at layers 9, 20 and
31. Fig. 12 uses fraction of variance explained
(see Section 5) as an alternative measure of recon-
struction fidelity, and again compares the fidelity-
vs-sparsity trade-off for JumpReLU, Gated and
TopK SAEs on MLP, attention and residual stream
layer outputs for Gemma 2 9B layers 9, 20 and
31. Fig. 14 compares feature activation frequency
histograms for JumpReLU, TopK and Gated SAEs
of comparable sparsity.

Automated interpretability In fig Fig. 15 we
show the distribution and means of the correla-
tions between LM-simulated and ground truth
activations, broken down by layer and site. In
line with our other findings, layer 20 and the pre-
linear attention output seem to perform worst on
this metric.

Attribution Weighted Effective Sparsity Con-
ventionally, sparsity of SAE feature activations is
measured as the LO norm of the feature activa-
tions. Olah et al. (2024) suggest to train SAEs
to have low L1 activation of attribution-weighted
feature activations, taking into account that some
features may be more important than others. In-
spired by this, we investigate the sparsity of the
attribution weighted feature activations. Follow-
ing Olah et al. (2024), we define the attribution-
weighted feature activation vector y as

y :=f(x) o WL

dec

Vx L,

where we choose the mean-centered logit of
the correct next token as the loss function £. We
then normalize the magnitudes of the entries of y
to obtain a probability distribution p = p(y). We
can measure how far this distribution diverges

from a uniform distribution u over active features
via the KL divergence

Dxw(pllu) =log|lyllo — S(p),

17

Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders

layer=9 layer=20 layer=31
SAE Type
0.01 —e— Gated (Original)

" —e— Gated (RI-L1)
§ —e— JumpRelU
- s —e— TopK (AuxK)
3
©
=
)
o 2

0.001

10 2 5 100 2 51000 10 2 5 100 2 51000 10 2 5 100 2 5 1000
LO LO LO

Figure 10 | Comparing reconstruction fidelity versus sparsity for JumpReLU, Gated and TopK SAEs
trained on Gemma 2 9B layer 9, 20 and 31 MLP outputs. JumpReLU SAEs consistently provide more
faithful reconstructions (lower delta LM loss) at a given level of sparsity (as measured by LO).

layer=9 layer=20 layer=31

SAE Type

—e— Gated (Original)
—e— Gated (RI-L1)
—e— JumpRelLU
—o— TopK (AuxK)

0.001

Delta LM Loss

0 2 5 100 2 5 10 2 5 100 2 5 10 2 5 100 2 5
LO LO LO

Figure 11 | Comparing reconstruction fidelity versus sparsity for JumpReLU, Gated and TopK SAEs
trained on Gemma 2 9B layer 9, 20 and 31 attention activations prior to the attention output linearity
(Wo). JumpReLU SAEs consistently provide more faithful reconstructions (lower delta LM loss) at a
given level of sparsity (as measured by L0).

18

Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders

layer=9 layer=20 layer=31
[%2)
0.6 & SAE Type
o4 —e— Gated (Original)
(=g
lS’ —eo— Gated (RI-L1)
5 0.4 e —e— JumpRelU
~
E T —e— TopK (AuxK)
lr"'
e}
0.2 IB
g
o
o
0
0.6
o,
o
Il
5 04 3
& °
L o
=4
0.2 1’%
0
0.6 o,
@
Il
el
2
5 0.4 "
> 3
o S
L‘
0.2 o
K’ g
C
o
0

10 2 5 100 2 5 1000 10 2 5 100 2 5 1000 10 2 5 100 2 5 1000
LO LO LO

Figure 12 | Comparing reconstruction fidelity versus sparsity for JumpReLU, Gated and TopK SAEs
trained on Gemma 2 9B layer 9, 20 and 31 MLP, attention and residual stream activations using
fraction of variance unexplained (FVU) as a measure of reconstruction fidelity.

@ 2o layer=9 layer=20 layer=31
2 ° SAE Type
L —e— Gated (Original)
T 2% —eo— Gated (RI-L1)
3 —e— JumpReLU
‘s —o— TopK (AuxK
2 1% pK ()
©
£
o
8- 0%
a 0 0.2 0.4 0 0.2 0.4 0 0.2 0.4

Delta LM loss Delta LM loss Delta LM loss

Figure 13 | JumpReLU and TopK SAEs have few dead features (features that activate on fewer than
one in 107 tokens), even without resampling. Note that the original Gated loss (blue) — the only
training method that uses resampling — had around 40% dead features at layer 20 and is therefore
missing from the middle plot.

19

Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders

10k SAE Type
B Gated (RI-L1)
B JumpRelLU

B TopK (AuxK)

1000

adAl 3vs

100

10

(1T7-14) p=1en

10k

1000

a2dAL 3vs

100

Count

10

n1eydwng

1000

odAL avs

100

10

(>Ixny) Mdor

-6 —4 -2 0
Log10 of Feature Frequencies

Figure 14 | Feature frequency histograms for JumpReLU, TopK and Gated SAEs all with LO approxi-
mately 70 (excluding features with zero activation counts). Note the log-scale on the y-axis: this is to
highlight a small mode of high frequency features present in the JumpReLU and TopK SAEs. Gated
SAEs do not have this mode, but do have a “shoulder” of features with frequencies between 1072 and
107! not present in the JumpReLU and TopK SAEs.

20

Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders

layer=9 layer=20 layer=31

=25

SAE Type
[l Gated (RI-L1)

0.5] JumpReLU

] TopK (AuxK)

dTandino"une

Jeaul| ad

-0.5

0.5

-0.5

Pearson Correlation
o =

y | —~—Ee) —_—— —_—
ndino” djw=ayIs

0,
1 1 1 T
Il
3
0.5 0.5 0.5 I‘r”r
3
0 °
0 0 s
0,
-0.5 o
-0.5 -0.5 o
Gy, 2, %) G (o)
(S M, s et@d o (S » s
(4 /?j\('?@(v '44,* (7 R [\(Q@(U ’q(,* (4 R 1\(/?@(U 64(,*/(
2))
SAE Type

Figure 15 | Pearson correlation between simulated and ground truth activations, broken down by site
and layer.

21

Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders

layer=9 layer=20 layer=31 @,
[©]
1 il SAE Type
0.8 g —e— Gated (RI-L1)
|
0.6 ‘*”_. \‘__‘ ‘\\‘ﬂ*—* rgr T JumpReld
S —o— TopK (AuxK)
o 0.4 o~
2 E
IS 0.2 3
o 5
g 0 :
E 1 A
[0)
s 0,
3 0.8 o
© M 1]
£ 08 Nteee TN 2
2 o4 N
s +
2 0.2 E
‘s
g 0
=2
E :
(¢}
o [
Y
g 0.8 3
(%]
0.6 i~
3
0.4 F
0.2 43
Q.
c
0 (A

10 2 5100 2 51000 10 2 5100 2 51000 10 2 5100 2 51000
LO LO LO

Figure 16 | Comparing uniformity of active feature importance against LO for JumpReLU, Gated and
TopK SAEs. All SAEs diffuse their effects more with increased LO. This effect appears strongest for
TopK SAEs.

22

Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders

with the entropy S(p). Note that 0 < Dy (p|lu) <
log ||y|lo- Exponentiating the negative KL diver-
gence gives a new measure rg

S(p)
ro = e Pl - &
lyllo
with = < r;0 < 1. Note that since ¢5 can be

lIlyllo -
interpreted as the effective number of active el-

ements, ryg is the ratio of the effective number
of active features (after reweighting) to the to-
tal number of active features, which we call the
‘Uniformity of Active Feature Importance’. We
computed r;o over 2048 sequences of length 1024
(ignoring special tokens) for all SAE types and
sparsity levels and report the result in Fig. 16. For
all SAE types and locations, the more features are
active the more diffuse their effect appears to be.
Furthermore, this effect seems to be strongest for
TopK SAEs, while Gated and JumpReLU SAEs be-
have mostly identical (except for layer 31, residual
stream SAEs). However, we caution to not draw
premature conclusions about feature quality from
this observation.

H. Using other kernel functions

As described in Section 3, we used a simple
rectangle function as the kernel, K(z), within
the pseudo-derivatives defined in Eq. (11) and
Eq. (12). As shown in Fig. 17, similar results
can be obtained with other common KDE kernel
functions; there does not seem to be any obvious
benefit to using a higher order kernel.

I. Further details on our training
methodology

* We normalise LM activations so that they
have mean squared L2 norm of one during
SAE training. This helps to transfer hyper-
parameters between different models, sites
and layers.

* We trained all our SAEs with a learning rate
of 7 x 107> and batch size of 4,096.

* Asin Rajamanoharan et al. (2024), we warm
up the learning rate over the first 1,000 steps
(4M tokens) using a cosine schedule, starting
the learning rate at 10% of its final value
(i.e. starting at 7 x 107°).

Kernel
—e— rectangle
—e— triangle

w s uo

> —e— epanechnikov

0.1 \‘
9

2 3

—e— gaussian

Reconstruction loss

~N !

4 5 6789 2
100

LO

Figure 17 | Using different kernel functions
to compute the pseudo-derivatives defined in
Eq. (11) and Eq. (12) has little impact on fidelity-
vs-sparsity curves. These curves are for Gemma
2 9B post-layer 20 residual stream SAEs trained
on 2B tokens.

* We used the Adam optimizer (Kingma and
Ba, 2017) f1 = 0, B2 = 0.999 and € =
1078, In our initial hyperparameter study,
we found training with lower momentum
(B1 < 0.9) produced slightly better fidelity-
vs-sparsity carves for JumpReLU SAEs, al-
though differences were slight.

* We use a pre-encoder bias during training
Bricken et al. (2023) —i.e. subtract bge. from
x prior to the encoder. Through ablations
we found this to either have no impact or
provide a small improvement to performance
(depending on model, site and layer).

* For JumpReLU SAEs we initialised the thresh-
old 6 to 0.001 and the bandwidth ¢ also to
0.001. These parameters seem to work well
for a variety of LM sizes, from single layer
models up to and including Gemma 2 9B.

* For Gated RI-L1 SAEs we initialised the
norms of the decoder columns ||d;||, to 0.1.

* We trained all SAEs except for Gated RI-
L1 while constraining the decoder columns
Il to 1.12

* Following Conerly et al. (2024) we set Wepc
to be the transpose of Wy, at initialisation
(but thereafter left the two matrices untied)
when training of all SAE types, and warmed
up A linearly over the first 10,000 steps (40M
tokens) for all except TopK SAEs.

12This is not strictly necessary for JumpReLU SAEs and we
subsequently found that training JumpReLU SAE without
this constraint does not change fidelity-vs-sparsity curves,
but we have not fully explored the consequences of turning
this constraint off.

23

Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders

* We used resampling (Bricken et al., 2023)
— periodically re-initialising the parameters
corresponding to dead features — with Gated
(original loss) SAEs, but did not use resam-
pling with Gated RI-L1, TopK or JumpReLU
SAEs.

J. Pseudo-code for implementing and
training JumpReLU SAEs

We include pseudo-code for implementing:

* The Heaviside step function with custom
backward pass defined in Eq. (12).

* The JumpReLU activation function with cus-
tom backward pass defined in Eq. (11).

* The JumpReLU SAE forward pass.

* The JumpReLU loss function.

Our pseudo-code most closely resembles how
these functions can be implemented in JAX, but
should be portable to other frameworks, like Py-
Torch, with minimal changes.

Two implementation details to note are:

* We use the logarithm of threshold, i.e. log(8),
as our trainable parameter, to ensure that the
threshold remains positive during training.

* Even with this parameterisation, it is possible
for the threshold to become smaller than half
the bandwidth, i.e. that 6; < £/2 for some
i. To ensure that negative pre-activations
can never influence the gradient computa-
tion, we take the ReLU of the pre-activations
before passing these to the JumpReLU activa-
tion function or the Heaviside step function
used to compute the LO sparsity term. Math-
ematically, this has no impact on the forward
pass (because pre-activations below the pos-
itive threshold are set to zero in both cases
anyway), but it ensures that negative pre-
activations cannot bias gradient estimates in
the backward pass.

Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders

def rectangle(x):
return ((x > -0.5) & (x < 0.5)).astype(x.dtype)

Implementation of step function with custom backward

Q@custom_vjp
def step(x, threshold):
return (x > threshold).astype(x.dtype)

def step_fwd(x, threshold):
out = step(x, threshold)
cache = x, threshold # Saved for use in the backward pass
return out, cache

def step_bwd(cache, output_grad):
X, threshold = cache
x_grad = 0.0 * output_grad # We don’t apply STE to x input
threshold_grad = (
-(1.0 / bandwidth) * rectangle((x - threshold) / bandwidth) * output_grad
)

return x_grad, threshold_grad

step.defvjp(step_fwd, step_bwd)

Implementation of JumpReLU with custom backward for threshold

Qcustom_vjp
def jumprelu(x, threshold):
return x * (x > threshold)

def jumprelu_fwd(x, threshold):
out = jumprelu(x, threshold)
cache = x, threshold # Saved for use in the backward pass
return out, cache

def jumprelu_bwd(cache, output_grad):
X, threshold = cache
x_grad = (x > threshold) * output_grad # We don’t apply STE to x input
threshold_grad = (
-(threshold / bandwidth)
* rectangle((x - threshold) / bandwidth)
* output_grad
)

return x_grad, threshold_grad

jumprelu.defvjp(jumprelu_fwd, jumprelu_bwd)

25

Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders

Implementation of JumpReLU SAE forward pass and loss functions

def sae(params, x, use_pre_enc_bias):
Optionally, apply pre-encoder bias
if use_pre_enc_bias:
X = x - params.b_dec

Encoder - see accompanying text for why we take the RelU
of pre_activations even though it isn’t mathematically

necessary

pre_activations = relu(x @ params.W_enc + params.b_enc)
threshold = exp(params.log_threshold)

feature_magnitudes = jumprelu(pre_activations, threshold)

Decoder
x_reconstructed = feature_magnitudes @ params.W_dec + params.b_dec

Also return pre_activations, needed to compute sparsity loss
return x_reconstructed, feature_magnitudes

Implementation of JumpReLU loss

def loss(params, x, sparsity_coefficient, use_pre_enc_bias):
x_reconstructed, feature_magnitudes = sae(params, x, use_pre_enc_bias)

Compute per-example reconstruction loss
reconstruction_error = x - x_reconstructed
reconstruction_loss = sum(reconstruction_error**2, axis=-1)

Compute per-example sparsity loss

threshold = exp(params.log_threshold)

10 = sum(step(feature_magnitudes, threshold), axis=-1)
sparsity_loss = sparsity_coefficient * 10

Return the batch-wise mean total loss
return mean(reconstruction_loss + sparsity_loss, axis=0)

26

	Introduction
	Preliminaries
	JumpReLU SAEs
	How STEs enable training through the jump
	Evaluation
	Evaluating the sparsity-fidelity trade-off
	Feature activation frequencies
	Interpretability of SAE features
	Manual Interpretability
	Automated Interpretability

	Related work
	Discussion
	Acknowledgements
	Author contributions
	Differentiating integrals involving Heaviside step functions
	Differentiating the expected loss
	Using STEs to produce a kernel density estimator
	Combining Gated SAEs with the RI-L1 sparsity penalty
	Approximating TopK
	Training JumpReLU SAEs to match a desired level of sparsity
	Additional benchmarking results
	Using other kernel functions
	Further details on our training methodology
	Pseudo-code for implementing and training JumpReLU SAEs

