Annual Drinking Water Quality Report Fairfield Culinary Water System 2017

We're pleased to present to you this year's Annual Drinking Water Quality Report. This report is designed to inform you about the quality of the water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water sources have been determined to be from groundwater sources. Our water sources are Fairfield Spring and Fairfield Town Well.

The Drinking Water Source Protection Plan for Fairfield Culinary Water is available for your review. It contains information about source protection zones, potential contamination sources and management strategies to protect our drinking water. Our sources have been determined to have a low level of susceptibility from potential contamination. We have also developed management strategies to further protect our sources from contamination. Please contact us if you have questions or concerns about our source protection plan.

There are many connections to our water distribution system. When connections are properly installed and maintained, the concerns are very minimal. However, unapproved and improper piping changes or connections can adversely affect not only the availability, but also the quality of the water. A cross connection may let polluted water or even chemicals mingle into the water supply system when not properly protected. This not only compromises the water quality but can also affect your health. So, what can you do? Do not make or allow improper connections at your homes. Even that unprotected garden hose lying in the puddle next to the driveway is a cross connection. The unprotected lawn sprinkler system after you have fertilized or sprayed is also a cross connection. When the cross connection is allowed to exist at your home, it will affect you and your family first. If you'd like to learn more about helping to protect the quality of our water, call us for further information about ways you can help.

If you have any questions about this report or concerning your water utility, please contact Tyler Thomas at 801-921-0833. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. Notices are sent out regarding meeting dates and times.

Fairfield Culinary Water routinely monitors for constituents in our drinking water in accordance with the Federal and Utah State laws. The following table shows the results of our monitoring for the period of January 1st to December 31st, 2017. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily pose a health risk.

In the following table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present. *ND/Low - High* - For water systems that have multiple sources of water, the Utah Division of

Drinking Water has given water systems the option of listing the test results of the constituents in one table, instead of multiple tables. To accomplish this, the lowest and highest values detected in the multiple sources are recorded in the same space in the report table.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter (ug/l) - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Parts per trillion (ppt) or Nanograms per liter (nanograms/l) - one part per trillion corresponds to one minute in 2,000,000 years, or a single penny in \$10,000,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Nephelometric Turbidity Unit (NTU) - nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The "Goal"(MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Date- Because of required sampling time frames i.e. yearly, 3 years, 4 years and 6 years, sampling dates may seem out-dated.

TEST RESULTS									
Contaminant	Violation Y/N	Level Detected ND/Low- High	Unit Measurement	MCLG	MCL	Date Sampled	Likely Source of Contamination		
Microbiological	Contan	ninants							
Total Coliform Bacteria	N	0	N/A	0	5	2017	Naturally present in the environment		
Fecal coliform and <i>E.coli</i>	N		N/A	0	If a routine sample and repeat sample are total coliform positive, and one is also fecal coliform or <i>E. coli</i> positive	2017	Human and animal fecal waste		
Turbidity for Ground Water	N	0.12-0.68	NTU	0	0.3	2016	Soil runoff		
Inorganic Conta	minant	S							
Arsenic	N	0.8-7.2	ppb	0	10	2016	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes		
Barium	N	0.03-0.066	ppm	2	2	2016	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits		
Copper a. 90% results b. # of sites that exceed the AL	N	a.0.069 b.0	ppm	1.3	AL=1.3	2016	Corrosion of household plumbing systems; erosion of natural deposits		

Fluoride	N	0.2-0.4	ppm	4	4	2016	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Lead a. 90% results b. # of sites that exceed the AL	Y	a. 24.3 b.1	ppb	0	AL=15	2016	Corrosion of household plumbing systems, erosion of natural deposits
Nitrate (as Nitrogen)	Ν	0.5-0.67	ppm	10	10	2017	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Selenium	Ν	1.1-2.6	ppb	50	50	2016	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Sodium	Ν	10.2-45.4	ppm	500	None	2016	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills.
Sulfate	N	25-79	ppm	1000	1000	2016	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills, runoff from cropland
TDS (Total Dissolved solids)	Ν	246-620	ppm	2000	2000	2016	Erosion of natural deposits
Thallium	Ν	0-0.2	ppb	0.5-2	2	2016	Leaching from ore- processing sites; discharge from electronics, glass, and drug factories
Radioactive Cont	amina	ints					
Alpha emitters	Ν	1.4-3.9	pCi/1	0	15	2016	Erosion of natural deposits
Radium 228	Ν	0.37-0.96	pCi/1	0	5	2016	Erosion of natural deposits

While your drinking water meets EPA's standard for arsenic, it does contain low levels of arsenic. EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Infants and children who drink water containing lead in excess of the action level could experience delays in their physical or mental development. Children could show slight deficits in attention span and learning abilities. Adults who drink this water over many years could develop kidney problems or high blood pressure. Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing. If you are concerned about elevated lead levels in your home's water, you may wish to have your water tested and flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the Safe Drinking Water Hotline (1-800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Fairfield Culinary Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

We constantly monitor for various constituents in the water supply to meet all regulatory requirements. In May of 2017 we failed to test for coliform bacteria. Water quality may change without any visible indication due to unanticipated environmental factors. For this reason, we are required to sample for coliform bacteria on a monthly basis. This violation does not necessarily pose a health risk. We have reviewed why we failed to take our routine coliform bacteria tests and have taken steps to ensure that it will not happen again.

We periodically monitor for a Chlorine Residual in the distribution system to meet all regulatory requirements. In quarter three of 2017 we failed to take the required samples. Testing for a Chlorine Residual is used to ensure that the public is provided with safe drinking water. This violation does not necessarily pose a health risk. We have reviewed why we failed to take the required samples and will take steps to ensure that it will not happen again.

We periodically monitor for Nitrate in the water supply to meet all regulatory requirements. In 2017 we failed to take the required samples. Testing for Nitrate is used to ensure that the public is provided with safe drinking water. This violation does not necessarily pose a health risk. We have reviewed why we failed to take the required samples and will take steps to ensure that it will not happen again.

All sources of drinking water are subject to potential contamination by constituents that are naturally occurring or manmade. Those constituents can be microbes, organic or inorganic chemicals, or radioactive materials. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

MCLs are set at very stringent levels. To understand the possible health effects described for many regulated constituents, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

As a precaution we always notify physicians and health care providers in this area if there is ever a higher than normal level of nitrates in the water supply.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing

chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice from their health care providers about drinking water. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

We at Fairfield Culinary Water work around the clock to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.

Fairfield Culinary Water PO Box 271 Cedar Valley, Utah 84013

June 13, 2018

Colt Smith CCR Compliance Division of Drinking Water P.O. Box 144830 Salt Lake City, Utah 84114-4830

Dear Mr. Smith:

Subject: Consumer Confidence Report for Fairfield Culinary Water # 25011.

Enclosed is a copy of Fairfield Culinary Water Consumer Confidence Report. It contains the water quality information for our water system for the calendar year 2017 or the most recent sample data.

We have delivered this report to our customers by posting a notice of the availability of the report on our water bill and sending a copy of the report to those who request it.

If you have any questions, please contact me at 801-921-0833.

Sincerely,

Tyler Thomas Fairfield Culinary Water