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Story of our solution development

Our solution development from submission history on Kaggle

Ensemble of descriptors (Mordred) and GNN-based model

®

GBDT with pretained chemical language model (MoIBART) from NVIDIA
®

Pretrained chemical language model (MoIBART) and GNN-based model
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Overview workflow of our solution

Combination of pretrained chemical language-based model with graph-based model
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[1] Irwin R., et al. Mach. Learn.: Sci. Technol., 2022 4
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Pretrained Chemformer Pretrain Chemformer (MoIBART) Model [1][2]

(MoIBART) Model

« Transfromer model from NVIDIA's NeMo-Megatron framework

« Pre-training on approximately 1.45 billion molecules from ZINC-15
database using SMILES language encoding

GNN-Based Model

GNN-Based Model : . .
ased Hode « Learn node embedding with GIN and molecule embedding and GAT

« All learning layers apply GRU to enhance embedding information
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Issues in chemical language model

Problems in latent space generation step

Latent space is obtained by averaging the encoder output of
the language model along the tokens, since the length of the
tokens depends on the length of the SMILES

«  Padding features that should not be included in the averaging
process were also included.

* Information on compounds in the same batch is shared in the
padding portion.

« If latent spaces are generated for the same batch with the same
solubility category, they can be easily identified by the similarity
of the latent spaces.

In this competition, compounds with high solubility were lined
up at the end of the test data.

« Easily identified by similarities in latent space

«  Performance was unintentionally supported by order of test data
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After revision of chemical language model

We submitted late submission with our revised version of solution again
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Thank you very much




Embedding leakage
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Because of our mistaken configuration,

this step calculates specifically for each batch,

so when batch contains same class of compounds,
the latent space is generated with bias.

(Latent space leakage, latent space generation
unintentionally gains some advantages when the
batch containing same class compounds)
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Generating process of embbedings
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