
Graph-based Features for Supervised Link Prediction

William Cukierski, Benjamin Hamner, Bo Yang

Abstract— The growing ubiquity of social networks has
spurred research in link prediction, which aims to predict new
connections based on existing ones in the network. The 2011
IJCNN Social Network challenge asked participants to separate
real edges from fake in a set of 8960 edges sampled from an
anonymized, directed graph depicting a subset of relationships
on Flickr. Our method incorporates 94 distinct graph features,
used as input for classification with Random Forests. We present
a three-pronged approach to the link prediction task, along with
several novel variations on established similarity metrics. We
discuss the challenges of processing a graph with more than a
million nodes. We found that the best classification results were
achieved through the combination of a large number of features
that model different aspects of the graph structure. Our method
achieved an area under the receiver-operator characteristic
(ROC) curve of 0.9695, the 2nd best overall score in the
competition and the best score which did not de-anonymize
the dataset.

I. INTRODUCTION

Directed graphs encapsulate relationships in social net-
works, with nodes representing members of the network and
edges signifying the relations between them. Link prediction,
the task of forecasting new connections based on existing
ones, is a topic of growing importance as digital networks
grow in size and ubiquity [1], [2], [3], [4]. The study
of network dynamics has numerous applications. Marketers
would like to recommend products or services based on
existing preferences or contacts. Social networking web-
sites would like to customize suggestions for new friends
and groups. Financial corporations would like to monitor
transaction networks for fraudulent activity. In recognition
of the growing demand for accurate link prediction, the
2011 IJCNN Social Network challenge asked participants
to separate real edges from fake edges in a set of 8960
edges sampled from an anonymized, directed graph depicting
a subset of relationships on Flickr.

The graph representation of social networks allows exist-
ing and powerful methods of graph theory to be applied to
the task of link prediction. We refer the interested reader
to Liben-Nowell and Kleinberg’s paper [2] for an excellent
review of this topic. Though social networks share common
representations as a graph, edges can have very different
meanings, both within the same network and across different
networks. What does an edge on the Flickr graph represent?
At face value, each node comprises a user and each edge
indicates a friendship, which need not be mutual. However,

William Cukierski is with the Biomedical Engineering Department at
Rutgers University and the University of Medicine and Dentistry of New
Jersey.

Benjamin Hamner is a Whitaker Fellow at the École Polytechnique
Fédérale de Lausanne.

Bo Yang is a software developer in the Vancouver, Canada area.

there are numerous reasons for friendship on a photo sharing
site. It may be that two users are friends in real life, or
they may share interest in a common subject matter, or
they may share interest in a common style of photography.
Recognizing the disparate meanings of graph edges leads to
new interpretations of traditional link prediction methods.

Our approach to the IJCNN Social Network Challenge
follows a classical paradigm in supervised learning, start-
ing with feature extraction, then preprocessing, and lastly
repeated classification using the posterior probabilities from
Random Forests [5]. Instead of presenting a single novel
methodology for link prediction, the foremost contribution
of this paper is in the breadth and variety of techniques
incorporated into the feature extraction step. Sec. II describes
this process in detail, starting with subgraph extraction,
descriptions of the features, and finally, meta approaches to
make valuable, new predictors from these features. Aspects
of the work which are novel, such as the application of
Bayesian Sets and the development of the three-problem
approach, are discussed in more detail at the end of the
section.

II. FEATURE EXTRACTION

We now introduce notation used throughout the paper. A
graph ! is a set of " vertices and directed edges (#,%), with
associated adjacency matrix &. When considering whether
a specific edge &!" is real or fake, we label the outbound
(') node (# and the inbound ()) node ($. Γ(() denotes all
neighbors of node (, while Γ!%(() and Γ&'((() denote just
the inbound and outbound set of neighbors, respectively. We
abbreviate the 'th column of & as &(:, '), and the)th row as
&(), :). The undirected form of the adjacency matrix, &', is
& ∨ &) . The area under the receiver-operator characteristic
(ROC) curve is abbreviated AUC.

Link prediction methods are formed on the hypothesis that
similar nodes are more likely to form connections. To this
end, a link prediction method can be any general function
*+,-.(/, () which produces a similarity ranking between all
pairs of nodes in the graph. It is important to distinguish
between the prediction task of the IJCNN challenge (namely,
to separate real from fake edges in a given test set) and that
of real-world link prediction, where one instead asks one of
two questions:

1) Given a user (#, with whom is that user most likely to
connect?

2) Given a graph !, which user (# is most likely to make
a connection, and with whom?

These tasks are considerably more difficult. If the network
is large, one must check " candidate nodes to see which
has the highest probability of forming a new connection,

Proceedings of International Joint Conference on Neural Networks, San Jose, California, USA, July 31 – August 5, 2011

978-1-4244-9637-2/11/$26.00 ©2011 IEEE 1237

then compute a similarity score with the remaining set of
unconnected nodes (naively, checking " − ∣Γ((#)∣ nodes).
Additionally, certain methods which might work on the
IJCNN data–for example using anomaly detection to locate
edges which are “out of place”–are not directly applicable to
real link prediction.

Instead of ranking the unconnected nodes, this paper
employs similarity scores as features for supervised classi-
fication. This requires that, whenever possible, the scores
be scaled to a common range, to eliminate the variation
caused by different sized subgraphs and nodes with different
numbers of neighbors. Since the final contest solution in-
corporates over ninety features, there is no way to describe
each in full detail. Table I gives a short synopsis, with
an appropriate reference if the feature cannot be succinctly
summarized. In the rest of the section, we discuss methods
to extract a local subgraph and meta approaches to build
variations on link predictors. Lastly, we describe a limited
subset of the most important features, focusing on those
which worked best or were used in a novel way.

A. Extracting the Subgraph

The Flickr graph contains " = 1,133,547 users joined
by 7,237,983 edges. Even with sparse matrices, there are
similarity methods which can not run on the whole graph
due to memory or processing limits. Certain methods are
memory-bound because they require the similarity between
all nodes be stored, with a worst case of 0("2). Other
methods are runtime-bound, sometimes using computations
which are 0("3) or worse (matrix inversions being the
most frequent offender). It should be noted that there are
published methods to approximate or optimize many of
the significant link prediction algorithms (Katz [13], [14],
SimRank [15], [16], [17], PageRank [18], [19], etc.). While
these advanced approaches may or may not make the entire
Flickr graph tractable, they often come with the added costs
of specialized data structures, additional preprocessing steps,
or rely on assumptions that only hold for undirected graphs.
In a competition setting with limited time to implement, test,
and run features, it can be impractical to adopt these more
complicated approaches.

The natural alternative to processing the whole graph at
once is to consider smaller neighborhoods relating to nodes
of interest. Let !#$ be the subgraph consisting of all the
nodes and edges defined as “relevant” to nodes (# and ($.
Five methods to construct a local subgraph were tested,
including combinations of the methods. Table II summarizes
each method. Of the five, two were ruled out because
they produced large subgraphs which required too much
memory (2nd-level neighbors, distance-based criteria). The
Bayesian Set method frequently created subgraphs in which
the communities for (# and ($ were isolated, causing a drop
in performance of any subsequent graph-based similarity
algorithms. The simple paths algorithm of Wang et al [20]
showed promise, but had to be abandoned because it was too

slow to enumerate paths in the Flickr data set1. Left was the
simplest and fastest method to extract the subgraph: include
only the first-level neighbors and any edges between them,

!#$ = {Γ((#) ∪ Γ(($)}. (1)

This subgraph was then used for all features that require
computing and storing an all-pairs similarity.

B. Meta Approaches

Liben-Nowell and Kleinberg reviewed several “meta ap-
proaches” to link prediction [2], which encompass any
approach that can be used to generate new features from
existing link prediction methods. Some meta approaches are
extremely simple. For example, one can apply the same
predictors to &, &) , and the undirected graph &' = &∨&) .
Additionally, one might use a weighted form of the adjacency
matrix where each entry is row-normalized,

&!" = &!"/
*∑

"=1

&!" , (2)

thus having the effect that users with more connections count
less than those with just a few.

The “unseen bigrams” method is a more sophisticated
meta approach. If # {+}

denotes the + nodes most related
to (# under *+,-.((#, (), then a new score can be calculated
from

*+,-.((#, ($) =
∑

,∈Γ(,!)∩- {"}
#

*+,-.((#, (). (3)

Rather than relying on the score between (# and ($, this
approach calculates an aggregate similarity of ($ to the
nodes most similar to (#. This idea has both a signif-
icant advantage and disadvantage. When (has a small
number of connections, the network contains less latent
“information” about the node. Broadening the similarity
score to include nodes similar to (can therefore improve
knowledge about that node. However, finding # {+}

(solving
argmax [*+,-.((, (#)]) can take too long in a large graph,
unless heuristics are put in place to limit the number of
node similarities calculated. The need to calculate # {+}

in
reasonable time limited our use of bigrams to features in the
small subgraph, !#$.

We proposed an approximation to the unseen bigrams
method which did not rely on computing the most similar
nodes first. The already-connected neighbors were used in
place of finding the most similar set of nodes. A similarity
score was then defined as three separate problems (Fig. 1):

1) How similar is node (# to ($?

*+,-.((#, ($)

1Even with the Boost Graph C++ Libraries, there were too many breadth-
first searches required to process the nodes in the competition dataset in
reasonable time

1238

TABLE I

DESCRIPTION OF THE FEATURES

Name Formula Description

Katz [6] 3&((#, ($) + 32&2((#, ($) + . . .+ 34&4((#, ($) Truncated from
∑∞

.=1 &
.((#, ($),

weighted sum of all paths with
length < 5 from (# to ($ in !#$

Common Neighbors ∣Γ((#) ∩ Γ(($)∣ Num. common neighbors

Adar [7]
∑

,∈{Γ(,#)∩Γ(,!)}
1

.&/∣Γ(,)∣ Weights connections with rare
nodes more heavily

Jaccard [8] ∣Γ((#) ∩ Γ(($)∣/∣Γ((#) ∪ Γ(($)∣ Common neighbors normalized by
total neighbors

Cosine ∣Γ((#) ∩ Γ(($)∣/(∣Γ((#)∣∣Γ(($)∣) Common neighbors normalized by
pref. attachment

Preferential Attachment [9] ∣Γ((#)∣∣Γ(($)∣ New connections determined by
size of current neighborhoods

Bayesian Sets [10] max+
∑

5*.6+((#) ∩ 5*.6+(($) See Sec. II-E

argmin
+

∣578.* *.6+((#) ∩ 578.* *.6+(($)∣ = 1 Position of first common node in
the ranked queries

SVD Features &̃'((#, ($) Rank 80 SVD approximation

&̃'((#, :) ⋅ &̃'(($, :) Dot product of columns (# and ($
in low-rank approximation

9.7:
[
&̃'((#, (∈ Γ!%(($))

]
Mean SVD value of (# with node
($’s neighbors

% of &̃'((#, (/∈ Γ!%(($)) < &̃'((#, ($) Percentage of non-existing edges
with SVD values less than
&̃'((#, ($)

SimRank [11]
0
∑

$∈Γ($#)

∑
%∈Γ($!)

1!23#%4(,,'))

∣Γ(,#)∣∣Γ(,!)∣ Recursive similarity calculated in
!#$. ;'9<7:=(/, () = 1 if / = (

EdgeRank [12] See Sec. II-C Rooted PageRank over a weighted
undirected adjacency matrix

Commute Time See [2] Random walk measure, from (# to
($ and back on undirected !#$

Bounded Walk See [2] Random walk with bounded path
length in !#$

PageRank See [2] Random walk with resets in !#$

Maximum Flow max >#$ Maximum flow treating (# as the
source and ($ as the sink

Betweenness Centrality
∑

, ∕='
6$%(7#!)

6$%
, where ?,'(.#$) is the number of paths

from (to / that traverse .#$

Assume .#$ exists, calculate the
edge betweenness centrality in !#$

Core Number N/A Largest + s.t. (has @.A-.. > 0
when all vertices of @.A-.. < +
are removed

Shortest Paths Histogram N/A All shortest paths between Γ((#)
and Γ(($)

Power Law Exponent
log(

∑
%,$ 8(',,))

log(∣Γ(,#)∪Γ(,!)∣) Log ratio of number of edges to
vertices in !#$

1239

TABLE II

METHODS FOR EXTRACTING LOCAL SUBGRAPHS

!#$ = {Γ((#) ∪ Γ(($)} 1st-level neighbors of both nodes

!#$ = {Γ(Γ((#)) ∪ Γ(Γ(($))} 2nd-level neighbors of both nodes

!#$ = {(∈ ! : @((#, () < +} ∪ {(∈ !) : @(($, () < +′} Set of nodes at distance less than + from node (#, along with
the nodes at distance less than +′ to node ($. +, +′ were varied
between 2 and 4.

!#$ = {578.* *.6*+((#) ∪ 578.* *.6*+(($)} Nodes containing the top + scores in a bayesian sets query
on (# and ($

!#$ = nodes most frequently appearing in the set of all
simple (non-looping) paths from (# to ($

See section 3.1.1 of [20]

a b
?

a b?

1.

2. 3.

b

a?

Fig. 1. Node similarity can be defined not just between !! and !", but
also between the appropriate neighbors of both nodes.

2) How similar are the outbound neighbors of (# to ($?

*+,-.((#, ($) =
1

∣Γ&'(((#)∣
∑

,∈Γ'%((,#)

*+,-.(($, ()

3) How similar are the inbound neighbors of ($ to (#?

*+,-.((#, ($) =
1

∣Γ!%(($)∣
∑

,∈Γ)*(,!)

*+,-.((#, ()

Once the code is written to compute *+,-.((#, ($), it
takes only ∣Γ&'(((#)∣, ∣Γ!%(($)∣ more comparisons to find
*+,-.(($,Γ&'(((#)) and *+,-.((#,Γ!%(($)).

The three problems above have a concrete meaning be-
yond their abstract mathematical role. Rewriting them in a
more colloquial form, one can see they represent different
categories of friendships which exist in the graph.

1) A and B are more likely to connect if A is like B. (ex:
A and B are friends in real life)

2) A is more likely to connect to B if B is like A’s friends.
(ex: A follows people who post photos of tennis, B is
a tennis player)

3) A is more likely to connect to B if A is like the people
who like B. (ex: B is famous photographer, A follows
other famous photographers who have many fans)

Using these three representations was central to our success
in the contest. Number two, in particular, improved almost

every link prediction method to which it was applied. Though
less intensive than the unseen bigrams, we were still limited
to using this approach on only the fastest features. Many
users have hundreds or thousands of connections, so it can
take hours per edge to calculate 2) and 3) if *+,-.((#, ($) is
not extremely fast. This was too slow for the contest setting.

Singular value decomposition (SVD) was the final meta-
approach used in our solution. SVD has been shown to
work well for large sparse applications and gained popularity
through its application to the Netflix Prize problem [21].
We used a rank 80 approximation of the Flickr graph,
&̃' = (CΣ#))80. 80 was chosen as the largest rank the
computer could reasonably handle. Since &̃' is not sparse
and " is large, we store the matrices C,Σ, #) and compute
*(@((#, ($) through the product C#Σ#$. The undirected
graph was experimentally found to give higher AUC than
the directed graph.

C. EdgeRank

The single highest-scoring feature found was termed
EdgeRank and had an AUC of 0.926. This feature was
a rooted PageRank (see [12]) over a weighted undirected
adjacency matrix of the graph,

(1− @)D0 + @
(
&+ E&)

)
D = D. (4)

The vector D0 is one at index (# and zero elsewhere. The
vector D represents the probability that a user starting at
node (# and randomly traversing the weighted graph will
end up at each node. The user randomly restarts at node (#
with probability (1− @). The solution to this equation was
iteratively approximated as follows, starting with : = 1:

D% = (1− @)D0 + @
(
&+ E&)

)
D%−1. (5)

This feature has the advantage that, instead of simply com-
puting the probability that an edge exists between nodes (#
and ($, it ranks the likelihood of all nodes to which (# does
not point. An alternative optimization scheme was employed
over one of the validation sets to solve the following problem:

max
9,:

AUC (#,EdgeRank (!#, #, @, E)) . (6)

1240

For the IJCNN Flickr dataset, the optimal weights were found
to be @ = 0.5 and E = 1. These were relatively robust
to variation, and the precise optimum varied based on the
dataset used.

D. kNN

Initially, a genuine kNN method was implemented, how-
ever, it morphed into a group of related methods that can be
considered kNN only in a loose sense. Nonetheless, we con-
tinued to refer to them as kNN throughout the competition
and do so in this paper. They are more aptly described as
general neighborhood and similarity-based methods.

In order to determine the similarity of nodes, an edge
weight value was calculated between nodes. Edge weight
decreases as the neighbor count goes up. Intuitively, consider
one million people following a celebrity on a social network.
Chances are most of them never met each other or the
celebrity. On the other hand, if a user has 30 contacts in
his/her social network, the chances are higher that many of
them know each other.

For each node, edge weights were calculated separately
for inbound and outbound edges,

E!%
! =

1√
1 + ∣Γ!%((!)∣

(7)

E&'(
! =

1√
1 + ∣Γ&'(((!)∣

.

The weight between (# and ($ was then be constructed using
different permutations of these weights,

E#$ = 1 (8)

E#$ = E!%
$

E#$ = E&'(
#

E#$ = E!%
$ + E&'(

#

E#$ = E!%
$ E&'(

#

. . .

Due to the sparseness of the graph, it was helpful to make
use of 2nd-level neighbors. If (+ is a 2nd-level neighbor of
(# via ($, then there are 4 possible types of paths from (#
to ($ to (+: outbound-outbound (oo), outbound-inbound (oi),
inbound-outbound (io), and inbound-inbound (ii). We will
use E(;<7

#$+ to denote the link weight assigned to the path
from (# to ($ to (+. The 2nd-level weight is calculated using
a combination of the 1st-level neighbor weights. There are
many ways to calculate this for each path type, for example:

E&&
#$+ = E!%

+ (9)

E&&
#$+ = E&'(

$ + E!%
+

E&&
#$+ = E&'(

E&'(
$ E!%

+

. . .

The number of possible combinations is large (the general
idea can also be extended to "6ℎ levels). Due to the limited
amount of time available, most time was spent on relatively
simple forms of 1st and 2nd level functions. The final

solution incorporated four variations of kNN, hand-picked
for their usefulness when tested against the validation sets.

E. Bayesian Sets

Bayesian Sets [10] is a query method designed to retrieve
items from a concept or cluster, based on example items from
that cluster. The algorithm returns a ranked similarity score
between the query and all other nodes in the graph. It was
adapted to the task of link prediction by using the adjacency
matrix as sparse association data, and then querying on (#,
($, Γ((#), or Γ(($). To our knowledge, this was the first
application of Bayesian Sets to link prediction.

The best score using Bayesian sets was achieved by query-
ing on (# and ($ separately, then comparing the intersection
of the two query results. The idea is that if (# and ($ are
connected, they will have similar sets of nodes returned by
the query. Let 5*.6+(() be the top + scores resulting from a
query on (. Then the similarity score was constructed using,

max
+

∑
5*.6+((#) ∩ 5*.6+(($), (10)

(where the intersect implies only the common members of
each set are to be included in the sum). The “time” to the
first common node in the query results was also included
as a feature. This is the smallest number + such that the
first + elements of each ranked query have at most one
common node. Other types of queries, including those using
the neighborhoods of each node, yielded worse AUC than
using the single nodes.

III. IMPLEMENTATION

The feature extraction and classification was performed
in parallel on an 8-core machine with 10GB of memory
and an SSD hard drive, which was found to drastically
improve performance when pageouts were necessary. The
full graph was stored as a sparse matrix in shared memory,
to allow each parallel worker access without the having a
duplicate copy in memory. Two team members used Matlab
for feature selection and the third used C++. The Boost
Graph Library was used to perform efficient calculations of
many graph-theoretic features, such as graph distances, be-
tweenness centrality, and maximum flow. Feature extraction
took approximately 10 seconds per edge. Edges whose nodes
produced larger subgraphs (" > 5000) took several minutes.

The training data for the Random Forests was obtained by
creating eight independent validation sets, each consisting of
4,000 data points (2,000 real edges and 2,000 fake edges).
These validation sets were constructed to approximate the
distributions of nodes and edges seen in the test set. Each
validation set had 4,000 unique (# nodes, while ($ nodes
could be duplicates. Fake edge candidates were sampled from
the full sets of nodes of each type. If the two nodes selected
contained an edge, they were discarded and two new ones
were sampled. No true edges were removed that would have
left a node disconnected from any other nodes.

The predicted AUC from these validation sets did not
match the reported leaderboard AUC for the competition;

1241

the leaderboard AUC was typically around 0.03 to 0.04
lower, and methods which improved the predicted AUC
ambiguously affected the leaderboard AUC. This brought our
attention to an irregularity in the test dataset: there were far
fewer (# nodes with ∣Γ&'(((#) ∣ = 1 and far fewer ($ nodes
with ∣Γ!% (($) ∣ ≤ 1 in the test dataset than there would have
been, had the nodes been sampled in the above manner. This
means that the test set did not contain many of the nodes
that only had a single edge pointing to them, which almost
always would have been false edges and thus easy to predict.

This explained the drop in AUC from the internal vali-
dation set to the leaderboard, and the methods to generate
validation sets were modified to ignore nodes that were
only connected to one other node for fake edges. This both
improved the leaderboard score and brought the validation
score in line with the leaderboard score. It also meant that if
a node in the test set was only connected to one other node,
it corresponded to a real edge.

IV. RESULTS

There are several ways to measure performance in link
prediction. The ROC area has the benefit of giving a global
measure of a method’s sensitivity and specificity. However,
methods with a low ROC area might still be valuable if
they are highly specific. The characteristic sparsity of social
networks means the number of existing connections is small
compared to the number which could possibly exist. This
creates a bias towards specificity when suggesting new
connections, since it is usually more desirable to produce
accurate recommendations than thorough recommendations.
There is also theoretical justification to include features with
low ROC area. For example, the feature “&(($, (#) = 1
and (# forms mutual edges” has an AUC of only 0.541,
but almost 100% specificity. This is valuable to a rule-based
or decision tree classifier, even though it is not sensitive.

The best submission was obtained by learning 300 random
forests with 5000 trees each for the binary link prediction
problem. The number of variables considered at each split
was chosen by cross validation to be >G,,-(

√
:/9 (7-*) (9

in the case of the 94 features used here). Random Forests
performed the best out of all supervised machine learning
methods evaluated, which included artificial neural networks,
decision trees, boosted decision trees, support vector ma-
chines with a variety of kernels, relevance vector machines,
and several Bayesian graphical models. Ensemble selection
over different techniques was not found to significantly
improve results. Random Forests performed well due to their
ability to estimate variable importance and model noisy and
complex interactions between features.

A total of 94 features were used in the final submission.
Table III gives the individual AUCs of a subset of these
features calculated on the test set. The AUCs are separated
in to 5 columns according to which relationship they portray.
Columns (1) through (3) are features applied to the three
problems described in Sec. II. Columns (4) and (5) are
features which pertain only to node (# or ($. Our method
achieved an area under the ROC curve of 0.9695, the 2nd best

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

Fig. 2. ROC curves for all 94 features (top) and for the best final submission
(bottom).

overall score in the competition and the best score which did
not employ de-anonymization on the graph. For comparison,
the scores of the top five teams from the competition are
listed in Table IV.

The results showed that the global features (run on the
full !) tended to outperform local features (run on !#$).
This makes it difficult to directly compare features, since it
is not known how much of the discrepancy is caused by the
subgraph extraction step and how much is a limitation of the
method. We suspect that some of the local features would
improve significantly, given the computational power to run
them on the whole graph.

V. CONCLUSIONS

Despite the large number of algorithms and ways to
permute such algorithms, link prediction in large graphs
is still a very challenging problem. Success in the IJCNN
Social Network Challenge required a balance between feasi-
bility, simplicity, and accuracy. There were many promising
methods which were not tested due to hardware or time
constraints. Our link prediction framework achieved high
sensitivity and specificity when separating real from fake

1242

TABLE III

AUCS OF INDIVIDUAL FEATURES (> 0.85 ARE IN BOLD)

Name 1) 2) 3) !! !"

Jaccard 0.721 0.878 0.855 - -

Adar 0.721 0.837 0.687 - -

Cosine 0.721 0.861 0.867 - -

Common Neighbors 0.721 0.864 0.809 - -

SimRank ($!") 0.805 0.834 0.805 - -

Katz ($!") 0.772 0.542 0.760 - -

EdgeRank 0.926 - - - -

kNN 1 0.880 - - - -

kNN 2 0.834 - - - -

kNN 3 0.914 - - - -

kNN 4 0.907 - - - -

Bayesian Sets 0.879 - - - -

Bayesian Sets time 0.839 - - - -

SVD 0.823 - - - -

SVD dot 0.804 - - - -

SVD mean 0.845 - - - -

SVD % 0.795 - - - -

Commute Time
(undirected $!")

0.832 - - -

SimRank, Unseen Bi-
grams ($!")

0.774 - - - -

Katz, Unseen
Bigrams ($!")

0.663 - - - -

Bounded Walks
($!")

0.757 - - - -

Maximum Flow
($!")

0.751 - - - -

Shortest Paths His-
togram ($!")

0.751 - - - -

Global link distance 0.844 - - - -

Power law exponent
of $!"

0.654 - - - -

Betweenness Central-
ity ($!")

0.628 - - - -

%(!", !!) = 1 and
!! forms mutual
edges

0.541 - - - -

paths of length 2
from !! → !"

0.680 - - - -

'()*+,-.(!!, !") 0.731 - - - -

'()*+,-.(!", !!) 0.536 - - - -

Pref. Attach. 0.641 - - - -

In Degree - - - 0.501 0.718

Out Degree - - - 0.504 0.535

Core Number In - - - 0.564 0.730

Core Number Out - - - 0.537 0.535

Pagerank ($!") - - - 0.693 0.535

Clustering Coeff.
($!")

- - - 0.665 0.643

TABLE IV

TOP FIVE FINISHERS IN THE COMPETITION

Team Name Final AUC

1. IND CCA 0.98115

2. wcuk 0.96954

3. vsh 0.95272

4. Jeremy Howard 0.94506

5. grec 0.92712

edges in a given test set, yet this is just one piece of the
real-world link prediction problem.

It is common practice to abstract social networks as graphs
and develop highly general methods for characterizing them.
Unsurprisingly, few of these methods work best “out of
the box.” Networks possess different underlying dynamics
of growth and attachment, while their edges can symbolize
many forms of connections. The strength of our approach
came not just from the breadth and depth of the individual
methods, but also from empirically testing variations and
permutations of those methods on the Flickr graph. Meta
methods provided some of the best performing features
in our approach, illustrating the importance of capturing a
taxonomy of connections in otherwise identical graph edges.

REFERENCES

[1] M.E.J. Newman, “The structure of scientific collaboration networks,”
Proc. Natl. Acad. Sci. U.S.A., vol. 98, pp. 404, 2001.

[2] David Liben-Nowell and Jon Kleinberg, “The link prediction problem
for social networks,” in Proceedings of the twelfth international
conference on Information and knowledge management, New York,
NY, USA, 2003, CIKM ’03, pp. 556–559, ACM.

[3] A. L. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, and T. Vic-
sek, “Evolution of the social network of scientific collaborations,”
Physica A: Statistical Mechanics and its Applications, vol. 311, no.
3-4, pp. 590–614, 2002.

[4] M. E. J. Newman, “The structure and function of complex networks,”
SIAM REVIEW, vol. 45, pp. 167–256, 2003.

[5] Leo Breiman, “Random forests,” Machine Learning, vol. 45, no. 1,
pp. 5–32, 2001.

[6] Leo Katz, “A new status index derived from sociometric analysis,”
Psychometrika, vol. 18, no. 1, pp. 39–43, March 1953.

[7] Lada A. Adamic and Eytan Adar, “Friends and neighbors on the web,”
Social Networks, vol. 25, no. 3, pp. 211–230, 2003.

[8] Paul Jaccard, “Étude comparative de la distribution florale dans une
portion des Alpes et des Jura,” Bulletin del la Société Vaudoise des
Sciences Naturelles, vol. 37, pp. 547–579, 1901.

[9] M. E. J. Newman, “Clustering and preferential attachment in growing
networks.,” Phys. Rev. E, vol. 64, 2001.

[10] Zoubin Ghahramani and Katherine A. Heller, “Bayesian sets,” in
Advances in Neural Information Processing Systems, 2005.

[11] Glen Jeh and Jennifer Widom, “Simrank: a measure of structural-
context similarity,” in KDD ’02: Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery and data
mining, New York, NY, USA, 2002, pp. 538–543, ACM Press.

[12] Sergey Brin and Lawrence Page, “The anatomy of a large-scale
hypertextual web search engine,” Comput. Netw. ISDN Syst., vol. 30,
pp. 107–117, April 1998.

[13] Pooya Esfandiar, Francesco Bonchi, David F. Gleich, Chen Greif, Laks
V. S. Lakshmanan, and Byung-Won On, “Fast katz and commuters:
Efficient estimation of social relatedness in large networks,” in WAW,
2010, pp. 132–145.

[14] Kurt C. Foster, Stephen Q. Muth, John J. Potterat, and Richard B.
Rothenberg, “A faster katz status score algorithm,” Comput. Math.
Organ. Theory, vol. 7, pp. 275–285, December 2001.

1243

[15] Pei Li, Hongyan Liu, Jeffrey Xu Yu, Jun He, and Xiaoyong Du, “Fast
single-pair simrank computation,” in SDM, 2010, pp. 571–582.

[16] Cuiping Li, Jiawei Han, Guoming He, Xin Jin, Yizhou Sun, Yintao Yu,
and Tianyi Wu, “Fast computation of simrank for static and dynamic
information networks,” in Proceedings of the 13th International
Conference on Extending Database Technology, New York, NY, USA,
2010, EDBT 10, pp. 465–476, ACM.

[17] Dmitry Lizorkin, Pavel Velikhov, Maxim N. Grinev, and Denis Tur-
dakov, “Accuracy estimate and optimization techniques for simrank
computation,” VLDB J., vol. 19, no. 1, pp. 45–66, 2010.

[18] Gianna M. Del Corso, Antonio Gullı́, and Francesco Romani, “Fast
pagerank computation via a sparse linear system,” Internet Math, vol.
2, pp. 118–130, 2004.

[19] Chris P. Lee, Gene H. Golub, and Stefanos A. Zenios, “A Fast Two-
Stage Algorithm for Computing PageRank and Its Extensions,” Tech.
Rep., Stanford University, 2004.

[20] Chao Wang, Venu Satuluri, and Srinivasan Parthasarathy, “Local
probabilistic models for link prediction,” in Proceedings of the 2007
Seventh IEEE International Conference on Data Mining, Washington,
DC, USA, 2007, pp. 322–331, IEEE Computer Society.

[21] Chris Volinsky, “Matrix factorization techniques for recommender
systems,” IEEE Computer, vol. 42, pp. 30–37, 2009.

1244

