
Detection and Classification of Acoustic Scenes and Events 2018 Challenge

AUDIO TAGGING SYSTEM FOR DCASE 2018: FOCUSING ON LABEL NOISE, DATA
AUGMENTATION AND ITS EFFICIENT LEARNING

Technical Report

Il-Young Jeong and Hyungui Lim

Cochlear.ai, Seoul, Korea
{iyjeong, hglim}@cochlear.ai

ABSTRACT

In this technical report, we expound on the techniques and models
applied to our submission for DCASE 2018: General-purpose au-
dio tagging of Freesound content with AudioSet labels. We aim to
focus primarily on how to train a deep-learning model efficiently
against strong augmentation and label noise. First, we conducted
a single-block DenseNet architecture and multi-head softmax clas-
sifier for efficient learning with mixup augmentation. For the la-
bel noise, we tried the batch-wise loss masking, which eliminates
the loss of outliers in a mini-batch. We also tried an ensemble of
various models, trained by using different sampling rate or audio
representation.

Index Terms— Audio event detection, Convolutional Neural
Networks

1. PROPOSED FRAMEWORK

Herein, we present a framework of our submission for
DCASE2018. For the detailed information about the dataset and
the challenge, please refer [1].

1.1. Preprocessing and batch generation

No preprocessing step was applied in the presented frameworks ex-
cept data resampling. We tried some other techniques including
silence removal, pre-emphasis filtering but we could not find mean-
ingful improvements. In case of data resampling, we tried 16kHz,
32kHz and 44.1kHz (original data). Low sampling rate may lose
useful information in high frequency, but it will be easier to analyze
longer temporal range since data size goes smaller.

We conduct the batch generation framework as follows. At first,
we set each batch to have the same number of classes. In this work,
one batch has one data for each class, thus the batch size was 41.
We expected that this helps the optimization procedure to be stable
and fast.

The length of audio recordings in the dataset is varied from few
hundreds milliseconds to about 30 seconds. For efficient mini-batch
learning, we fixed the length of data in each batch to be 64,000. It is
equivalent to 4s in case of 16kHz data, and shorter for the data with
higher sampling rate. If the original recording is longer than this,
segment of 64,000 samples was extracted from the random offset.
If it has shorter length, on the other hand, we applied zero-padding
to the beginning and end of data.

1.1.1. Mixup augmentation

Mixup is an augmentation method which linearly mix two training
data [2]. Let xi and yi are i-th raw input data in training dataset and
its corresponding binary label, respectively, then mixup generates
an augmented data x̂ which are the mixture of two original data as
follows:

x̂ = λxj + (1− λ)xk, (1)

where λ ∈ (0, 1). Similarly, the label of generated data is set to
be ŷ = λyj + (1 − λ)yk. Despite its simplicity, mixup shows
meaningful improvements in image classification tasks.

We believe that mixup technique is also, or more, appropriate
for audio analysis, since an audio signal captured in real-world can
be considered as a linear mixture of various ‘source’ signals. In
this perspective, classify x̂ to ŷ could be considered as a task which
detects multiple sound events occurring simultaneously.

In this work, we set λ to be random variable of Beta(0.4, 0.4). In
addition, we set λ > 0.5, so the data of target class, which is evenly
distributed in a batch, is always predominant in the generated data.
The class of another data for mixup is randomly selected. Finally,
we also apply scale augmentation, which randomly scales the data.
This process can be represented as a following equation.

x̂ = wλxj/max(|xj |) + w(1− λ)xk/max(|xk|), (2)

where w is random variable with uniform distribution for the scale
augmentation.

1.2. Model architecture

While mixup technique meaningfully prevents overfitting and in-
creases validation/test accuracy, we also found that it makes the
minimization of training loss difficult. Therefore, our model and
learning strategy is focusing on the training efficiency against strong
mixup augmentation.

The full architecture for our model is presented in Fig. 1, and
Fig. 2 shows the details of each module in the model.

We tried 2 different models, which are ‘logmel-based’ and
‘waveform-based’. The figures in the paper represent the logmel-
based model and the minor changes to the waveform-based model
are described individually in each subsection.

1.2.1. Low-level module

A logarithm of mel-scale spectrogram (logmel) is widely used pre-
processing step in audio signal analysis. In this work, we applied

Detection and Classification of Acoustic Scenes and Events 2018 Challenge

Low-level-k0

DenseNet-k1

…

DenseNet-kh

n-head Classifier

‘Cello’

Waveform

h modules

Figure 1: Overall architecture for the model in our submission. The
details of each module is represented in Fig. 2

logmel transform as a low-level module in our model by using kapre
[3].

Detailed low-level module is described in Fig. 2 (a). First, in-
put waveform is normalized by using Batch normalization (BN) [4],
then transformed into logmel domain, which has two dimensions of
time and frequency. After applying BN for each frequency, it is
reshaped to have the size of (time, frequency, 1) so it can be consid-
ered as a grayscale image. As described in the next subsection, we
aimed to conduct a single-block densely-connected architecture, so
output features of convolution layer is concatenated with its inputs.

In case of waveform-domain model, the preprocessing module
is simplified and modified as follows:

• logmel and BN+Reshape layer is removed and input data after
BN is directly concatenated to Conv outputs.

• 3x3 Conv layer is replaced to 1x3 Conv.

1.2.2. DenseNet Module

Numerous previous studies have tried to overcome the difficulty in
training the deep architecture by applying the short-path from lower
layers to higher ones. For example, in highway networks, some
layer input is passed to layer output depending on the gate func-
tion [5]. In case of the residual networks (Resnet), on the other
hand, layer input is directly added to layer output [6]. In densely-
connected networks (DenseNet), layer input is also directly trans-
fered to next layer as Resnet, it is concatenated with layer inputs
[7].

We designed our model based on DenseNet. Although the orig-
inal DenseNet model divided its architecture into several blocks and
applied densely-connected layer within each block, our model con-
sist of a single block architecture so the very first logmel or wave-
form can be reached even to the very last layer. In our experiments,
increasing the number of blocks in models which means the num-
ber of layer that disconnects the concatenation makes the training
slower.

Fig. 2 (b) shows the details of DenseNet module. Since the
filter size of layer output keeps increasing due to concatenation, it
is first reduced by using 1x1 convolution, and 3x3 convolution is
performed. We also applied Squeeze-and-Excitation Network [8],
which is expected to help efficient training by adding a few more

parameters. 2x2 max pooling is applied for the last layer of each
DenseNet module.

In case of waveform-based model, it is modified as follows:

• 3x3 convolution is replaced to 1x3 convolution.
• 2x2 max pooling is replaced to 1x2 max pooling.

1.2.3. Classifier module

In general, the goal of classification task is to predict the target label
which is binary i.e. [1, 0, 0]. When mixup is applied, on the other
hand, it needs to predict the real values in the range of (0, 1) i.e.
[0.9, 0.1, 0] or [0.7, 0.3, 0]. The stronger mixup is applied, the
more target values tend to be close to 0.5.

To train the mixup model efficiently, we modify the conven-
tional softmax output layer to have a multi-head architecture, where
output is obtained by averaging multiple softmax outputs as Fig. 2
(c).

We expect it will be helpful especially for training with strong
mixup augmentation because of following reason. Since the output
range of softmax layer is bounded to (0, 1), all the softmax have to
be 1 to make their average to be 1. When the target value is in the
range of (0, 1), each softmax output is allowed to have some error
if those average can predict the exact target value. More margin is
allowed when the target is closed to 0.5 because the softmax outputs
in the range of (0, 1) can have larger variance. In our experiments
with various n-multi-head settings, we found larger n helps to ac-
celerates the training procedure, while there was no improvement in
terms of maximum validation accuracy.

1.2.4. Overall frameworks

Our entire model is conducted by using abovementioned modules.
For the logmel- and waveform-based model, the detailed parameters
for modules are as follows.

• Logmel-based: Low-level-15, 8 DenseNet modules of k=(16,
32, 64, 128, 256, 512, 512, 512), 8-head Classifier. About 11M
trainable parameters (except fixed parameters in logmel layer)

• Waveform-based: Low-level-1, 15 DenseNet modules of k=(2,
4, 8, 16, 32, 64, 128, 256, 512, · · · , 512), 8-head Classifier.
About 16M trainable parameters.

1.3. Optimization

Training procedure was done by using keras [9]. Adam was used
for optimization [10]. Although it adaptively controls the learning
rate (lr) by itself, we found that manual decaying the learning rate
helps the optimization even for Adam. We set lr to be 1e-3 for first
150k mini-batch iteration, 1e-4 for next 100k and 1e-5 for the last
50k. Note that the actual learning rate for each minibatch is based
on this lr parameter and adaptation algorithm of Adam.

Validation accuracy was evaluated for every 1k iteration and
the best model was saved for the submission. The computation
time for 1k iteration was about 150s (logmel-based model) and 200s
(waveform-based model) using Nvidia Tesla P100 GPU.

1.3.1. Batch-wise loss masking

Another consideration in optimization is label noise. In 9.5k data
for training and validation, the labels of only 3.7k data is verified
and the rest is not guaranteed to have the true label. In this case,

Detection and Classification of Acoustic Scenes and Events 2018 Challenge

(a) Low-level-k module

BN + Relu + 1x1 Conv (k)

(b) DenseNet-k module (c) n-head classifier module

BN + Relu + 3x3 Conv (k)
Dense (n Multi-Head)

GAP + Softmax

Average

SE

Concat

2x2 MaxPool

BN

Logmel

BN + Reshape

3x3 Conv (k)

Concat

Figure 2: Details of each module in the presented model. k and n denote the fileter size of convolution and the number of softmax layer.
BN: batch normalization, Concat: feature concatenation, Relu: rectified linear unit, Conv: linear convolution, MaxPool: max pooling, GAP:
global average pooling.

these data with false label may not only leads to lower classifica-
tion performance, but also slower optimization because the model
is trained to handle those outliers. Therefore, we expect that it will
be helpful if those noise data can be detected and eliminated.

In this work, we tried the batch-wise loss masking as follows.
First, the conventional loss function for a mini-batch is defined as

J =
∑
n

Cn, (3)

where Cn is cross-entropy for a single data in a mini-batch, which
is defined as

Cn =
∑
c

tn,c log(yn,c). (4)

On the other hand, if we know which data is labeled correctly
and which is not, then we can modify the loss function to ignore
noised data as follows:

Ĵ =
∑
n

mnCn, (5)

where mn is 1 if n-th data is labeled correctly and 0 if not.
We considered two factors to decide the values of m. First, in

case of verified data, it can be considered as true label. On the other
hand, if some data show especially high loss in the current model,
then it can be considered as outliers with noised-label.

mn =

{
1 if vn = 1 or Cn < µ,

0 otherwise,
(6)

where vn denotes whether n-th data is manually verified or not. µ
is defined as follows in this work:

µ = α×max
n

Cn, (7)

where α is empirically set to be 0.8 in this work. This modification
eliminates the several data with largest error to gradient calculation.
In addition, data which will be eliminated in cross-entropy is cho-
sen for every batch, and it is expected to allow to find noised data
gradually. In our experiments, we found that this masking technique
improves the cross-validation accuracy about 1 percent point.

1.4. Model ensemble and submission

For this challenge, We submitted 3 prediction results with different
model ensemble, under the team name ’Cochlear.ai (COCAI)’.

• Jeong COCAI task2 1.output.csv : Ensemble model is con-
ducted by using all the tried sampling rates (16, 32, and
44.1kHz) and models (logmel- and waveform-based). Be-
cause logmel-based model shows relatively better accuracy
in the cross-validation experiments, ensemble them by using
weighted geometric mean as follows:

yensemble = exp
1

N

∑
n

wn log yn, (8)

where N denotes the number of models for ensemble and wn

denotes the relative weight for n-th model. We empirically set
wn to be 0.6 for the outputs from logmel-based models and
0.4 for waveform-based models. Each setting is trained by us-
ing 5-fold cross validation (CV), thus total number of models
for ensemble was 3 (sampling rate) × 2 (model) × 5 (CV).
The Mean Average Precision @ 3 (MAP@3) score in public
leaderboard was 0.975.

• Jeong COCAI task2 2.output.csv: Same as Submission 1, but
only 16kHz and 32kHz were used for ensemble. Total number
of models was 2 (sampling rate)× 2 (model)× 5 (CV). It also
scored 0.975.

• Jeong COCAI task2 3.output.csv (Candidate for Judges’
award): Only 32kHz sampling rate and logmel-based model
was used, thus 5 models of CV were used for ensemble. It
scored 0.972.

2. REFERENCES

[1] E. Fonseca, M. Plakal, F. Font, D. P. Ellis, X. Favory, J. Pons,
and X. Serra, “General-purpose tagging of freesound audio
with audioset labels: Task description, dataset, and baseline,”
arXiv preprint arXiv:1807.09902, 2018.

[2] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,

Detection and Classification of Acoustic Scenes and Events 2018 Challenge

“mixup: Beyond empirical risk minimization,” arXiv preprint
arXiv:1710.09412, 2017.

[3] K. Choi, D. Joo, and J. Kim, “Kapre: On-gpu audio prepro-
cessing layers for a quick implementation of deep neural net-
work models with keras,” arXiv preprint arXiv:1706.05781,
2017.

[4] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,”
arXiv preprint arXiv:1502.03167, 2015.

[5] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway net-
works,” arXiv preprint arXiv:1505.00387, 2015.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 770–
778.

[7] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks.” in CVPR, vol. 1,
no. 2, 2017, p. 3.

[8] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation net-
works,” arXiv preprint arXiv:1709.01507, vol. 7, 2017.

[9] F. Chollet et al., “Keras,” https://keras.io, 2015.

[10] D. P. Kingma and J. Ba, “Adam: A method for stochastic op-
timization,” arXiv preprint arXiv:1412.6980, 2014.

