
My solution to the Loan Default Prediction
Competition

Josef Feigl

1 Summary

I used a two-step-process to predict the loss. At first I predicted the probability
for a default (PD). The so called goldenfeatures posted by Yasser Tabandeh in
the forums were crucial for this step. The PD prediction itself was done by two
models: gradient boosted trees and a regularized greedy forest. In the second
stage, I used the PD to select only those samples which are likely to default.
For those cases, I used a regularized greedy forest to predict the logarithm of
the loss. Different datasets were used in both stages of the process. These sets
were quite large (about 600-1100 features) because I only used a few very basic
methods of feature selection.

2 Features Selection / Extraction

The initial datasets (train v2.csv and test v2.csv) consist each of 771 features.
First of all, I removed all duplicated features (based on the first 25000 rows of the
training set). This way 91 features could be removed. The set of the remaining
680 features is called dataall.

2.1 Golden Feature Set

Yasser Tabandeh posted a pair of features, f527 and f528, which can be used to
achieve a very high classification accuracy ([1]). Furthermore f527 and f528 are
very highly correlated. However, it is not needed to keep both features. Their
difference f527− f528 contains the same amount of information. I tried to find
more features of this kind.
Therefore, I searched for all pairs of highly correlated features (correlation co-
efficient > 0.996) and kept there difference as a feature. This set is called
GoldenFeatureSet(GFS). It consists initially of 582 features, but lots of them
were highly correlated. To reduce the size of this set I removed all highly corre-
lated features (correlation coefficient > 0.99). After this cleaning step the final
GFS consists of 226 features.



2.2 Aggregated Feature Set

I noticed the following relationship between the features f67, f597 and the
golden features. Here is an example with the golden feature diff f274 f527.
It’s defined as f274 - f527, which is a golden feature (diff f274 f527 ∈ GFS):

id loss f67 f597 diff f274 f527 new feature
52 0 11.9375 15 0.0599999999994907 0
53 0 11.9375 15 150.660000000033 0
54 0 11.9375 15 721.529999999999 0
55 0 11.9375 15 71.0100000000093 0
56 0 11.9375 15 10.75 0
57 0 11.9375 15 20.8800000000047 0
58 0 11.9375 15 646.14000000013 0
59 0 11.9375 15 5.36999999999534 0
60 0 11.9375 15 46.3700000001118 0
61 0 11.9375 15 96 0
62 0 11.9375 15 92.7400000002235 0
63 0 11.9375 15 428.060000000056 0
64 0 11.9375 15 1651.43999999994 0
65 11 11.9375 15 -737.639999999665 1
66 0 11.9375 15 -206.24 0
67 0 5.5019 6 -192.369999999995 0
68 0 5.5019 6 31.25 0
69 1 5.5019 6 -1027.1799999997 1
70 0 5.5019 6 158.32 0
71 0 5.5019 6 -372.639999999898 0
72 0 5.5019 6 0 0

The combination of f67 and f597 can be seen as some kind of a group iden-
tifier. For each of these groups there is mostly only one default.
In the upper example there are two groups (11.9375, 15) and (5.5019, 6). A
default occurs often at the point where diff f274 f527 marks the lowest value
of the group. Therefore, I created a feature which marks this spot in each group.

Since diff f274 f527 is already in GFS, I applied this process for all features
in GFS. This creates 226 aggregated features (AFS).



3 Modeling Techniques and Training

3.1 Classification

3.1.1 First step

At first I tried to predict the probability of a default. Therefore the new target
to predict is given by

targetclassification =

{
1 if loss > 0

0 if loss = 0
(1)

For this task I used the following features: f776, f777, f778, f2, f4, f5, the
first 200 features of dataall (exluding those already named), the complete GFS
and the complete AFS. This results in a set with 661 features.
The classification itself was done by gradient boosted trees. I used the gbm
package in R with these settings: distribution = bernoulli, n.trees = 250,
shrinkage = 0.05, interaction.depth = 8, n.minobsinnode = 100 and bag.fraction =
0.8.

To get the probabilities of default for the training set, I used a 12-fold-cross-
validation. The whole classification process for the training and testing set was
done 3 times and the results of all runs were averaged.

3.1.2 Second step

After the first classification step we got the PD for all training and testing
samples. Lots of these probabilites are very low. In the second classifica-
tion step I ignored all samples, which got a PD of less or equal than 0.00074.
The remaining cases were classified again using all features of dataall, GFS and
AFS. This results in a set of 1133 features. This second classification step was
done by a regularized greedy forest with the following settings: reg L2 = 0.5,
algorithm = RGF ,loss = LS, test interval = 25000, max leaf forest =
25000, reg sL2 = 0.005.

The classification target for the RGF has to be in {−1, 1}. You have to make
sure to rescale the predictions to [0,1]. I did this by:

forecastscaled =
forecastRGF + 1

2
(2)

To get the probabilities of default for the training set, I used a 10-fold-cross-
validation. The whole classification process for the training set was done 2 times
and the results of both runs were averaged.
You get the final PD for all cases by merging the predictions of the RGF with
those of the GBM: If the PD of the GBM is less or equal than 0.00074 keep
those PDs; if not: take the PDs of the RGF.



3.2 Loss Prediction

I predicted the loss for all samples, which got a PD above about 0.51. I used
loss = 0 for all other cases. The feature set for the loss prediction consisted of
all features from dataall and GFS. I tried to predict log(1+ loss) instead of loss.

The loss prediction was done by a regularized greedy forest with the following
settings: reg L2 = 0.5, algorithm = RGF ,loss = LS, test interval = 20000,
max leaf forest = 20000, reg sL2 = 0.005. NormalizeTarget was activated.
The predictions of the RGF were rescaled by exp(predictions)− 1.

I did this process 3 times. On each run I changed the reg L2 setting:
reg L2 = 0.25, reg L2 = 0.5 and reg L2 = 0.75 were used. The final prediction
was a simple average of all 3 predictions. Finally, I limited the prediction in the
range [0, 100] and rounded them.

4 Code Description

4.1 crossValidateParallel(input, target, train.model, predict.model,
k, returnFits, packages, cores)

This function generates a k-fold cross-validation, which runs in parallel and
returns a vector of all predictions for the out-of-sample folds in the same order
and length as the target. It’s a general framework, which uses the train.model-
function to train a model on k-1 folds and predicts the out-of-sample fold using
the predict.model-function. It can also return all k models (by setting returnFits
to TRUE, but usually it’s FALSE). packages refers to the name of any package
that is needed to use the train.model or predict.model functions. cores is the
number of threads that should run in parallel.

4.2 createDatasets

This script will creates all needed datasets. The following files should have been
created if the script finished successfully: final data full.RData,
final golden features.RData and min of golden features per group.RData.
This script may take about an hour to finish.

4.3 final classification v1

The first part of the classification process (see 3.1.1) is started with this script. It
will create two files: The PD for all training cases is stored in train classes gbm.csv
and for all test cases in test classes gbm.csv. This script takes about a day on
my workstation.

4.4 final classification v2

This script contains the code for the second step of the classification process (see
3.1.2). It’s more or less the same as in the first classification script. Four files



should be created: train classes rgf.csv and test classes rgf.csv contain the
PD for some training and testing cases made by the RGF. train classes full.csv
and test classes full.csv contain the final probabilities of default for all cases.
This script can take days to finish.

4.5 final regression

This script contains the code to create the loss predictions (see 3.2). It will
create the final submission.

5 How To Generate the Solution

You will need at least a working versions of R (I used version 3.0.2) and RGF
(see [2]). You also need lots of RAM (16 GB should be OK).
Here is a quick guide: Create a new folder LoanDefault. Create subfolders
scripts and data in the LoanDefault-folder. Copy train v2.csv and test v2.csv
in the data-subfolder. Install RGF in the LoanDefault-folder (it should look like
’\LoanDefault \rgf1.2’). Copy the crossV alidateParallel script to the sub-
folder scripts. Copy the files train classification.inp, train regression 025.inp,
train regression 05.inp and train regression 075.inp into the folder ’LoanDefault
\rgf1.2 \test \sample’.

5.1 1.Step: Run script createDatasets.R

Open this R-file and adjust the path in the setwd()-command and optionally
all paths to train v2.csv and test v2.csv. Please make sure that you have all
needed packages installed.

5.2 2.Step: Run script final classification v1.R

Adjust the path in the setwd()-command and start the script.

5.3 3.Step: Run script final classification v2.R

Adjust the path in the setwd()-command and in the model.fit and model.predict
functions.

5.4 4.Step: Run script final regression.R

Adjust the path in the setwd()-command and in the model.fit and model.predict
functions.

6 Licence

This content is released under the MIT License. Please see the file LICENSE.txt.



References

[1] https://www.kaggle.com/c/loan-default-prediction/forums/t/7115/

golden-features.

[2] http://stat.rutgers.edu/home/tzhang/software/rgf/.


