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ABSTRACT 

 
 
The goal of the MLSP 2014 Classification Challenge was to 
automatically detect subjects with schizophrenia and 
schizoaffective disorder based on multimodal features 
derived from the magnetic resonance imaging (MRI) data. 
The patients with age range of 18-65 years were diagnosed 
according to DSM-IV criteria. The training data consisted of 
46 patients and 40 healthy controls. The test set included 
119 748 subjects with unknown labels. In the present 
solution, we implemented so-called “feature trimming”, 
consisting of: 1) introducing a random vector into the 
feature set, 2) calculating feature importance based on mean 
decrease of the Gini-index derived by running Random 
Forest classification, and 3) removing the features with 
importance below the "dummy variable". Support Vector 
Machine with Gaussian Kernel was used to run final 
classification with reduced feature set achieving test set 
AUC of 0.923.  

 
 

Index Terms — Schizophrenia, MRI, Random Forest, 
Support Vector Machines, Feature Trimming 
 

1. INTRODUCTION 
 
Schizophrenia (Sch) is a devastating neuropsychiatric 
disorder affecting around  0.3–0.7% of the population 
throughout the world [1]. Its etiology is largely unknown, 
but likely multifactorial with substantial contribution of 
genetic and prenatal factors [2].  
Since the 19th Century, after E. Kraepelin’s description of 
“dementia praecox” and then introduction of the term 
“schizophrenia” by E. Bleuler, this concept undergone many 
revisions, and is still a matter of hot debates [3]. 
Meanwhile, even considering various clinical manifestations 
of the disorder and absence of any biomarkers that would be 
implemented into the diagnostic criteria, recent studies have 

clearly demonstrated that schizophrenia is a brain disease, 
possibly manifesting as a temporo-limbic and prefrontal 
dysconnectivity syndrome that affects circuits involved in 
cognitive integration [4, 5]. Moreover, recent imaging 
studies employing methods of multivariate statistics and 
machine learning have revealed an opportunity not only to 
detect schizophrenia using biological features [6], but also 
to successfully predict the disease onset in subjects who are 
at risk for psychosis but yet do not meet the clinical criteria 
[7].  
All of the above encourages multidisciplinary research of 
image-based computer-aided diagnostic tools that will 
hopefully improve early diagnosis of schizophrenia. The 
later is very important for optimal patient management and 
is associated with better clinical outcome. 
The MLSP 2014 Classification Challenge was focused on 
automated detection of subjects with schizophrenia and 
schizoaffective disorder based on multimodal features 
derived from the magnetic resonance imaging (MRI) data. 
In the present paper, we are reporting our 2nd place solution. 
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2. METHODS 
 
2.1 Data 
The whole sample included the training set (46 patients with 
schizophrenia and schizoaffective disorder and 40 healthy 
controls [HCs]), and the testing data (119 748 subjects with 
unknown labels). The patients were diagnosed according to 
DSM-IV criteria for schizophrenia and schizoaffective 
disorder during structured interview [8].   
Structural magnetic resonance images (sMRI) and resting 
state functional MRI (rs-fMRI) data were acquired on a 3T 
MRI scanner at the Mind Research Network (Albuquerque, 
New Mexico).  
Image preprocessing was performed using Statistical 
Parametric Mapping software, version 5 (SPM5):  



 

 

(http://www.fil.ion.ucl.ac.uk/spm). Further feature 
extraction was done using independent component analysis, 
as implemented in the GIFT Toolbox 
(http://mialab.mrn.org/software/gift/), yielding source-based 
morphometric (SBM) loadings and Functional Network 
Connectivity (FNC) features for sMRI and rs-fMRI, 
correspondingly. 
For acquisition and preprocessing details of structural and 
functional imaging data, including feature extraction 
protocol, see [9, 10]. For the present competition, SBM and 
FNC features were already available for the participants.  
 
 
2.3 Implemented Solution 
“Feature Trimming” 
At the first step, after feature concatenation we performed 
the procedure, which will be further called “feature 
trimming”. Its steps are straightforward and in very simple 
words can be described as: 1) introducing a random vector 
into the feature set, 2) calculating feature importance based 
on mean decrease of the Gini-index derived by running 
Random Forest (RF) classification, and 3) removing the 
features with importance below the "dummy variable". 
More detailed description follows below. 
 
The Random Forest algorithm is formally defined as a 
collection of tree-structured classifiers: 
 
  𝑓(𝑥, 𝜃!), 𝑘 = 1, 2,…    ,𝐾 , 
 
where 𝜃!  are random i.i.d. vectors (independent and 
identically distributed) [11] and each tree provides a vote for 
the most popular label at input x [12]. For classification 
problems, the forest prediction output is the majority vote. 
The algorithm converges with large number of trees [12]. 
Here we are given a set of training data 𝐷 = { 𝑣! , 𝑐! }!!!,…,! 
(to be defined below). The classification task is then to learn 
a general mapping from previously unseen test data to their 
corresponding diagnostic labels, i.e. 𝑐:𝑅! → 𝐶. More 
specifically, adopting the notation in [13], let 𝑣 =
𝑥!,… , 𝑥!   𝜖  𝑅! denote the input data feature vector 

(predictor), and let 𝑐  𝜖  C denote the output diagnostic label 
(response). In our case, xi is a measure (SBM or FNC 
feature) derived from the ICA analysis briefly mentioned 
above (d = number of features; e.g., 41 – for volumetric 
data), and C = {Sch, HC}. The RF algorithm incorporate a 
collection of binary classification trees indexed by 
t   =   1, . . . , n!"##. Each classification tree is characterised by 
its input root node, internal split nodes, and its leaf terminal 
nodes containing class labels. 
In this setting, the RF algorithm can be briefly described as 
follows: (i) Draw ntree samples from the original data D, 
using random sampling with replacement; (ii) For each 
bootstrap sample, grow a classification tree such that for 
each node: randomly sample mtry of the predictor variables 

and chose the ”best split” according to the Gini criterion 
defined below from among those feature variables 
(1   <   mtry   ≪   d). The largest tree possible is grown and is 
not pruned. Using only mtry of the predictor variables 
selected at random is in contrast to standard tree 
classification (CART), where each node is split using the 
best split among all d variables; (iii) the forest consists of 
ntree trees. Each tree gives a classification for a given data 
point. Predict new data point x by putting x down each of 
the ntree trees and make a majority vote for classification 
across the forest. 
For a given tree, let S0 denote the set of input predictor data 
vectors that is fed into the root node, Sj be the subset of data 
points reaching node j in the binary split tree, and {𝑆!! , 𝑆!!} 
denote the subset of data points that reaches the left and 
right child, respectively, of node j, where 𝑆!! ∪ 𝑆!! = 𝑆! and 
𝑆!! ∩ 𝑆!! = 𝜃. In the ”off-line” tree training, each split node j 
is associated with a parameter vector 𝜃! that is trained by 
optimizing an objective function I (defined below), i.e.: 
 

 𝜃! = arg𝑚𝑎𝑥!∈! 𝐼(𝑆! , 𝜃) 
 
In this notation, a binary-valued test function ℎ 𝑣, 𝜃! ∶
  𝑅!   ×    Τ   → {0, 1} is applied at each split node j. Here, 0 and 
1 denote ”false” and ”true”, respectively, and the data point 
v arriving at split node j is sent to its left (0) or right (1) 
child node, accordingly. T is the set of all possible split 
function parameters, and Τ! ⊆ 𝑇 is the subset of parameters 
available at node j. We thus have 𝑆!! 𝑆! , 𝜃 = { 𝑣, 𝑐 ∈
𝑆!   |    ℎ 𝑣, 𝜃 = 0} and 𝑆!! 𝑆! , 𝜃 = { 𝑣, 𝑐 ∈ 𝑆!   |    ℎ 𝑣, 𝜃 =
1}. 
The objective function used is the Gini index, i.e.: 
 
  𝐼 = 𝑖 𝜏 = 1 − 𝑝!!!∈! , 
 
measuring the likelihood that a data point would be 
incorrectly labeled if it was randomly classified according to 
the distribution of class labels within the node. The optimal 
binary split is then the one that maximizes the improvement 
(mean decrease) in the Gini index, which was used as a 
metric in our approach. To be more specific, at every split 
node 𝜏 one of the mtry variables, say xk , is used to form the 
split and there is a resulting decrease in the Gini index. The 
mean decrease of the Gini index, ∆𝑖(𝜏) was used as a 
metric, i.e.: 
    

∆𝑖 𝜏 = 𝑖 𝜏 − (𝑝!𝑖 𝜏! + 𝑝!𝑖 𝜏! )  
    
where 𝑖 𝜏 = 1 − 𝑝!!!∈!  is the Gini index at node 𝜏, 

𝑝! =
!!
!

!!
 and 𝑝! =

!!
!

!!
 are the probabilities of sending a 

data point to the left and the right node, respectively.  
This metric reflects the contribution of a variable xk to the 
node homogeneity of 𝜏. Thus, a higher mean decrease of the 



 

 

Gini index for a particular feature means that the variable is 
present more often in nodes with higher purity among all 
trees in the forest (overall). The sum of all decreases in the 
forest due to a given variable xk, normalized by the number 
of trees, therefore gives an estimate of its Gini importance 
(Eq. 3), i.e.: 
 

𝐼! 𝑥! =
1

𝑛!"##
∆𝑖!! 𝜏, 𝑡

!

!!"##

!!!

 

Therefore, the Gini importance 𝐼! 𝑥!  indicates how 
frequent the particular feature 𝑥!was selected in a split node, 
and how large its overall discriminative value was for the 
classification task. Finally, if you introduce a random 
“dummy” feature and calculate its mean decrease of the 
Gini index, you can then exclude (“trim”) everything with 
importance below this value. 
 
Final Model 
The reduced feature set was then used to run final 
classification employing Support Vector Machine (SVM) 
with Gaussian Kernel [14]. The optimization problem: 
 

𝑚𝑎𝑥 𝛼 −
1
2
   𝛼!𝛼!𝑦!𝑦!𝐾 𝑥! , 𝑥! ,𝜎
!

!,!!!

!

!!!

 

 

with  𝐾 𝑥! , 𝑥! ,𝜎 = 𝑒𝑥𝑝 −
!!!!!

!

!!!
 

 
The reason for not using tree-based ensembles (Random 
Forest and boosted trees) was empirical – because SVM 
resulted in superior cross-validated accuracy (of note, for 
RF both out-of-bad estimation and cross-validation were 
assessed, achieving similar values). 
 
2.4 Dependencies 
This code was written in R programming language, version 
3.1.0 [15] installed on the Mac OS Workstation (OS version 
10.9.4). The solution is mainly build upon caret [16], 
randomForest [17] and kernlab [18] packages. Other 
dependencies can be found at https://github.com/alex-
lebedev/Kaggle-MLSP-2014.   
  

 
3. RESULTS 

 
The original dataset contained 410 features (32 for SBM and 
378 for FNC). After the feature trimming, we ended up with 
122 variables. 
Next, we estimated hyperparameter 𝜎 (sigma, width 
parameter) for the Gaussian Radial Basis kernel and tuned C 
parameter (the penalty factor, controlling trade-off between 
model complexity and proportion of nonseparable instances) 
using leave-one-out cross validation for the final SVM 

classifier. The resulted test set area under the receiver 
operating characteristic curve (AUC) was 0.923. 
Of note, cross-validated performance of various models that 
had been tested (RF, boosted trees, neural network, SVM) 
varied around 0.8 and 0.85 (for overall accuracy) and the 
public scores that we were receiving after the submissions 
were unstable. Therefore, we decided not to implement 
more complex solutions (ensembling, hierarchical models) 
and stopped on a relatively simple model. 
 
 

4. REPRODUCIBILITY 
 
The data were accessed and downloaded via the MLSP-
2014 Schizophrenia Classification Challenge webpage: 
 

• https://www.kaggle.com/c/mlsp-2014-mri  
 
Step-by-step instructions with the code descibing our 
solution can be found at: 
 

• https://github.com/alex-lebedev/Kaggle-MLSP-2014 
 

 
5. ADDITIONAL COMMENTS 

 
In general, it was somewhat difficult to evaluate 
performance of the models, since the mismatch between 
cross-validated accuracies and the feedback that we were 
receiving during submissions was very big (with private 
AUC scores varying around 0.65). It was the main reason 
why we stopped and did not try to improve our model 
further. Meanwhile, additional feature selection (e.g., 
recursive feature elimination, sparsity-based approaches) 
and/or classifier ensembling could potentially result in a 
superior performance. 
 
 

6. COPYRIGHT FORM 
 
The MIT License (MIT) file can be found at: 
 

• https://github.com/alex-lebedev/Kaggle-MLSP-2014 
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