
Winning Solution for AFSIS 2014 Competition  

Yasser Tabandeh 

October 2014 

 

Summary 
This document describes winning solution for African Soil Property Challenge Problem (AFSIS) hosted by 

Kaggle. Several models such as Multilayer Perceptron, Support Vector Machines, Gaussian Process, and 

Multivariate Regression were combined to produce a stable framework to overcome overfitting. Each model 

used a different set of transformed features with different setup parameters.  

 

The Problem Definition 
The problem was to predict some soil properties (Ca, P, pH, SOC, Sand) based on the Near Infrared (NIR) 

data. Spectral features and spatial features were present for analysis and training. There were 1158 instances 

in train data and 728 instances in test data with 3578 spectral features and 16 spatial features. 

 

Evaluation Metric 
MCRMSE (mean columnwise root mean squared error)  was used for evaluating quality of results. It is defined 

as: 

       
 

 
 ∑√

 

 
 ∑         

 

 

   

 

   

 

Where   and   are the actual and predicted values, respectively. 

 

Preprocessing 

Different types of preprocessing were done to transform features into more relevant forms. Some of them 

reduce dimensionality of data and some others reduce noises.  

1- Savitzky-Golay filter: this filter is used for smoothing the data 

2- Continuum Removal: for normalization and handling outliers 

3- Discrete wavelet transforms: for discrete sampling and data reduction  

4- First Derivatives: in some cases increases prediction quality 

5- Unsupervised Feature Selection: standard deviation was used to select top features for some 

algorithms. 

6- Log transform: "P" target was transformed into log(P+1) 

  



Modeling algorithms 
1- Neural Networks: two types of neural network algorithms were used for training: 

 Simple layer neural network (nnet package in R) 

 Monotonic Multilayer Perceptron (monmlp package in R)  

2- Support Vector Machines(SVM): svm function in e1071 package in R was used for SVM training 

3- Multivariate Regression: mvr function in pls package in R was used for multivariate regression 

4- Gaussian Process: gausspr function in kernlab package in R was used for Gaussian Process 

For each target different algorithms were used for training. Table 1 shows detailed information for 

preprocessing and modeling.  

 
Target Model Name Model 

Weight 
Preprocessing Steps Regression Algorithm 

Ca Ca_SVM1 0.100  Savitzky-Golay filter SVM, cost=1000 

Ca_SVM2 0.030  None SVM, cost=10000 

Ca_SVM3 0.100  None SVM, cost=5000 

Ca_SVM4 0.010  STD Feature selection(2000 features) 

 First Derivatives 
 Haar dwt(3 iterations) 

 

SVM, cost=10000 

Ca_MLP1 0.100  STD Feature selection(2000 features) 
 Haar dwt(4 iterations) 

Ensemble of 10 MONMLP models (150 iterations,4 
neurons in first layer and 4 neurons in second 

layer) 

Ca_MLP2 0.100  Savitzky-Golay filter 

 Haar dwt(4 iterations) 

MONMLP (150 iterations,4 neurons in first layer 

and 4 neurons in second layer) 

Ca_MLP3 0.150  Haar dwt(5 iterations) MONMLP (100 iterations,5 neurons in first layer 
and 5 neurons in second layer) 

Ca_MLP4 0.050  First Derivatives 

 Haar dwt(7 iterations) 

MONMLP (150 iterations,3 neurons in first layer 

and 20 neurons in second layer) 

Ca_MLP5 0.030  Haar dwt(4 iterations) 
 First Derivatives 

Two different MONMLP models based on Depth 
variable (100 iterations,5 neurons in first layer and 

5 neurons in second layer) 

Ca_MLP6 0.030  Haar dwt(5 iterations) Two different MONMLP models based on Depth 
variable (100 iterations,5 neurons in first layer and 

5 neurons in second layer) 

Ca_MLP7 0.150  Haar dwt(4 iterations) MONMLP (150 iterations,5 neurons in first layer 

and 5 neurons in second layer) 

Ca_MLP8 0.050  Haar dwt(3 iterations) MONMLP (150 iterations,5 neurons in first layer 
and 5 neurons in second layer) 

Ca_Gauss1 0.015  None GaussPr (rbf kernel) 

Ca_Gauss2 0.045  Multiple Scatter Correction(2 

iterations) 
 First Derivatives 
 Haar dwt(9 iterations) 

 Partial PCA 

GaussPr (rbf kernel) 

Ca_Gauss3 0.010  None GaussPr (poly kernel) 

Ca_MVR1 0.015  STD Feature selection(2000 features) MVR(120 components) 

Ca_MVR2 0.005  None MVR(100 components) 

Ca_NNET1 0.010  Haar dwt(5 iterations) NNET(10 neurons,100 iterations) 

P P_SVM1 0.088  Continuum Removal SVM, cost=5000 

P_SVM2 0.088  None SVM, cost=5000 

P_SVM3 0.088  Haar dwt(1 iteration) Two different SVM  models based on Depth 
variable, cost=1000 

P_MLP1 0.088  Savitzky-Golay filter 

 STD Feature selection(3000 features) 
 Haar dwt(4 iterations) 

MONMLP (150 iterations,5 neurons in first layer 

and 0 neurons in second layer) 

P_MLP3 0.125  Haar dwt(4 iterations) 

 First Derivatives 

Two different MONMLP models based on Depth 

variable (100 iterations,5 neurons in first layer and 
5 neurons in second layer) 

P_MLP4 0.063  Haar dwt(5 iterations) MONMLP (50 iterations,5 neurons in first layer and 
5 neurons in second layer) 

P_MLP5 0.063  First Derivatives 
 Haar dwt(2 iterations) 
 STD Feature selection(450 features) 

MONMLP (50 iterations,5 neurons in first layer and 
5 neurons in second layer) 

P_MLP6 0.063  STD Feature selection(2500 features) MONMLP (100 iterations,5 neurons in first layer 



 Haar dwt(4 iterations) 
 First Derivatives 

and 5 neurons in second layer) 

P_MLP7 0.250  STD Feature selection(2500 features) 

 Haar dwt(4 iterations) 
 First Derivatives 

MONMLP (100 iterations,5 neurons in first layer 

and 5 neurons in second layer) 

P_MVR1 0.088  Haar dwt(4 iterations) MVR(200 components) 

pH pH_SVM1 0.116  None Two different SVM models based on Depth 
variable, cost=1000 

pH_SVM2 0.116  None SVM, cost=5000 

pH_MLP1 0.163  Haar dwt(5 iterations) MONMLP (100 iterations,5 neurons in first layer 
and 5 neurons in second layer) 

pH_MLP2 0.163  Haar dwt(4 iterations) Two different MONMLP models based on Depth 

variable (100 iterations,5 neurons in first layer and 
5 neurons in second layer) 

pH_MLP3 0.116  Haar dwt(4 iterations) MONMLP (150 iterations,5 neurons in first layer 

and 5 neurons in second layer) 

pH_MLP4 0.163  STD Feature selection(2500 features) 
 Haar dwt(4 iterations) 
 First Derivatives 

MONMLP (100 iterations,5 neurons in first layer 
and 5 neurons in second layer) 

pH_MLP5 0.163  STD Feature selection(2500 features) 
 Haar dwt(4 iterations) 
 First Derivatives 

MONMLP (100 iterations,5 neurons in first layer 
and 5 neurons in second layer) 

SOC SOC_SVM1 0.200  None SVM, cost=10000 

SOC_SVM2 0.140  None SVM, cost=5000 

SOC_MLP1 0.100  Savitzky-Golay filter 

 STD Feature selection(2500 features) 
 Haar dwt(3 iterations) 

MONMLP (150 iterations,3 neurons in first layer 

and 3 neurons in second layer) 

SOC_MLP2 0.100  Savitzky-Golay filter 

 Haar dwt(3 iterations) 

MONMLP (150 iterations,3 neurons in first layer 

and 3 neurons in second layer) 

SOC_MLP3 0.100  Savitzky-Golay filter 
 STD Feature selection(2500 features) 
 Haar dwt(4 iterations) 

MONMLP (150 iterations,4 neurons in first layer 
and 4 neurons in second layer) 

SOC_MLP4 0.200  First Derivatives 

 Haar dwt(6 iterations) 

MONMLP (100 iterations,4 neurons in first layer 

and 0 neurons in second layer) 

SOC_MLP5 0.120  Haar dwt(6 iterations) MONMLP (50 iterations,5 neurons in first layer and 
5 neurons in second layer) 

SOC_MLP6 0.040  STD Feature selection(2500 features) 

 Haar dwt(4 iterations) 
 First Derivatives 

MONMLP (100 iterations,5 neurons in first layer 

and 5 neurons in second layer) 

Sand Sand_SVM1 0.127  Savitzky-Golay filter SVM, cost=5000 

Sand_SVM2 0.038  None SVM, cost=10000 

Sand_SVM3 0.063  STD Feature selection(2000 features) 

 First Derivatives 
 Haar dwt(3 iterations) 

SVM, cost=10000 

Sand_SVM4 0.063  STD Feature selection(1500 features) 
 First Derivatives 

 Haar dwt(3 iterations) 

SVM, cost=10000 

Sand_MLP1 0.127  Haar dwt(4 iterations) 
 Savitzky-Golay filter 

MONMLP (150 iterations,4 neurons in first layer 
and 4 neurons in second layer) 

Sand_MLP2 0.127  Haar dwt(4 iterations) 

 PCA 

MONMLP (200 iterations,5 neurons in first layer 

and 5 neurons in second layer) 

Sand_MLP3 0.013  Haar dwt(5 iterations) MONMLP (50 iterations,4 neurons in first layer and 
0 neurons in second layer) 

Sand_MLP4 0.089  Haar dwt(5 iterations) MONMLP (50 iterations,5 neurons in first layer and 

5 neurons in second layer) 

Sand_MLP5 0.152  First Derivatives 
 Haar dwt(2 iterations) 
 STD Feature selection(450 features) 

MONMLP (50 iterations,5 neurons in first layer and 
5 neurons in second layer) 

Sand_MLP6 0.038  Haar dwt(4 iterations) 
 First Derivatives 

Two different MONMLP models based on Depth 
variable (100 iterations,5 neurons in first layer and 

5 neurons in second layer) 

Sand_MLP7 0.076  Haar dwt(4 iterations) MONMLP (150 iterations,5 neurons in first layer 

and 5 neurons in second layer) 

Sand_Gauss1 0.019  None GaussPr (rbf kernel) 

Sand_Gauss2 0.013  Multiple Scatter Correction(2 
iterations) 

 First Derivatives 

 Haar dwt(9 iterations) 
 Partial PCA 

GaussPr (rbf kernel) 

Sand_Gauss3 0.025  None GaussPr (poly kernel) 

Sand_MVR1 0.019  STD Feature selection(2000 features) MVR(120 components) 

Sand_NNET1 0.013  Haar dwt(5 iterations) NNET(10 neurons,100 iterations) 

Table 1. Overall framework for modeling and training 



Final predictions for each target were calculated using weighted averages of models as detailed in Table 1. 

Number of training rows was small in compare to number of features, so overfitting could occur. 

For handling overfitting risk, the value of C parameter in SVM was set to a large number to increase 

regularization. Also combining different models significantly reduced drawbacks of single models. R 3.1.0 was 

used for overall process. This method won the competition with MCRMSE score of 0.46892. 

 

 

 

References 
Official Competition Website: http://www.kaggle.com/c/afsis-soil-properties 

R package for Discrete Wavelet Transforms: http://cran.r-project.org/web/packages/wavelets/index.html 

R package for processing of NIR data: http://cran.r-project.org/web/packages/prospectr/index.html 

R Package for training SVM: http://cran.r-project.org/web/packages/e1071/index.html 

R package for Multivariate Regression: http://cran.r-project.org/web/packages/pls/index.html 

R package for Gaussian Process: http://cran.r-project.org/web/packages/kernlab/index.html 

R package for Multilayer-Perceptron: http://cran.r-project.org/web/packages/monmlp/index.html 

R package for Single Layer Neural Network: http://cran.r-project.org/web/packages/nnet/index.html 

R package for Weka filters: http://cran.r-project.org/web/packages/RWeka/index.html 

 

 

 

 

 

 

http://www.kaggle.com/c/afsis-soil-properties
http://cran.r-project.org/web/packages/e1071/index.html
http://cran.r-project.org/web/packages/pls/index.html
http://cran.r-project.org/web/packages/kernlab/index.html
http://cran.r-project.org/web/packages/monmlp/index.html
http://cran.r-project.org/web/packages/nnet/index.html
http://cran.r-project.org/web/packages/RWeka/index.html

