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Abstract

We propose the simple and efficient method
of semi-supervised learning for deep neural
networks. Basically, the proposed network
is trained in a supervised fashion with la-
beled and unlabeled data simultaneously. For
unlabeled data, Pseudo-Labels, just picking
up the class which has the maximum net-
work output, are used as if they were true la-
bels. Without any unsupervised pre-training
method, this simple method with dropout
shows the state-of-the-art performance.

1. Introduction

Recently, deep neural networks have achieved great
success in hard AT tasks (Bengio et al., 2012). All of
the successful methods for training deep neural net-
works have something in common : they rely on an
unsupervised learning algorithm along with supervised
learning of the whole network (Erhan et al., 2010).
Most work in two phases. In a first phase, unsuper-
vised pre-training, the weights of all layers are initial-
ized by layer-wise unsupervised training. In a second
phase, fine-tuning, the weights are trained globally in
a supervised fashion. All of these methods also work in
a semi-supervised fashion. We have only to use extra
unlabeled data for unsupervised pre-training.

Several authors have recently proposed semi-
supervised learning methods for training supervised
and unsupervised tasks using same neural network
stmultaneously. In (Ranzato et al., 2008), the weights
of each layer are trained by minimizing the combined
loss function of an autoencoder and a classifier. In
(Larochelle et al., 2008), Discriminative Restricted
Boltzmann Machines models the joint distribution
of an input vector and the target class. In (Weston
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et al., 2008), the weights of all layers are trained by
minimizing the combined loss function of a global
supervised task and a semi-supervised embedding as
a regularizer.

In this article we propose the simpler way of training
neural network in a semi-supervised fashion. Basically,
the proposed network is trained in a supervised fash-
ion with labeled and unlabeled data simultaneously.
For unlabeled data, Pseudo-Labels, just picking up the
class which has the maximum network output every
weights update, are used as if they were true labels.
In principle, this method can combine almost all neu-
ral network models and training methods. Especially,
dropout technique (Hinton et al., 2012) can boost up
model performance even for unlabeled data.

Several experiments on the well-known MNIST
dataset prove that the proposed method shows the
state-of-the-art performance. And this method earned
second prize in "ICML 2013 Challenges in Represen-
tation Learning: The Black Box Learning Challenge”.

2. Pseudo-Label for Deep Neural
Networks

2.1. Deep Neural Networks

Pseudo-Label is the method for training deep neural
networks in a semi-supervised fashion. In this article
we will consider multi-layer neural networks with M
layers of hidden units :
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where s* is a non-linear activation function such as sig-

moid, f; = hﬁ” +1 are output units used for predicting
target class and z; = hg are input values. The whole
network can be trained by minimizing supervised loss
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where C' is the number of labels, y;’s is the 1-0f-K code
of the label, f; is the network output for ’th label, z
is input vector.

If the activation function of output units (s™*1) is

sigmoid, the loss function can be Cross Entropy :
L(yi, fi) = —yilog fi — (1 —yi)log(1 — fi)  (3)

Rectified Linear Unit is receiving a great deal of at-

tention recently (Glorot et al., 2011). This unit uses
rectifier activation function :
s(z) = max(0, x) (4)

This is biologically plausable more than sigmoid and
hyperbolic tangent. Because rectifier network gives
rise to real zeros of hidden activations and thus truly
sparse representations, it can boost up the network
performance.

2.2. Dropout

Dropout is a technique that can be applied to super-
vised learning of deep neural networks (Hinton et al.,
2012) . On the network activations of each example,
hidden unit is randomly omitted with a probability of
0.5. (Sometimes 20% dropout of visible units is also
helpful.)
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where drop(z) = 0 with a probability of 0.5, other-
wise drop(z) = x. Overfitting can be reduced by this
technique to prevent complex co-adaptations on hid-
den representations of training data. Because in each
weights update we train a different sub-model by omit-
ting a half of hidden units, this training precedure is
similar to bagging (Breiman, 1996), where many dif-
ferent networks are trained on different subsets of the
data. But dropout is different from bagging in that all
of the sub-models share same weights.

For successful SGD training with dropout, An expo-
nentially decaying learning rate is used that starts at
a high value. And momentum is used to speed up

training.
AW (t+1) =pt)AW(t) — (1 —p(t)) e(t) < Vw L >
(6)
W(t+1)=W()+AW(t) (7)
where,
e(t+1) =ke(t) (8)
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with k£ = 0.998, p; = 0.5, py = 0.99, T' = 500, ¢ is the
current epoch, < Vy L > is the gradient of loss func-
tion, €(0) is the initial learning rate. We use these pa-
rameters such as original dropout paper (Hinton et al.,
2012), but don’t use weight regularization.

2.3. Pseudo-Label

Pseudo-Label are target classes for unlabeled data as
if they were true labels. We can just pick up the class
that has maximum network output for each unlabeled
sample.
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2.4. Training method with labeled and
unlabeled data

The key point of this method is simultaneously train-
ing of labeled data and unlabeled data. For unla-
beled data, Pseudo-Label that are re-calculated every
weights update are used for the same loss function.
But the total number of labeled data and unlabeled
data is quite different and the training balance between
them is quite important for network performance. So
the overall loss function is
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where n is the number of mini-batch in labeled data
for SGD, n’ for unlabeled data, f™ is the output units
of m’s sample in labeled data, y;" is the label of that,
fI™ for unlabeled data, y;™ is the pseudo-label of that
for unlabeled data, «(t) is a coeflicient balancing them.

The proper scheduling of «(t) is very important for
network performance. If «(t) is too high, the predict-
ing labels is difficult even for labeled data. Whereas
it a(t) is too small, we cannot expect generalization
performance. Furthermore, in order that the pseudo-
labels of unlabeled data are similar to true labels as
much as possible, «(t) must be zero for initial training
epochs.

0 t<T
a(t) = t Tl Oéf T1 <t< T2 (12)
Oéf T, <t

with T = 100, T3 = 600, oy = 0.4 .



Pseudo-Label : Semi-Supervised Learning Method for Deep Neural Networks

3. Why does Pseudo-Label work?

3.1. Contractive Regularization using
Saturation Region

Contractive Auto-Encoder (Rifai et al., 2011a) is an
unsupervised representation learning algorithm that
shows the state-of-the-art performance on image recog-
nition tasks (Rifai et al., 2011b). This algorithm uses
Jacobian Penalty term which encourages the mapping
to the feature space to be contractive in the neighbor-
hood of the training data. This implies an invariance
or robustness of the representation for small variations
of the input.

Ohi(x)\*
sl =3 (%) (13)
i,j i
In the case of sigmoid unit, this penalty term has the
following expression :
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In other words, the further activations go into satura-
tion region(h; — 1 or h; — 0), the more the network
regularize the Jacobian Penalty term.

Supervised learning using unlabeled data with Pseudo-
Label can regularize network in such a way that the
activations go into saturation region. This encourages
an invariance or robustness of the representation for
small variations of the input.

3.2. Low-Density Separation between Classes

The goal of semi-supervised learning is to improve gen-
eralization performance using unlabeled data. The
cluster assumption states that the decision boundary
should lie in low-density regions to improve general-
ization performance (Chapelle et al., 2005).

Recently proposed classificaiton algorithms using man-
ifold learning such as Semi-Supervised Embedding and
Manifold Tangent Classifier utilize this assumption.
Semi-Supervised Embedding (Weston et al., 2008) uses
embedding-based regularizer to improve the general-
ization performance of deep neural networks. Because
neighbors of data points have more similar activations
by embedding-based penalty term, It’s more likely that
data points in a high-density region have the same la-
bel. Manifold Tangent Classifier (Rifai et al., 2011b)
encourages the network output to be insensitive to
variations in the directions of low-dimensional man-
ifold. The same purpose is achieved.

Our method encourages the network output to be near
1-of-K code of labels. Because of robustness of the rep-

Table 1. Classification error on the MNIST test set with
600, 1000 and 3000 labeled training samples. We compare
our method with results from (Weston et al., 2008; Rifai
et al., 2011b)

METHOD 600 1000 3000
NN 11.44 10.7 6.04
CNN 7.68 6.45 3.35
SVM 8.85 777 4.21
TSVM 6.16 5.38 3.45
CAE 6.3 4.77 3.22
DBN-rRNCA 8.7 - 3.3
EMBEDNN 5.97 5.73 3.59
MTC 5.13 3.64 2.57
PSEUDO-LABEL 4.96 £0.14 4.28+0.20 2.91 4+ 0.09

resentation for small variations of the input, neighbors
of data points have more similar outputs near 1-of-K
code of label. So it’s more likely that data points in a
high-density region have the same label.

4. Experiments
4.1. Handwriting Digit Recognition(MNIST)

MNIST is one of the most famous dataset in deep
learning literature. For comparision, We used semi-
supervised setting of MNIST such as (Weston et al.,
2008; Rifai et al., 2011b). We reduced the size of the
labeled training set to 600, 1000 and 3000.! The train-
ing set has the same number of samples on each label.
For validation set, We picked up 1000 labeled exam-
ples separately. We used validation set for determining
some hyperparameters. The remaining data were used
for unlabeled data. Because we could not get the same
split of data set, Several experiments on random split
were done using the identical network and parameters.

We used the neural network with 1 hidden layer. Rec-
tified Linear Unit is used for hidden unit, Sigmoid Unit
is used for output unit. The number of hidden units is
5000. For optimization, We used mini-batch Stocastic
Gradient Descent with dropout.? The initial learning
rate is 1.5 and the number of mini-batch is 32 for la-
beled data, 256 for unlabeled data. These parameter
was determined using validation set.

Table 1 compares our method with results from (We-
ston et al., 2008; Rifai et al., 2011b). Our method

! We omitted the case of 100 labeled training set be-

cause the results heavily depended on split.
We didn’t use any weight regularization because the
performance was best without it.
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shows the state-of-the-art performance although our
method is very simple : We use only 1 hidden layer
without pre-training. The training scheme is less com-
plex than Manifold Tangent Classifier and computa-
tionally expensive similarity matrix between samples
used in Semi-Supervised Embedding is not needed.

5. Conclusion

In this work, we have shown a simple and efficient
way of semi-supervised learning for neural networks.
Without unsupervised pre-training and computation-
ally expensive similarity matrix, The proposed method
shows the state-of-the-art performance.
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