
KONTOR PROOF-OF-RETRIEVABILITY

January 10, 2026

ADAM KRELLENSTEIN ALEXEY GRIBOV

adam@kontor.network alexey@kontor.network

Contents

1 Introduction . ⁠2

2 Multi-File Proof Aggregation . ⁠2

2.1 Public Input Structure . ⁠3

2.2 Proof Structure and Challenge Binding . ⁠4

2.3 Ledger Operational Details . ⁠5

3 Proof Generation (Nova IVC) . ⁠6

4 PoR Step Circuit 𝜑PoR . ⁠7

5 Proof Verification (Nova IVC) . ⁠9

6 Security Properties . ⁠10

6.1 Security Model . ⁠10

6.2 Computational Assumptions . ⁠10

6.3 Attack Resistance . ⁠11

6.4 Public Parameter Binding . ⁠12

6.5 Concrete Security Parameters . ⁠12

7 Cryptographic Primitives . ⁠12

8 Related Work . ⁠14

9. Bibliography . ⁠14

1

mailto:adam@kontor.network
mailto:alexey@kontor.network

1 Introduction

This document specifies the cryptographic system underlying the Kontor Storage Protocol’s

proof-of-retrievability scheme. The system uses Nova[1] recursive SNARKs via the arecibo[2]

library to generate compact proofs that can be efficiently verified (~50ms). The compressed

SNARK is constant-size (~12 kB) regardless of the number of challenged symbols; the full

proof includes per-file metadata that scales linearly with 𝑘 files (~12 kB + 40 bytes × 𝑘).

The Kontor Storage Protocol is a system for ensuring that a set of untrusted actors contin

uously and correctly store data they have publicly committed to preserving. Storage nodes

are challenged pseudo-randomly using a shared source of entropy (Bitcoin block hashes).

With each block, indexers use this entropy to select file-node pairs for auditing. The chosen

storage nodes must respond by publishing a proof demonstrating they possess a pseudo-

random subset of the challenged file data. Nodes that fail to produce valid proofs within the

allotted timeframe are subject to slashing of their escrowed KOR stake.

The cryptographic proof system addresses three key requirements:

Compact Proofs: Storage nodes are frequently challenged on multiple files within the

proof submission window (𝑊proof blocks). To minimize Bitcoin transaction fees, the protocol

allows nodes to aggregate challenges for multiple files into a single proof. The compressed

SNARK is constant-size (≈ 12 kB) regardless of the number of challenged symbols; the full

proof includes per-file metadata (challenge IDs, ledger indices) that adds ≈ 40 bytes per file.

Efficient Verification: Proofs must be verified by all Kontor indexers deterministically.

The Nova/Spartan construction enables verification in approximately 50ms, making on-

chain verification practical at scale.

Soundness: Nodes must not be able to forge proofs without possessing the challenged file

data. Merkle tree commitments verified within the SNARK circuit bind proofs to specific

data, with computational soundness inherited from the discrete logarithm assumption over

the Pallas/Vesta curve cycle.

For protocol context, economic incentives, and state machine specification, see the Kontor

Storage Protocol.[3] For a high-level overview of the Kontor system as a whole, see the

Kontor Whitepaper.[4]

2 Multi-File Proof Aggregation

Storage nodes are frequently challenged on multiple files within the proof submission window

(𝑊proof blocks). To minimize Bitcoin transaction fees, the protocol allows nodes to aggregate

challenges for multiple files into a single proof. This aggregation is enabled by the File

Ledger, a Merkle tree built over the root commitments of all files in the system.

Root Commitment: For each file 𝑓 with Merkle root 𝜌𝑓 and tree depth 𝑑𝑓 , the protocol

computes a root commitment using a domain-separated tagged Poseidon hash:

rc𝑓 = ℋ︀Poseidon(TAGrc, 𝜌𝑓 , 𝑑𝑓) (1)

where TAGrc is a fixed small integer constant embedded as a field element and

ℋ︀Poseidon(TAG, 𝑥, 𝑦) denotes a single Poseidon sponge hash absorbing the three field elements

(TAG, 𝑥, 𝑦) and outputting one field element. The root commitment binds together the file’s

Merkle root and its tree depth, preventing depth-spoofing attacks where an adversary might

try to reuse proofs across files with different tree structures.

File Ledger Construction: The File Ledger is a Merkle tree ℒ︀ built over the root

commitments of all files in the system. Files are ordered deterministically (lexicographically

by file identifier), and the ledger tree is constructed from their rc values:

2

ℒ︀ = Merkle-Tree([rc1, rc2, …, rc|ℱ︀⟧) (2)

Each file has a canonical ledger index 𝑖 corresponding to its position in this sorted order.

The ledger root 𝜌ℒ︀ commits to the set of all files in the system.

Aggregated Proof Structure: When a node is challenged on 𝑘 files {𝑓1, 𝑓2, …, 𝑓𝑘}, it

generates a single proof. Let 𝑠chal denote the number of symbols challenged per file (a protocol

parameter; see Kontor Whitepaper[4]). The uncompressed IVC witness contains:

• For each challenged file 𝑓𝑗: Merkle path from rc𝑓𝑗
 to ledger root 𝜌ℒ︀ (size: 𝑂(log|ℱ︀|))

• For each challenged symbol in each file: Merkle path from symbol to file root 𝜌𝑓𝑗

(size: 𝑂(log 𝑛total))
• Nova IVC accumulator tracking all verifications (size: grows with number of steps)

Total uncompressed size: 𝑂(𝑘 ⋅ log|ℱ︀|) + 𝑂(𝑘 ⋅ 𝑠chal ⋅ log 𝑛total).

The compressed SNARK (after Spartan compression) is constant-size (≈ 12 kB) regardless

of 𝑘, |ℱ︀|, or the number of challenged symbols. Nova’s IVC folding combined with Spartan’s

succinct verification enables this compression: the variable-size witness reduces to a constant-

size SNARK that proves all symbol verifications and ledger inclusions were performed

correctly. The full proof additionally includes per-file metadata (challenge IDs and ledger

indices) adding ≈ 40 bytes per file.

2.1 Public Input Structure

The circuit uses a unified public input structure parameterized by 𝑘 (files per step). Single-

file mode (𝑘 = 1) is used when a prover submits a proof for exactly one file; multi-file mode

(𝑘 > 1) is used otherwise, where 𝑘 is the next power of two ≥ number of files in the proof.

The public inputs are organized as:

𝒛0 = [𝜌ℒ︀, 𝑠0, 𝑰ledger, 𝑫, 𝚺, 𝑳out] (3)

where:

• 𝜌ℒ︀ - Aggregated ledger root (in single-file mode, this is the file’s Merkle root 𝜌 directly,

bypassing ledger lookup)

• 𝑠0 - Initial state accumulator (0)

• 𝑰ledger = [𝑖1, …, 𝑖𝑘] - Ledger indices for each file slot (unused in single-file mode; 0 for

padding slots)

• 𝑫 = [𝑑1, …, 𝑑𝑘] - Tree depths for each file slot (0 indicates a padding slot)

• 𝚺 = [𝜎1, …, 𝜎𝑘] - Challenge seeds for each file slot

• 𝑳out = [ℓ1, …, ℓ𝑘] - Challenged leaf values for each file slot (public outputs)

The total arity is 2 + 4𝑘 field elements.

Leaf Outputs: The 𝑳out values are the actual challenged leaf field elements (31-byte

symbols encoded as field elements), not state accumulators. The circuit exposes these

publicly so verifiers can confirm which symbols were proven. For padding slots (where 𝑑𝑗 =
0), the leaf output is set to zero.

Padding Slots: When the number of challenged files is not a power of two, the remaining

slots are filled with padding. Padding slots have 𝑑𝑗 = 0, which the circuit uses to gate

their processing: padding slots do not contribute to the state accumulator or require valid

Merkle paths.

The circuit verifies that each real file’s root commitment rc𝑗 = ℋ︀Poseidon(TAGrc,𝜌𝑗,𝑑𝑗) is located

at ledger index 𝑖𝑗 in the tree with root 𝜌ℒ︀, then verifies the symbol Merkle path for each

challenged file using the per-file parameters. In single-file mode (𝑘 = 1), the ledger lookup is

bypassed: the circuit directly checks that the computed file root matches 𝜌ℒ︀, and the verifier

confirms that this root matches the file’s known Merkle root.

3

2.2 Proof Structure and Challenge Binding

Storage proofs must cryptographically bind to the specific challenges they answer. The proof

structure includes:

𝜋 = (𝜋compressed, compressed SNARK

𝐜𝐡𝐚𝐥𝐥𝐞𝐧𝐠𝐞_𝐢𝐝𝐬, ordered list of challenge identifiers
𝜌ℒ︀, ledger root used for proof generation

𝑰proof, ledger indices at proof generation time

𝑑agg aggregated tree depth at proof generation)

(4)

The proof does not need to carry 𝒛0 or any intermediate/final IVC state explicitly. Verifiers

reconstruct 𝒛0 deterministically from:

• the proof metadata (𝜌ℒ︀, 𝑰proof, 𝑑agg)
• the retrieved challenge set (file roots, seeds, depths)

Ledger Indices in Proof: The proof includes 𝑰proof, the ledger indices for each file at

proof generation time. This enables historical root validation: proofs generated against older

ledger states remain valid because the SNARK proves the indices are correct for the claimed

root 𝜌ℒ︀. Verifiers validate that 𝜌ℒ︀ is in their historical roots set (multi-file only), then use

the proof’s indices directly. Overhead is 8 bytes per file (fixed-width encoding); for typical

proofs (k ≤ 10 files), this adds < 100 bytes to the 12 KB compressed SNARK.

Challenge ID Ordering: The challenge_ids list is an explicit coverage set. Verifiers treat

it as a list of IDs to retrieve the corresponding challenge objects and then sort challenges

deterministically by the total order ((file_id), (challenge_id)) before constructing per-file

arrays for public inputs. This makes verification independent of any caller-provided list

ordering, even if multiple challenges reference the same file.

Cross-Block Aggregation: Challenges from different block heights can be aggregated into

a single proof. Each challenge carries its own seed 𝜎 derived from its originating block hash,

enabling independent challenge derivation regardless of when the challenge was created. The

prover selects a ledger root 𝜌ℒ︀ (typically the current root) containing all challenged files and

generates the proof against this state. Nodes can batch challenges across the entire proof

submission window 𝑊proof.

Verification Binding: When verifying a multi-challenge proof, indexers must:

1. Extract the ordered challenge_ids list and ledger root 𝜌ℒ︀ from the proof

2. If the proof is multi-file (𝑑agg > 0): verify that 𝜌ℒ︀ is in the set of accepted historical

roots

3. Retrieve each challenge 𝒞︀𝑗 by ID from protocol state

4. Verify length: number of challenge IDs must match expected count

5. Reconstruct public inputs from challenges and proof-provided indices

6. Verify the SNARK against these deterministic public inputs

Any mismatch in length or invalid ledger root causes immediate proof rejection. This

prevents an adversary from:

• Submitting a valid proof for different challenges (ID mismatch)

• Claiming to answer more/fewer challenges than proven (length mismatch)

• Using a fabricated ledger root (historical root validation)

Submitting an invalid proof is a slashable event: indexers treat it as an immediate failure of

each referenced open challenge (see the Kontor Storage Protocol[3]).

Ledger State Binding: Proofs are cryptographically bound to a specific ledger state

through the aggregated ledger root 𝜌ℒ︀ included in the proof. The verifier checks that this

4

root appears in its set of accepted historical roots, ensuring the prover used a legitimate

ledger state. This binding prevents:

• Ledger substitution: Cannot prove against a fabricated ledger with different file

positions

• Index manipulation: Cannot claim files are at different ledger indices than their

canonical positions

The combination of challenge ID ordering and historical root validation ensures that proofs

are uniquely tied to specific challenges at a legitimate ledger state, preventing proof reuse

or substitution attacks.

2.3 Ledger Operational Details

The File Ledger ℒ︀ is a dynamic Merkle tree that grows as new file agreements activate. This

section specifies the operational algorithms for ledger maintenance, caching strategies, and

versioning semantics.

Ledger Depth: The aggregated ledger depth depends on the padded leaf count. The ledger

pads to the next power of two:

𝑛′
ledger = {1 if |ℱ︀| = 0

next_power_of_two(|ℱ︀|) otherwise (5)

The depth is then 𝑑agg = log2 𝑛′
ledger, which equals 0 when |ℱ︀| ∈ {0, 1}, and ⌈log2|ℱ︀|⌉ for

|ℱ︀| ≥ 2. The tree remains balanced at all sizes.

Update Algorithm: When a file agreement activates in Join-Agreement (reaching 𝑛min

nodes), the indexer updates the ledger:

1. Compute root commitment: rcnew = ℋ︀Poseidon(TAGrc, 𝜌new, 𝑑new) using the new

file’s Merkle root and depth

2. Insert entry: Add the file identifier and root commitment to the ledger’s ordered

map structure

3. Rebuild tree: Reconstruct the complete Merkle tree from all root commitments in

lexicographic file identifier order, padding to the next power of two with zero elements

The rebuild operation requires 𝑂(|ℱ︀|) work but occurs only when files activate. Lexico

graphic ordering ensures deterministic file indices across all indexers: all implementations

must sort by file identifier bytes and rebuild the tree in identical order.

Indexer Caching: Indexers maintain the complete ledger tree structure:

• All leaf values (root commitments for each file in ℱ︀)

• All internal nodes (cached intermediate hashes)

• Sorted mapping from file identifier to ledger index

This full tree enables efficient Merkle path generation for challenge verification. The storage

cost is 𝑂(|ℱ︀|) field elements: for |ℱ︀| files padded to 𝑛′
ledger, the tree contains 𝑛′

ledger leaves

and 𝑛′
ledger − 1 internal nodes, totaling ≈ 2𝑛′

ledger field elements. Since |ℱ︀| ≤ 𝑛′
ledger < 2|ℱ︀|

and each field element is 32 bytes, this yields 64–128 |ℱ︀| bytes. For a network with 1 million

files, the ledger tree requires at most ≈ 128 MB of indexer storage.

Storage Node Caching: Storage nodes do not need to maintain the complete ledger tree.

Instead, when generating proofs, nodes obtain:

• The current ledger root 𝜌ℒ︀ from recent blockchain state

• Merkle paths for their challenged files from an indexer or by reconstructing locally

5

Nodes storing |ℱ︀𝑛| files can cache just their subset of root commitments and ledger indices

(≈ 64 |ℱ︀𝑛| bytes). If a node maintains the full ledger tree locally (for autonomy), the storage

cost is identical to indexers.

Historical Ledger Roots: Indexers maintain a set of accepted historical ledger roots to

enable cross-block proof aggregation. When a prover generates a proof, they include the

ledger root 𝜌ℒ︀ used for proof generation. The verifier checks that this root is in the accepted

set before validating the SNARK.

The accepted set contains roots from recent ledger states, covering at least the proof

submission window 𝑊proof. Specifically, indexers track:

• The current ledger root

• All roots from ledger updates (file activations) within the last 𝑊proof blocks

This ensures any proof generated against a ledger state within the proof window will have

its root accepted. Provers typically use the current ledger root, but may use slightly older

roots if proof generation started before a recent file activation.

Storage Cost: Historical root tracking grows at one 32-byte entry per file activation. For

a network activating 1000 files per day over a 2-week window (≈ 14000 activations), storage

is ≈ 450 kB. This is negligible compared to the ledger tree itself (≈ 64 MB for 1M files).

3 Proof Generation (Nova IVC)

Important implementation note (Nova/Arecibo step semantics). In arecibo, the first call to

RecursiveSNARK::prove_step after RecursiveSNARK::new(...) is a deliberate no-op: it incre

ments the internal step counter but does not synthesize the circuit for that step. Therefore,

to produce a proof with 𝑁 logical PoR steps (i.e., 𝑁 challenged-symbol iterations), an

implementation must:

• Call RecursiveSNARK::new(...) once (this executes step 0 with synthesis).

• Call prove_step(...) exactly 𝑁 times (not 𝑁 − 1). The first call is the no-op, and

only calls 2..𝑁 synthesize steps 1..𝑁 − 1.

• Verify with num_steps = N.

Algorithm 1: Proof Generation (Nova IVC)

1: procedure Nova.Prove(challenges, node_storage, state)
2: ▷ Node generates aggregated proof for 𝑘 challenges
3: ▷ Step 1: Determine circuit shape
4: 𝑘 ← next_power_of_two(|challenges|)
5: 𝑑max ← max𝒞︀∈ challenges depth(𝒞︀)
6: 𝑑agg ← aggregated_tree_depth(state)
7: ▷ Circuit shape: (𝑘, 𝑑max, 𝑑agg)
8:
9: ▷ Step 2: Build public inputs
10: 𝜌ℒ︀ ← state.get_ledger_root()
11: 𝑠0 ← 0
12: ▷ Initialize per-file arrays (pad with zeros for unused slots)
13: 𝑰, 𝑫, 𝚺, 𝑳 ← arrays of length 𝑘
14: for 𝑗 ∈ [0, 𝑘) do
15: if 𝑗 < |challenges| then
16: 𝒞︀𝑗 ← challenges[𝑗]
17: 𝑰[𝑗] ← ledger_index(𝒞︀𝑗.file_id, 𝜌ℒ︀)
18: ▷ Compute index using current ledger root
19: 𝑫[𝑗] ← depth(𝒞︀𝑗)
20: 𝚺[𝑗] ← 𝒞︀𝑗.seed
21: 𝑰[𝑗], 𝑫[𝑗], 𝚺[𝑗] ← 0, 0, 0
22: ▷ Padding slot
23: end

6

24: end
25: 𝒛0 ← [𝜌ℒ︀, 𝑠0, 𝑰, 𝑫, 𝚺, 𝟎]
26:
27: ▷ Step 3: Generate public parameters
28: pp ← 𝒢︀(𝑘, 𝑑max, 𝑑agg)
29: ▷ Nova setup: Pallas/Vesta cycle with IPA commitment
30:
31: ▷ Step 4: Initialize Nova IVC accumulator
32: Π0 ← Nova.Init(pp, 𝒛0)
33:
34: ▷ Step 5: Iteratively prove 𝑁 symbols per file
35: 𝑁 ← challenges[0].num_challenges
36: if ∃𝒞︀ ∈ challenges : 𝒞︀.num_challenges ≠ 𝑁 then
37: return ⊥ (mismatched iteration count)
38: end
39: current_state ← 𝑠0
40: for 𝑖 ∈ [1, 𝑁] do
41: ▷ Build witness for all 𝑘 file slots
42: 𝒘𝑖 ← empty witness structure
43: for 𝑗 ∈ [0, 𝑘) do
44: if 𝑫[𝑗] > 0 then
45: ▷ Real file: derive challenge and extract data
46: ℎ ← ℋ︀Poseidon(TAGchallenge,𝚺[𝑗], current_state)
47: if 𝑘 > 1 then
48: ℎ ← ℋ︀Poseidon(TAGchallenge_per_file,ℎ,𝑗)
49: end
50: 𝑐𝑗 ← derive_index_unbiased(ℎ, 2𝑫[𝑗])
51: 𝒘𝑖.file[𝑗] ← get_witness(challenges[𝑗], 𝑐𝑗)
52: 𝒘𝑖.file[𝑗] ← padding_witness()
53: end
54: end
55:
56: ▷ Execute step circuit and fold
57: 𝒛𝑖 ← 𝜑PoR(𝒛𝑖−1,𝒘𝑖)
58: Π𝑖 ← Nova.Fold(pp, Π𝑖−1, 𝒘𝑖, 𝒛𝑖−1, 𝒛𝑖)
59: current_state ← 𝒛𝑖[1]
60: end
61:
62: ▷ Step 6: Compress and package proof
63: 𝜋compressed ← Spartan.Compress(pp, Π𝑁)
64: proof

← {challenge_ids : [challenges[𝑗].id for 𝑗 ∈ [0, |challenges|)], compressed_snark :
𝜋compressed, ledger_root : 𝜌ℒ︀, ledger_indices : 𝑰, aggregated_tree_depth : 𝑑agg}

65: return proof
66: end

4 PoR Step Circuit 𝜑PoR

The PoR step circuit 𝜑PoR is executed within the Nova IVC fold operation. Each step

processes 𝑘 file slots (where 𝑘 is the files_per_step parameter), verifying one challenged

symbol per file and updating a single running state accumulator. Padding slots (identified

by 𝑑𝑗 = 0) are gated to have no effect.

Algorithm 2: PoR Step Circuit

1: procedure 𝜑PoR(𝒛∈, 𝒘)
2: ▷ Circuit executed inside Nova fold to verify symbols across 𝑘 files
3: ▷ Step 1: Parse public inputs
4: 𝜌ℒ︀ (aggregated root) ← 𝒛∈[0]
5: 𝑠 (state accumulator) ← 𝒛∈[1]

7

6: 𝑰, 𝑫, 𝚺, 𝑳 ← per-file arrays from 𝒛∈
7: ▷ Ledger indices, depths, seeds, leaf outputs for 𝑘 slots
8:
9: ▷ Step 2: Process each file slot
10: for 𝑗 ∈ [0, 𝑘) do
11: ▷ Extract per-file public inputs and witness
12: 𝑑𝑗 ← 𝑫[𝑗]
13: 𝜎𝑗 ← 𝚺[𝑗]
14: 𝒘𝑗 ← 𝒘.file_witness[𝑗]
15: ℓ𝑗 ← 𝒘𝑗.leaf
16:
17: ▷ Compute gating flag: slot is active iff 𝑑𝑗 > 0
18: gate𝑗 ← 𝑑𝑗 > 0
19: ▷ Padding slots have 𝑑𝑗 = 0 and are skipped
20:
21: ▷ Derive challenge index for this file
22: ℎ𝑗 ← ℋ︀Poseidon(TAGchallenge,𝜎𝑗,𝑠)
23: if 𝑘 > 1 then
24: ▷ Multi-file: mix challenge with file index
25: ℎ𝑗 ← ℋ︀Poseidon(TAGchallenge_per_file,ℎ𝑗,𝑗)
26: end
27:
28: ▷ Verify Merkle path (gated by gate𝑗)
29: 𝜌𝑗 ← verify_merkle_path_gated(ℓ𝑗, 𝒘𝑗.siblings, ℎ𝑗, 𝑑𝑗, gate𝑗)
30:
31: ▷ Compute root commitment and verify ledger membership
32: rc𝑗 ← ℋ︀Poseidon(TAGrc,𝜌𝑗,𝑑𝑗)
33: if 𝑘 > 1 then
34: Assert (gated)(rc𝑗 at index 𝑰[𝑗] in tree 𝜌ℒ︀)
35: Assert (gated)(𝜌𝑗 = 𝜌ℒ︀)
36: end
37:
38: ▷ Conditionally update state accumulator
39: 𝑠′ ← ℋ︀Poseidon(TAGstate,𝑠,ℓ𝑗)
40: 𝑠 ← if gate𝑗 then 𝑠′ else 𝑠
41:
42: ▷ Set public leaf output (gated)
43: 𝑳′[𝑗] ← if gate𝑗 then ℓ𝑗 else 0
44: end
45:
46: ▷ Step 3: Build output state
47: 𝒛out ← [𝜌ℒ︀, 𝑠, 𝑰, 𝑫, 𝚺, 𝑳′]
48: ▷ Carry forward root, indices, depths, seeds; update state and leaves
49: return 𝒛out
50: end

Circuit Properties:

• Determinism: All computations are deterministic given public/private inputs

• Uniform Shape: Circuit constraint count is fixed for a given (𝑘, 𝑑max, 𝑑agg) shape,

regardless of which slots are padding. This uniformity is essential for Nova’s folding.

• Completeness: Honest prover with valid data always produces accepting proof

• Soundness: Prover without data cannot forge valid Merkle paths

Gating Mechanism: The circuit uses gated constraints to handle padding slots without

changing the circuit shape. For each file slot 𝑗:
• The gating flag gate𝑗 = (𝑑𝑗 > 0) is computed from the public depth

• All assertions (Merkle path, ledger membership, root match) are gated: gate𝑗 ⋅
(computed − expected) = 0

• State updates and leaf outputs are conditionally selected based on gate𝑗

8

This ensures padding slots (with 𝑑𝑗 = 0) satisfy all constraints trivially while real slots are

fully verified.

5 Proof Verification (Nova IVC)

Algorithm 3: Proof Verification (Nova IVC)

1: procedure Nova.Verify(proof, state)
2: ▷ Indexer verification of storage proof
3: ▷ Step 1: Validate challenge IDs and retrieve challenges
4: ids ← proof.challenge_ids
5: challenges ← empty list
6: for id ∈ ids do
7: 𝒞︀ ← state.get_challenge(id)
8: if 𝒞︀ = ⊥ then
9: return ⊥ (challenge not found)
10: end
11: challenges.append(𝒞︀)
12: end
13:
14: ▷ Step 2: Validate ledger root (multi-file only)
15: 𝜌ℒ︀ ← proof.ledger_root
16: 𝑑agg ← proof.aggregated_tree_depth
17: if 𝑑agg > 0 ∧ 𝜌ℒ︀ ∉ state.accepted_historical_roots() then
18: return ⊥ (invalid ledger root)
19: end
20: ▷ Ledger root validation is skipped for single-file proofs (𝑑agg = 0)
21:
22: ▷ Step 3: Determine circuit shape from challenges
23: 𝑘 ← next_power_of_two(|challenges|)
24: 𝑑max ← max𝒞︀∈ challenges depth(𝒞︀)
25: ▷ Use proof’s aggregated tree depth to select parameters
26:
27: ▷ Step 4: Reconstruct public inputs using proof metadata + challenges
28: 𝑰 ← proof.ledger_indices
29: 𝑫, 𝚺 ← arrays from challenges, padded to length 𝑘
30: 𝒛expected

0 ← [𝜌ℒ︀, 0, 𝑰, 𝑫, 𝚺, 𝟎]
31:
32: ▷ Step 5: Generate verification parameters
33: pp ← 𝒢︀(𝑘, 𝑑max, 𝑑agg)
34: ▷ Same parameters as prover
35:
36: ▷ Step 6: Verify SNARK
37: 𝜋compressed ← proof.compressed_snark
38: 𝑁 ← challenges[0].num_challenges
39: if ∃𝒞︀ ∈ challenges : 𝒞︀.num_challenges ≠ 𝑁 then
40: return ⊥ (mismatched iteration count)
41: end
42: valid ← Spartan.Verify(pp, 𝜋compressed, 𝒛

expected
0 , 𝑁)

43: ▷ Spartan verification: 𝑂(log2 𝑁) time, constant proof size
44: if ¬ valid then
45: return ⊥ (proof verification failed)
46: end
47:
48: return valid
49: end

9

6 Security Properties

This section analyzes the security properties of the Nova-based proof-of-retrievability system.

The protocol’s security relies on standard cryptographic hardness assumptions and the

soundness properties of the underlying SNARK construction.

6.1 Security Model

The proof system provides the following security guarantees in the context of proof-of-

retrievability:

Soundness (Proof Unforgeability): A computationally bounded adversary who does not

possess the challenged file data cannot generate a valid proof that passes verification, except

with negligible probability. Formally, for a file with Merkle root 𝜌 and challenge requiring

sectors {𝑐1, …, 𝑐𝑠}:

Pr[𝜋 ← 𝒜︀(𝜌, 𝑐1, …, 𝑐𝑠) : Verify(𝜋, 𝜌, 𝑐1, …, 𝑐𝑠) = valid] ≤ negl(𝜅) (6)

where 𝒜︀ is any probabilistic polynomial-time adversary without access to the challenged

sectors, and 𝜅 is the security parameter.

Completeness (Honest Prover Success): An honest prover possessing the complete file

data can always generate a valid proof that passes verification, provided the prover follows

the protocol correctly and the underlying cryptographic primitives function as specified.

This guarantee holds deterministically, not probabilistically.

Public Verifiability: Proofs can be verified by any party possessing only the public

parameters, the Merkle root commitment, and the challenge parameters. Verifiers need not

possess the file data, trust the prover, or interact with the prover beyond receiving the proof.

6.2 Computational Assumptions

The protocol’s security depends on the following computational hardness assumptions:

Discrete Logarithm Problem: The security of the Nova proof system relies on the

hardness of the discrete logarithm problem over the Pallas and Vesta elliptic curves. These

curves provide approximately 128 bits of security under current best-known attacks.

Collision Resistance: The protocol assumes collision resistance for:

• SHA-256: Used for file identifiers and challenge IDs (256-bit output, 128-bit collision

resistance)

• Poseidon: Used for Merkle tree construction and in-circuit hashing (targeting 128-bit

security)

Collision resistance ensures that:

• File identifiers uniquely identify files (no two files have the same ID)

• Challenge IDs uniquely identify challenges (no duplicate challenges)

• Merkle roots bind to unique file contents (no two files have the same root)

Fiat-Shamir Heuristic: The Nova and Spartan proof systems use the Fiat-Shamir trans

formation to convert interactive protocols into non-interactive proofs. Security relies on

modeling the hash function as a random oracle. While the random oracle model is a strong

assumption, it is standard in SNARK constructions and has no known practical attacks

when instantiated with strong hash functions.

Transparent Setup: Unlike SNARKs such as Groth16 or PLONK[5], Nova and Spartan

do not require a trusted setup ceremony. The public parameters can be generated by anyone

deterministically from the circuit structure without relying on secret randomness that must

be destroyed. This eliminates the need for multi-party computation ceremonies, removes the

10

risk of toxic waste compromise, and improves the protocol’s decentralization properties. Any

party can independently generate or verify the public parameters for a given circuit shape.

Quantum Resistance: The protocol is not resistant to quantum computers. The security of

elliptic curve cryptography (Pallas/Vesta curves) and the discrete logarithm problem would

be broken by a sufficiently large quantum computer running Shor’s algorithm. This limita

tion is shared with essentially all contemporary SNARK systems and blockchain protocols.

Should practical quantum computers emerge, the protocol would require migration to post-

quantum cryptographic primitives, though no such primitives currently offer comparable

performance for SNARK applications.

6.3 Attack Resistance

Proof Forgery Attacks: An adversary who does not possess the challenged sectors must

break either:

1. The soundness of the Nova/Spartan SNARK (computationally infeasible under dis

crete log assumption)

2. The collision resistance of Poseidon (computationally infeasible for 128-bit security)

3. The binding property of Merkle trees (follows from collision resistance)

The multi-layered cryptographic construction ensures that breaking any single component

is insufficient; the adversary must break multiple independent hardness assumptions simul

taneously.

Grinding Attacks on Challenge Selection: Miners could theoretically attempt to grind

block hashes to influence challenge selection. However, this attack is economically irrational:

the cost of discarding a valid block (forfeiting block rewards and transaction fees, worth

hundreds of thousands of dollars) vastly exceeds any benefit from biasing which storage

nodes are challenged. The protocol uses the current block hash directly as the entropy source,

as the economic disincentive against grinding is overwhelming.

Malleability Attacks: Each challenge has a unique, deterministic identifier computed via

domain-separated hashing. The inclusion of the challenge ID, file root, tree depth, and node

ID in the hash input prevents an adversary from:

• Reusing a proof for a different challenge (different challenge ID)

• Reusing a proof for a different file (different root)

• Submitting another node’s proof (different node ID)

Replay Attacks: Challenge IDs include block height, ensuring challenges from different

blocks are distinguishable. The protocol tracks verified and failed challenges, preventing an

adversary from resubmitting old proofs for new challenges.

Randomness Quality: Challenge generation relies on the quality of the randomness

beacon. The protocol uses Bitcoin[6] block hashes as the entropy source, which inherit the

security properties of Bitcoin’s proof-of-work consensus:

• High entropy: Block hashes have 256 bits of entropy from mining randomness

• Unpredictable: Cannot be predicted before mining completes

• Economically unbiasable: Miner grinding attacks are economically irrational (block

rewards >> challenge manipulation value)

• Independent: Each block’s hash is independent of challenges

The HKDF expansion using domain-separated context information ensures that challenge

randomness for different blocks and different files is computationally independent, preventing

correlation attacks where an adversary might try to predict multiple challenges simulta

neously.

11

6.4 Public Parameter Binding

Public parameters in Nova/Spartan proof systems are specific to the circuit shape (number

and structure of constraints). The Kontor protocol requires different parameters for different

configurations:

Parameter Determinism: For a given circuit shape (files per step, maximum file tree

depth, aggregated tree depth), the public parameters are deterministically generated. Any

party can independently compute identical parameters from the circuit structure. Parame

ters are identified by the shape tuple: (𝑘, 𝑑max, 𝑑agg) where 𝑘 is files per step, 𝑑max is the

maximum file tree depth across challenges, and 𝑑agg is the aggregated ledger depth.

Parameter Flexibility: Different files may have different tree depths (different file sizes

yield different symbol counts). The protocol supports this by:

• Allowing multiple parameter sets for different depths

• Using padding to standardize depths within a batch (all challenged files in single proof

must have matching depths)

• Caching frequently used parameter sets to amortize generation costs

Generation Cost: Public parameter generation is computationally expensive (can take

minutes for complex circuits) but only needs to be performed once per shape. The refer

ence implementation includes parameter caching to avoid regeneration. The deterministic

generation ensures all implementations compute identical parameters for identical shapes,

maintaining consensus.

6.5 Concrete Security Parameters

Security Level: The protocol targets approximately 128-bit security. The bottleneck is

the Pallas/Vesta curve cycle, which provides 126-bit security (254-bit prime fields). Other

components meet or exceed this level:

• SHA-256: 128-bit collision resistance (256-bit output)

• Poseidon: Configured for 128-bit security over Pallas field

This security level is sufficient for the protocol’s threat model, where attacks on the crypto

graphic primitives are significantly more expensive than the economic value of individual

files.

Field Sizes:

• Pallas scalar field: 𝑝 = 2254 + 45560315531419706090280762371685220353
• Vesta scalar field: 𝑞 = 2254 + 45560315531506369815346746415080538113
• Field element encoding: 31 bytes maximum (safe for 255-bit fields)

Proof Size: The compressed SNARK is approximately 12 kB regardless of the number of

challenged symbols. The full proof includes per-file metadata (challenge IDs, ledger indices,

ledger root) adding ≈ 40 bytes per file. For typical proofs (𝑘 ≤ 100), total size is ≈ 16 kB;

for large operators (𝑘 = 1000), total size is ≈ 52 kB.

Verification Time: Proof verification requires 𝑂(log2 𝑠) time where 𝑠 is the number of

IVC steps (sectors challenged). For typical challenges (𝑠 ≈ 100), verification completes in

approximately 50 milliseconds on modern hardware, making on-chain verification by indexers

practical.

7 Cryptographic Primitives

Definition 1 (Collision-Resistant Hash Function). A function ℋ︀ : {0, 1}∗ → {0, 1}𝜅

is collision-resistant if for all probabilistic polynomial-time adversaries 𝒜︀, the probability

Pr[(𝑥, 𝑥′) ← 𝒜︀(1𝜅) : 𝑥 ≠ 𝑥′ ∧ ℋ︀(𝑥) = ℋ︀(𝑥′)] (7)

12

is negligible in 𝜅, the security parameter.

Definition 2 (Poseidon Hash Function). Poseidon[7] is an algebraic hash func

tion ℋ︀Poseidon : 𝔽𝑡
𝑝 → 𝔽𝑝 designed for arithmetic circuits over prime field 𝔽𝑝. For

this protocol, we use Poseidon over the Pallas and Vesta curve cycle with

field moduli 𝑝Pallas = 2254 + 45560315531419706090280762371685220353 and 𝑞Vesta = 2254 +
45560315531506369815346746415080538113.

Definition 3 (HKDF - HMAC-based Key Derivation Function). HKDF is a key

derivation function specified in RFC 5869 that expands a source of entropy into crypto

graphically strong pseudorandom output. The protocol uses HKDFSHA256 with the following

signature:

HKDFSHA256 : {0, 1}∗ × {0, 1}∗ → {0, 1}ℓ (8)

where the first input is the initial keying material (IKM), the second is optional context

information, and ℓ is the desired output length in bits. For challenge generation, the protocol

uses IKM = current block hash and info = domain separator concatenated with block height.

Definition 3a (Unbiased Index Derivation). The function derive_index_unbiased : 𝔽𝑝 ×
ℕ → ℕ maps a field element to an unbiased index in the range [0, 𝑛) for arbitrary 𝑛:

• If 𝑛 is a power of two: extract the low log2 𝑛 bits (exact, efficient)

• Otherwise: use rejection sampling - extract bits for next power of two, reject if ≥ 𝑛,

rehash with counter until valid

This ensures uniform distribution over [0, 𝑛) without modulo bias. The rehashing uses

domain-separated Poseidon: ℎ𝑖+1 = ℋ︀Poseidon(TAGchallenge,ℎ𝑖,𝑖).

Definition 3b (Domain Separation Tags). The protocol uses domain separation to

prevent cross-protocol and cross-context hash collisions. Each hash operation includes a

unique tag (field element). The following tags are used throughout the protocol:

• TAGleaf (value 1) - Poseidon tag for leaf encoding (symbol-to-field-element conversion)

• TAGnode (value 2) - Poseidon tag for hashing internal Merkle tree nodes

• TAGchallenge (value 6) - Poseidon tag for challenge index derivation and rejection

sampling

• TAGstate (value 7) - Poseidon tag for state accumulator updates

• TAGrc (value 8) - Poseidon tag for root commitment computation (binds file root

and depth)

• TAGchallenge_per_file (value 9) - Poseidon tag for combining challenge with file index in

multi-file proofs

• TAGchallenge_id (value 10) - SHA-256 domain tag for challenge identifier computation

Domain tags are small integer constants that prevent an adversary from constructing valid

proofs by reusing hash outputs from different contexts. The tagged hash construction

ℋ︀Poseidon(TAG,𝑥,𝑦) = ℋ︀Poseidon(ℋ︀Poseidon(TAG,𝑥),𝑦) uses 2-arity Poseidon to build 3-input hashes.

Definition 4 (Merkle Tree). A Merkle tree[8] 𝒯︀ over leaves 𝑳 = [ℓ0, …, ℓ𝑛−1] with hash

function ℋ︀ is a binary tree where:

• Leaves are padded to 𝑛′ = 2⌈log2 𝑛⌉ (next power of two ≥ 𝑛)

• Tree depth is 𝑑 = log2 𝑛′

• Each leaf node contains ℋ︀(TAGleaf, ℓ𝑖)
• Each internal node contains ℋ︀(TAGnode, left, right) where “left” and “right” are its

children

• The root 𝜌 = 𝒯︀.root commits to all leaves

A Merkle proof 𝜋𝑖 for leaf ℓ𝑖 is a path from leaf to root consisting of 𝑑 sibling hashes, one

per level.

13

Definition 5 (Reed-Solomon Erasure Code). A Reed-Solomon code[9] over GF(2^8)

with 31-byte symbols satisfies:

• Encodes data 𝑫 = [𝑑0, …, 𝑑𝑛data−1] to codeword 𝑪 = [𝑐0, …, 𝑐𝑛data+𝑛parity−1]
• Any 𝑛data symbols of 𝑪 suffice to reconstruct 𝑫
• Tolerates up to 𝑛parity symbol erasures or ⌊𝑛parity

2 ⌋ symbol errors

In the Kontor protocol, each symbol is a fixed 31-byte unit. The encoding operates at symbol

granularity: a codeword of 231 data symbols yields 24 parity symbols (10% overhead), all

31 bytes each.

8 Related Work

The Kontor storage protocol builds on foundational work in proofs of retrievability[10], [11]

and draws inspiration from several decentralized storage systems, each with distinct design

trade-offs.

Decentralized Storage Networks: Filecoin[12] uses proof-of-spacetime and proof-of-

replication to incentivize storage providers through a marketplace model with renewable

storage deals. Arweave[13] implements a “blockweave” structure with a one-time payment

model for permanent storage, though its economic sustainability depends on decreasing

storage costs over time. Storj[14] uses erasure coding and reputation systems but relies on

trusted auditing rather than zero-knowledge proofs. IPFS[15] provides content-addressed

storage but lacks native economic incentives, leading to data availability challenges[16] that

motivate the need for incentivized permanence guarantees.

Cryptographic Foundations: The protocol leverages recursive proof composition via

Nova[1] folding schemes, enabling efficient aggregation of multiple storage proofs into

compact SNARKs. The implementation uses the Poseidon[7] hash function optimized for

arithmetic circuits, Merkle trees[8] for cryptographic commitments, and Reed-Solomon[9],

[17] erasure coding for fault tolerance. The proof system is built on Spartan[18] for trans

parent setup without trusted ceremonies.

Design Differentiators: Unlike Filecoin’s renewable deals or Arweave’s economic specu

lation, Kontor provides perpetual storage guarantees through continuous emissions tied to

the broader smart contract economy. The use of Bitcoin block hashes[6] as an unbiasable

randomness beacon eliminates the need for on-chain random number generation. The pooled

stake model and dynamic challenge selection create strong incentives for honest storage while

maintaining verification efficiency through recursive proof aggregation.

9. Bibliography

[1] Abhiram Kothapalli and Srinath Setty, “Nova: Recursive Zero-Knowledge Arguments

from Folding Schemes,” 2021. [Online]. Available: https://eprint.iacr.org/2021/370

[2] Microsoft, Arecibo. (2024). GitHub. [Online]. Available: https://github.com/microsoft/

arecibo

[3] Adam Krellenstein, Alexey Gribov, and Ouziel Slama, “Kontor Storage Protocol,” 2025.

[Online]. Available: https://docs.kontor.network/docs/resources/storage-protocol

[4] Adam Krellenstein, Wilfred Denton, and Ouziel Slama, “Kontor: A New Bitcoin

Metaprotocol for Smart Contracts and File Persistence,” 2025. [Online]. Available:

https://docs.kontor.network/docs/resources/whitepaper

[5] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru, “PLONK: Permutations

over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge,” 2019.

[Online]. Available: https://eprint.iacr.org/2019/953

14

https://eprint.iacr.org/2021/370
https://github.com/microsoft/arecibo
https://github.com/microsoft/arecibo
https://docs.kontor.network/docs/resources/storage-protocol
https://docs.kontor.network/docs/resources/whitepaper
https://eprint.iacr.org/2019/953

[6] Satoshi Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008. [Online].

Available: https://bitcoin.org/bitcoin.pdf

[7] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger, “POSEIDON:

A New Hash Function for Zero-Knowledge Proof Systems,” 2019. [Online]. Available:

https://eprint.iacr.org/2019/458

[8] Ralph C. Merkle, “A Digital Signature Based on a Conventional Encryption Function,”

1988.

[9] Irving S. Reed and Gustave Solomon, “Polynomial Codes Over Certain Finite Fields,”

1960.

[10] Ari Juels and Burton S. Kaliski Jr, “PORs: Proofs of Retrievability for Large Files,”

2007.

[11] Hovav Shacham and Brent Waters, “Compact Proofs of Retrievability,,” Springer.

[12] Protocol Labs, “Filecoin: A Decentralized Storage Network,” July 19, 2017. [Online].

Available: https://filecoin.io/

[13] Sam Williams, Viktor Diordiiev, Lev Berman, India Raybould, and Ivan Uemlianin,

“Arweave: A Protocol for Economically Sustainable Information Permanence,” 2023.

[Online]. Available: https://www.arweave.org/yellow-paper.pdf

[14] Shawn Wilkinson, Tome Boshevski, Josh Brandoff, and Vitalik Buterin, “Storj: A Peer-

to-Peer Cloud Storage Network,” 2014. [Online]. Available: https://storj.io/storj.pdf

[15] Juan Benet, “IPFS - Content Addressed, Versioned, P2P File System,” 2014. [Online].

Available: https://ipfs.tech/ipfs.pdf

[16] IPFS Contributors, When will data be permanently available?. (2025). GitHub. [Online].

Available: https://github.com/ipfs/ipfs/issues/165

[17] James S. Plank and Lihao Xu, “Optimizing Cauchy Reed-Solomon Codes for Fault-

Tolerant Network Storage Applications,” 2006.

[18] Srinath Setty, “Spartan: Efficient and general-purpose zkSNARKs without trusted

setup,” 2020. [Online]. Available: https://eprint.iacr.org/2019/550

15

https://bitcoin.org/bitcoin.pdf
https://eprint.iacr.org/2019/458
https://filecoin.io/
https://www.arweave.org/yellow-paper.pdf
https://storj.io/storj.pdf
https://ipfs.tech/ipfs.pdf
https://github.com/ipfs/ipfs/issues/165
https://eprint.iacr.org/2019/550

	1 Introduction
	2 Multi-File Proof Aggregation
	2.1 Public Input Structure
	2.2 Proof Structure and Challenge Binding
	2.3 Ledger Operational Details

	3 Proof Generation (Nova IVC)
	4 PoR Step Circuit φPoR
	5 Proof Verification (Nova IVC)
	6 Security Properties
	6.1 Security Model
	6.2 Computational Assumptions
	6.3 Attack Resistance
	6.4 Public Parameter Binding
	6.5 Concrete Security Parameters

	7 Cryptographic Primitives
	8 Related Work
	9. Bibliography

