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1 Introduction

This document specifies the cryptographic system underlying the Kontor Storage Protocol’s
proof-of-retrievability scheme. The system uses Nova[l] recursive SNARKSs via the arecibo[2]
library to generate compact proofs that can be efficiently verified (~50ms). The compressed
SNARK is constant-size (~12 kB) regardless of the number of challenged symbols; the full
proof includes per-file metadata that scales linearly with k files (~12 kB + 40 bytes x k).

The Kontor Storage Protocol is a system for ensuring that a set of untrusted actors contin-
uously and correctly store data they have publicly committed to preserving. Storage nodes
are challenged pseudo-randomly using a shared source of entropy (Bitcoin block hashes).
With each block, indexers use this entropy to select file-node pairs for auditing. The chosen
storage nodes must respond by publishing a proof demonstrating they possess a pseudo-
random subset of the challenged file data. Nodes that fail to produce valid proofs within the
allotted timeframe are subject to slashing of their escrowed KOR stake.

The cryptographic proof system addresses three key requirements:

Compact Proofs: Storage nodes are frequently challenged on multiple files within the
proof submission window (W, blocks). To minimize Bitcoin transaction fees, the protocol
allows nodes to aggregate challenges for multiple files into a single proof. The compressed
SNARK is constant-size (a~ 12 kB) regardless of the number of challenged symbols; the full
proof includes per-file metadata (challenge IDs, ledger indices) that adds & 40 bytes per file.

Efficient Verification: Proofs must be verified by all Kontor indexers deterministically.
The Nova/Spartan construction enables verification in approximately 50ms, making on-
chain verification practical at scale.

Soundness: Nodes must not be able to forge proofs without possessing the challenged file
data. Merkle tree commitments verified within the SNARK circuit bind proofs to specific
data, with computational soundness inherited from the discrete logarithm assumption over
the Pallas/Vesta curve cycle.

For protocol context, economic incentives, and state machine specification, see the Kontor
Storage Protocol.[3] For a high-level overview of the Kontor system as a whole, see the
Kontor Whitepaper.[4]

2 Multi-File Proof Aggregation

Storage nodes are frequently challenged on multiple files within the proof submission window
(W00t blocks). To minimize Bitcoin transaction fees, the protocol allows nodes to aggregate
challenges for multiple files into a single proof. This aggregation is enabled by the File

Ledger, a Merkle tree built over the root commitments of all files in the system.

Root Commitment: For each file f with Merkle root p; and tree depth d;, the protocol
computes a root commitment using a domain-separated tagged Poseidon hash:

ICy = %Poseidon(TAGrcvpfvdf) (1)

where TAG,, is a fixed small integer constant embedded as a field element and
FHposeidon (TAG, , y) denotes a single Poseidon sponge hash absorbing the three field elements
(TAG, z,y) and outputting one field element. The root commitment binds together the file’s
Merkle root and its tree depth, preventing depth-spoofing attacks where an adversary might
try to reuse proofs across files with different tree structures.

File Ledger Construction: The File Ledger is a Merkle tree £ built over the root
commitments of all files in the system. Files are ordered deterministically (lexicographically
by file identifier), and the ledger tree is constructed from their rc values:



L= Merkle—Tree( [rc17 ICq, ..., rq?]]) (2)

Each file has a canonical ledger index i corresponding to its position in this sorted order.
The ledger root p . commits to the set of all files in the system.

Aggregated Proof Structure: When a node is challenged on k files {fi, f5, ..., fi}, it

generates a single proof. Let s ;,,; denote the number of symbols challenged per file (a protocol

chal
parameter; see Kontor Whitepaper[4]). The uncompressed IVC witness contains:
« For each challenged file f;: Merkle path from rc; to ledger root p, (size: O(log|F|))
e For each challenged symbol in each file: Merkle path from symbol to file root Py,
(size: O(10g 1)

e Nova IVC accumulator tracking all verifications (size: grows with number of steps)
Total uncompressed size: O(k - log|F|) + O(k - Sepa - 108 Myopa1)-

The compressed SNARK (after Spartan compression) is constant-size (~ 12 kB) regardless
of k, |F|, or the number of challenged symbols. Nova’s IVC folding combined with Spartan’s
succinct verification enables this compression: the variable-size witness reduces to a constant-
size SNARK that proves all symbol verifications and ledger inclusions were performed
correctly. The full proof additionally includes per-file metadata (challenge IDs and ledger
indices) adding a 40 bytes per file.

2.1 Public Input Structure

The circuit uses a unified public input structure parameterized by k (files per step). Single-
file mode (k = 1) is used when a prover submits a proof for exactly one file; multi-file mode
(k > 1) is used otherwise, where k is the next power of two > number of files in the proof.
The public inputs are organized as:

Z0 = [p(]a S0» Iledgew Da E? Lout] (3)

where:

o p, - Aggregated ledger root (in single-file mode, this is the file’s Merkle root p directly,
bypassing ledger lookup)

o 5y - Initial state accumulator (0)

o Tiegger = [i1; - 3y) - Ledger indices for each file slot (unused in single-file mode; 0 for
padding slots)

o D=[dy,...,d;] - Tree depths for each file slot (0 indicates a padding slot)

e ¥ =[oy,...,04] - Challenge seeds for each file slot

o L, =[l,...,¢] - Challenged leaf values for each file slot (public outputs)

The total arity is 2 4 4k field elements.

Leaf Outputs: The L, values are the actual challenged leaf field elements (31-byte
symbols encoded as field elements), not state accumulators. The circuit exposes these
publicly so verifiers can confirm which symbols were proven. For padding slots (where d; =
0), the leaf output is set to zero.

Padding Slots: When the number of challenged files is not a power of two, the remaining
slots are filled with padding. Padding slots have d; =0, which the circuit uses to gate
their processing: padding slots do not contribute to the state accumulator or require valid
Merkle paths.

The circuit verifies that each real file’s root commitment rc; = Hpeidon(TAG,, pydy) 1S located
at ledger index 4; in the tree with root p,, then verifies the symbol Merkle path for each
challenged file using the per-file parameters. In single-file mode (k = 1), the ledger lookup is
bypassed: the circuit directly checks that the computed file root matches p ., and the verifier
confirms that this root matches the file’s known Merkle root.



2.2 Proof Structure and Challenge Binding

Storage proofs must cryptographically bind to the specific challenges they answer. The proof
structure includes:

= (wcampressed, compressed SNARK

challenge _ids, ordered list of challenge identifiers
P, ledger root used for proof generation (4)
I

proof> ledger indices at proof generation time

d,,, aggregated tree depth at proof generation)

The proof does not need to carry z, or any intermediate/final IVC state explicitly. Verifiers
reconstruct z, deterministically from:

dygg)
agg
o the retrieved challenge set (file roots, seeds, depths)

« the proof metadata (p, I,

proof?

Ledger Indices in Proof: The proof includes I, the ledger indices for each file at

proof generation time. This enables historical root validation: proofs generated against older

roof ?

ledger states remain valid because the SNARK proves the indices are correct for the claimed
root p,. Verifiers validate that p. is in their historical roots set (multi-file only), then use
the proof’s indices directly. Overhead is 8 bytes per file (fixed-width encoding); for typical
proofs (k < 10 files), this adds < 100 bytes to the 12 KB compressed SNARK.

Challenge ID Ordering: The challenge ids list is an explicit coverage set. Verifiers treat
it as a list of IDs to retrieve the corresponding challenge objects and then sort challenges
deterministically by the total order ((file_id), (challenge id)) before constructing per-file
arrays for public inputs. This makes verification independent of any caller-provided list
ordering, even if multiple challenges reference the same file.

Cross-Block Aggregation: Challenges from different block heights can be aggregated into
a single proof. Each challenge carries its own seed o derived from its originating block hash,
enabling independent challenge derivation regardless of when the challenge was created. The
prover selects a ledger root p . (typically the current root) containing all challenged files and
generates the proof against this state. Nodes can batch challenges across the entire proof

submission window W, ..

Verification Binding: When verifying a multi-challenge proof, indexers must:
1. Extract the ordered challenge_ids list and ledger root p, from the proof
2. If the proof is multi-file (d,,, > 0): verify that p is in the set of accepted historical
roots
- Retrieve each challenge €; by ID from protocol state

3

4. Verity length: number of challenge IDs must match expected count
5. Reconstruct public inputs from challenges and proof-provided indices
6

. Verify the SNARK against these deterministic public inputs

Any mismatch in length or invalid ledger root causes immediate proof rejection. This
prevents an adversary from:

o Submitting a valid proof for different challenges (ID mismatch)

o Claiming to answer more/fewer challenges than proven (length mismatch)

 Using a fabricated ledger root (historical root validation)

Submitting an invalid proof is a slashable event: indexers treat it as an immediate failure of
each referenced open challenge (see the Kontor Storage Protocol[3]).

Ledger State Binding: Proofs are cryptographically bound to a specific ledger state
through the aggregated ledger root p, included in the proof. The verifier checks that this



root appears in its set of accepted historical roots, ensuring the prover used a legitimate
ledger state. This binding prevents:
o Ledger substitution: Cannot prove against a fabricated ledger with different file
positions
¢ Index manipulation: Cannot claim files are at different ledger indices than their
canonical positions
The combination of challenge ID ordering and historical root validation ensures that proofs

are uniquely tied to specific challenges at a legitimate ledger state, preventing proof reuse
or substitution attacks.

2.3 Ledger Operational Details

The File Ledger £ is a dynamic Merkle tree that grows as new file agreements activate. This
section specifies the operational algorithms for ledger maintenance, caching strategies, and
versioning semantics.

Ledger Depth: The aggregated ledger depth depends on the padded leaf count. The ledger
pads to the next power of two:

b if|F]=0 (5)
ledger ™ | next_power_of two(|F|) otherwise

The depth is then d,,, = logy Nfeqee, Which equals 0 when |F| € {0,1}, and [logy|F|] for

|F| > 2. The tree remains balanced at all sizes.

Update Algorithm: When a file agreement activates in Join-Agreement (reaching m;,
nodes), the indexer updates the ledger:

d

1. Compute root commitment: rc
file’s Merkle root and depth

= }[Poscidon(TAG ncw) using the new

new j ) p new?
2. Insert entry: Add the file identifier and root commitment to the ledger’s ordered

map structure

3. Rebuild tree: Reconstruct the complete Merkle tree from all root commitments in
lexicographic file identifier order, padding to the next power of two with zero elements

The rebuild operation requires O(]F|) work but occurs only when files activate. Lexico-
graphic ordering ensures deterministic file indices across all indexers: all implementations
must sort by file identifier bytes and rebuild the tree in identical order.

Indexer Caching: Indexers maintain the complete ledger tree structure:
o All leaf values (root commitments for each file in &)
o All internal nodes (cached intermediate hashes)
o Sorted mapping from file identifier to ledger index

This full tree enables efficient Merkle path generation for challenge verification. The storage
cost is O(|F|) field elements: for |F| files padded t0 Nfeqae, the tree contains nj,q,,, leaves
and Nfyee — 1 internal nodes, totaling = 2njqq,,, field elements. Since |F| < njegpe, < 2|7
and each field element is 32 bytes, this yields 64-128 |F| bytes. For a network with 1 million
files, the ledger tree requires at most ~ 128 MB of indexer storage.

Storage Node Caching: Storage nodes do not need to maintain the complete ledger tree.
Instead, when generating proofs, nodes obtain:

o The current ledger root p, from recent blockchain state

e Merkle paths for their challenged files from an indexer or by reconstructing locally



Nodes storing |4, files can cache just their subset of root commitments and ledger indices
(=~ 64 |7,| bytes). If a node maintains the full ledger tree locally (for autonomy), the storage
cost is identical to indexers.

Historical Ledger Roots: Indexers maintain a set of accepted historical ledger roots to
enable cross-block proof aggregation. When a prover generates a proof, they include the
ledger root p . used for proof generation. The verifier checks that this root is in the accepted
set before validating the SNARK.

The accepted set contains roots from recent ledger states, covering at least the proof
submission window W, ¢ Specifically, indexers track:

e The current ledger root

o All roots from ledger updates (file activations) within the last W blocks

proo

This ensures any proof generated against a ledger state within the proof window will have
its root accepted. Provers typically use the current ledger root, but may use slightly older
roots if proof generation started before a recent file activation.

Storage Cost: Historical root tracking grows at one 32-byte entry per file activation. For
a network activating 1000 files per day over a 2-week window (~ 14000 activations), storage
is & 450 kB. This is negligible compared to the ledger tree itself (=~ 64 MB for 1M files).

3 Proof Generation (Nova IVC)

Important implementation note (Nova/Arecibo step semantics). In arecibo, the first call to
RecursiveSNARK: :prove step after RecursiveSNARK: :new(...) is a deliberate no-op: it incre-
ments the internal step counter but does not synthesize the circuit for that step. Therefore,
to produce a proof with N logical PoR steps (i.e., N challenged-symbol iterations), an
implementation must:

o Call RecursiveSNARK: :new(...) once (this executes step 0 with synthesis).

o Call prove_step(...) exactly N times (not N —1). The first call is the no-op, and

only calls 2..N synthesize steps 1..N — 1.
e Verify with num_steps = N.

Algorithm 1: Proof Generation (Nova IVC)

procedure NOVA.PROVE(challenges, node_storage, state)
> Node generates aggregated proof for k challenges
> Step 1: Determine circuit shape
k < next_power_of_two(|challenges|)
druax — mMaXee challenges depth(@)
d,,, < aggregated_tree_depth(state)
> Clircuit shape: (K, dyays gy )

» “maxy “agg

> Step 2: Build public inputs

10: | p, <+ state.get_ledger root()

11: 55«0

12: > Initialize per-file arrays (pad with zeros for unused slots)
13: I,D,3> L + arrays of length k

14:  for j €[0,k) do

15: if j < |challenges| then

16: C; <+ challenges[j]

17: ITj] + ledger_index (€, file_id, p ;)

18: > Compute index using current ledger root
19: D[j] + depth(C;)

20: X[j] < €;.seed

21: I1j], D[j],%£[j] « 0, 0,0

22: > Padding slot

23: end




24: end
25z« [pgy o, I, D, X, 0]

27: > Step 3: Generate public parameters
28: PP g(k:, o dagg)
29: > Nova setup: Pallas/Vesta cycle with IPA commitment

31: > Step 4: Initialize Nova IVC accumulator
32:  II, < Nova.Init(pp, 2z,)

34: > Step 5: Iteratively prove N symbols per file
35: N <« challenges[0].num_challenges
36:  if 3C € challenges : €.num_challenges # N then

37 return | (mismatched iteration count)
38:  end

39:  current_state < s

40:  for i € [1, N] do

41: > Build witness for all k file slots

42: w; < empty witness structure

43: for j € [0,k) do

44: if D[j] > 0 then

45: > Real file: derive challenge and extract data
46: h }[Poseidon(TAGchanmgc,E[j], current_state)
47: if £k > 1 then

48: h « }[Poseidon(TAGclmumgC per mc,h,j)

49: end o

50: cj derive_index_unbiased(h,7 2Dlj]
51: w; file[j]  get_witness(challenges[j], c;)
52: w; file[j| « padding witness()

53: end

54: end

55:

56: > Execute step circuit and fold

57: Zi = PPoR(z;_, ,w,

58: II; «+ Nova.Foldgpp, 0, ,,w;,z;_1,%;)
59: current_state < z;;

60: end

61:

62: > Step 6: Compress and package proof
63: | Teompressed < Spartan.Compress(pp, )
64: proof

< {challenge_ids : [challenges[j].id for j € [0, |challenges|)], compressed_snark :

T ompresseds 1edger_root : p -, ledger_indices : I, aggregated_tree_depth : dagg}
65: return proof
66: end

4 PoR Step Circuit ¢p.

The PoR step circuit ¢p,g is executed within the Nova IVC fold operation. Each step
processes k file slots (where k is the files_per_step parameter), verifying one challenged
symbol per file and updating a single running state accumulator. Padding slots (identified
by d; = 0) are gated to have no effect.

Algorithm 2: PoR Step Circuit

1:  procedure pp (2, w)

2: > Circuit executed inside Nova fold to verify symbols across k files
3: > Step 1: Parse public inputs

4: p (aggregated root) < z¢[g

5 s (state accumulator) < z¢[




49:
50:

I,D,3, L + per-file arrays from 2z,
> Ledger indices, depths, seeds, leaf outputs for k slots

> Step 2: Process each file slot

for j € [0,k) do
> Extract per-file public inputs and witness
d; < D[j]

o; < X[j]

w; < w.file_witness[j]

£; + w;.leaf

> Compute gating flag: slot is active iff d; > 0
gate; < d; >0
> Padding slots have d; = 0 and are skipped

> Derive challenge index for this file
hj — }[Poseidon(TAG(,haumge,a'j,s)
it k > 1 then
> Multi-file: mix challenge with file index
hj = }[P oseidon(TAG atienge per filerj55)
end
> Verify Merkle path (gated by gate;)

p; < verify_merkle_path_gated(£;, w;.siblings, h;, d;, gate;)

> Compute root commitment and verify ledger membership
IC; = Hposeidon(TAG,,,p,,d,)
if £ > 1 then
ASSERT (GATED)(rc; at index I[j] in tree p )
ASSERT (GATED)(p; = p;)
end

> Conditionally update state accumulator

/
s }[Poscidon(TAGﬁ [e,s,éj)
s « if gate; then s’ else s

> Set public leaf output (gated)
L’[j] « if gate; then £; else 0
end

> Step 3: Build output state
Zout < lpgy 8,1, D,2, L]
> Carry forward root, indices, depths, seeds; update state and leaves
return z
end

Circuit Properties:

Determinism: All computations are deterministic given public/private inputs
Uniform Shape: Circuit constraint count is fixed for a given (k:, o dagg) shape,
regardless of which slots are padding. This uniformity is essential for Nova’s folding.
Completeness: Honest prover with valid data always produces accepting proof

Soundness: Prover without data cannot forge valid Merkle paths

Gating Mechanism: The circuit uses gated constraints to handle padding slots without

changing the circuit shape. For each file slot j:

The gating flag gate; = (dj > 0) is computed from the public depth

All assertions (Merkle path, ledger membership, root match) are gated: gate; -
(computed — expected) = 0

State updates and leaf outputs are conditionally selected based on gate;



This ensures padding slots (with d; = 0) satisfy all constraints trivially while real slots are

fully verified.

5 Proof Verification (Nova IVC)

Algorithm 3: Proof Verification (Nova IVC)

procedure NOVA.VERIFY(proof, state)

> Indexer verification of storage proof
> Step 1: Validate challenge IDs and retrieve challenges
ids < proof.challenge_ids
challenges < empty list
for id € ids do

C « state.get_challenge(id)

if ¢ = 1 then

return L (challenge not found)

end

challenges.append(C)
end

> Step 2: Validate ledger root (multi-file only)

p . < proof.ledger root

d,,, < proof.aggregated_tree depth

if jagg > 0 A p, ¢ state.accepted historical roots() then
return | (invalid ledger root)

end

> Ledger root validation is skipped for single-file proofs (d,,, = 0)

> Step 3: Determine circuit shape from challenges

k < next_power_of_two(|challenges|)

dmax < MaXec challenges depth(e)

> Use proof’s aggregated tree depth to select parameters

> Step 4: Reconstruct public inputs using proof metadata + challenges
I < proof.ledger_indices

D, 3 + arrays from challenges, padded to length k

25veted o 1p,.,0,1,D,%,0]

> Step 5: Generate verification parameters
PP — Gk, dipars Ao )
> Same parameters as prover

> Step 6: Verify SNARK

Teompressed <~ Proof.compressed_snark
< challenges[0].num_challenges

if 3C € challenges : C.num _challenges #+ N then
return | (mismatched iteration count)

end
valid + Spartan.Verify gpp, Tompreseds Zo T2 N
> Spartan verification: (log2 N 5) time, constant proof size

if — valid then
return | (proof verification failed)
end

return valid

end




6 Security Properties

This section analyzes the security properties of the Nova-based proof-of-retrievability system.
The protocol’s security relies on standard cryptographic hardness assumptions and the
soundness properties of the underlying SNARK construction.

6.1 Security Model

The proof system provides the following security guarantees in the context of proof-of-
retrievability:

Soundness (Proof Unforgeability): A computationally bounded adversary who does not
possess the challenged file data cannot generate a valid proof that passes verification, except
with negligible probability. Formally, for a file with Merkle root p and challenge requiring
sectors {cq, ..., ¢z }:

Prim « A(p,cq,-..,cg) : Verify(m, p, ¢y, ..., ¢;) = valid] < negl(k) (6)

where A is any probabilistic polynomial-time adversary without access to the challenged
sectors, and « is the security parameter.

Completeness (Honest Prover Success): An honest prover possessing the complete file
data can always generate a valid proof that passes verification, provided the prover follows
the protocol correctly and the underlying cryptographic primitives function as specified.
This guarantee holds deterministically, not probabilistically.

Public Verifiability: Proofs can be verified by any party possessing only the public
parameters, the Merkle root commitment, and the challenge parameters. Verifiers need not
possess the file data, trust the prover, or interact with the prover beyond receiving the proof.

6.2 Computational Assumptions
The protocol’s security depends on the following computational hardness assumptions:

Discrete Logarithm Problem: The security of the Nova proof system relies on the
hardness of the discrete logarithm problem over the Pallas and Vesta elliptic curves. These
curves provide approximately 128 bits of security under current best-known attacks.

Collision Resistance: The protocol assumes collision resistance for:
o SHA-256: Used for file identifiers and challenge IDs (256-bit output, 128-bit collision
resistance)
e Poseidon: Used for Merkle tree construction and in-circuit hashing (targeting 128-bit
security)

Collision resistance ensures that:
o File identifiers uniquely identify files (no two files have the same ID)
o Challenge IDs uniquely identify challenges (no duplicate challenges)
e Merkle roots bind to unique file contents (no two files have the same root)

Fiat-Shamir Heuristic: The Nova and Spartan proof systems use the Fiat-Shamir trans-
formation to convert interactive protocols into non-interactive proofs. Security relies on
modeling the hash function as a random oracle. While the random oracle model is a strong
assumption, it is standard in SNARK constructions and has no known practical attacks
when instantiated with strong hash functions.

Transparent Setup: Unlike SNARKSs such as Groth16 or PLONK[5], Nova and Spartan
do not require a trusted setup ceremony. The public parameters can be generated by anyone
deterministically from the circuit structure without relying on secret randomness that must
be destroyed. This eliminates the need for multi-party computation ceremonies, removes the

10



risk of toxic waste compromise, and improves the protocol’s decentralization properties. Any
party can independently generate or verify the public parameters for a given circuit shape.

Quantum Resistance: The protocol is not resistant to quantum computers. The security of
elliptic curve cryptography (Pallas/Vesta curves) and the discrete logarithm problem would
be broken by a sufficiently large quantum computer running Shor’s algorithm. This limita-
tion is shared with essentially all contemporary SNARK systems and blockchain protocols.
Should practical quantum computers emerge, the protocol would require migration to post-
quantum cryptographic primitives, though no such primitives currently offer comparable
performance for SNARK applications.

6.3 Attack Resistance

Proof Forgery Attacks: An adversary who does not possess the challenged sectors must
break either:
1. The soundness of the Nova/Spartan SNARK (computationally infeasible under dis-
crete log assumption)
2. The collision resistance of Poseidon (computationally infeasible for 128-bit security)
3. The binding property of Merkle trees (follows from collision resistance)

The multi-layered cryptographic construction ensures that breaking any single component
is insufficient; the adversary must break multiple independent hardness assumptions simul-
taneously.

Grinding Attacks on Challenge Selection: Miners could theoretically attempt to grind
block hashes to influence challenge selection. However, this attack is economically irrational:
the cost of discarding a valid block (forfeiting block rewards and transaction fees, worth
hundreds of thousands of dollars) vastly exceeds any benefit from biasing which storage
nodes are challenged. The protocol uses the current block hash directly as the entropy source,
as the economic disincentive against grinding is overwhelming.

Malleability Attacks: Each challenge has a unique, deterministic identifier computed via
domain-separated hashing. The inclusion of the challenge 1D, file root, tree depth, and node
ID in the hash input prevents an adversary from:

 Reusing a proof for a different challenge (different challenge ID)

» Reusing a proof for a different file (different root)

o Submitting another node’s proof (different node ID)

Replay Attacks: Challenge IDs include block height, ensuring challenges from different
blocks are distinguishable. The protocol tracks verified and failed challenges, preventing an
adversary from resubmitting old proofs for new challenges.

Randomness Quality: Challenge generation relies on the quality of the randomness
beacon. The protocol uses Bitcoin[6] block hashes as the entropy source, which inherit the
security properties of Bitcoin’s proof-of-work consensus:

e High entropy: Block hashes have 256 bits of entropy from mining randomness

¢ Unpredictable: Cannot be predicted before mining completes

o Economically unbiasable: Miner grinding attacks are economically irrational (block

rewards >> challenge manipulation value)
¢ Independent: Each block’s hash is independent of challenges

The HKDF expansion using domain-separated context information ensures that challenge
randomness for different blocks and different files is computationally independent, preventing
correlation attacks where an adversary might try to predict multiple challenges simulta-
neously.

11



6.4 Public Parameter Binding

Public parameters in Nova/Spartan proof systems are specific to the circuit shape (number
and structure of constraints). The Kontor protocol requires different parameters for different
configurations:

Parameter Determinism: For a given circuit shape (files per step, maximum file tree
depth, aggregated tree depth), the public parameters are deterministically generated. Any
party can independently compute identical parameters from the circuit structure. Parame-

ters are identified by the shape tuple: (k d d ) where k is files per step, d, is the

» “max> Yagg max

maximum file tree depth across challenges, and d,, is the aggregated ledger depth.

Parameter Flexibility: Different files may have different tree depths (different file sizes
yield different symbol counts). The protocol supports this by:
o Allowing multiple parameter sets for different depths
o Using padding to standardize depths within a batch (all challenged files in single proof
must have matching depths)
e Caching frequently used parameter sets to amortize generation costs

Generation Cost: Public parameter generation is computationally expensive (can take
minutes for complex circuits) but only needs to be performed once per shape. The refer-
ence implementation includes parameter caching to avoid regeneration. The deterministic
generation ensures all implementations compute identical parameters for identical shapes,
maintaining consensus.

6.5 Concrete Security Parameters

Security Level: The protocol targets approximately 128-bit security. The bottleneck is
the Pallas/Vesta curve cycle, which provides 126-bit security (254-bit prime fields). Other
components meet or exceed this level:

o SHA-256: 128-bit collision resistance (256-bit output)

e Poseidon: Configured for 128-bit security over Pallas field

This security level is sufficient for the protocol’s threat model, where attacks on the crypto-
graphic primitives are significantly more expensive than the economic value of individual
files.

Field Sizes:
o Pallas scalar field: p = 2254 + 45560315531419706090280762371685220353
o Vesta scalar field: ¢ = 2251 + 45560315531506369815346746415080538113
o Field element encoding: 31 bytes maximum (safe for 255-bit fields)

Proof Size: The compressed SNARK is approximately 12 kB regardless of the number of
challenged symbols. The full proof includes per-file metadata (challenge IDs, ledger indices,
ledger root) adding = 40 bytes per file. For typical proofs (k < 100), total size is ~ 16 kB;
for large operators (k = 1000), total size is ~ 52 kB.

Verification Time: Proof verification requires O(log?s) time where s is the number of
IVC steps (sectors challenged). For typical challenges (s a2 100), verification completes in
approximately 50 milliseconds on modern hardware, making on-chain verification by indexers
practical.

7 Cryptographic Primitives

Definition 1 (Collision-Resistant Hash Function). A function % : {0,1}* — {0,1}"
is collision-resistant if for all probabilistic polynomial-time adversaries A, the probability

Pr[(z,z") + A(1") :x £ 2’ N H(x) = H(z)] (7
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is negligible in k, the security parameter.

Definition 2 (Poseidon Hash Function). Poseidon[7] is an algebraic hash func-
tion  Hpoeidon - IE'; — F, designed for arithmetic circuits over prime field F,. For
this protocol, we use Poseidon over the Pallas and Vesta curve cycle with
field moduli pp,,s = 225* + 45560315531419706090280762371685220353 and gy, = 22°4 +
45560315531506369815346746415080538113.

Definition 3 (HKDF - HMAC-based Key Derivation Function). HKDF is a key
derivation function specified in RFC 5869 that expands a source of entropy into crypto-
graphically strong pseudorandom output. The protocol uses HKDFgp 956 With the following
signature:

HKDFgy 56 : {0, 1} x {0,1}* — {0, 1} (8)

where the first input is the initial keying material (IKM), the second is optional context
information, and ¢ is the desired output length in bits. For challenge generation, the protocol
uses IKM = current block hash and info = domain separator concatenated with block height.

Definition 3a (Unbiased Index Derivation). The function derive_index_unbiased : F, x
N — N maps a field element to an unbiased index in the range [0,n) for arbitrary n:
o If n is a power of two: extract the low log, n bits (exact, efficient)
e Otherwise: use rejection sampling - extract bits for next power of two, reject if > n,
rehash with counter until valid

This ensures uniform distribution over [0,n) without modulo bias. The rehashing uses
domain-separated Poseidon: h;,; = Hpogeidon(TAC hai)-

challenge Vi s

Definition 3b (Domain Separation Tags). The protocol uses domain separation to
prevent cross-protocol and cross-context hash collisions. Each hash operation includes a
unique tag (field element). The following tags are used throughout the protocol:

o TAG,. (value 1) - Poseidon tag for leaf encoding (symbol-to-field-element conversion)

o TAG, 4 (value 2) - Poseidon tag for hashing internal Merkle tree nodes

o TAG
sampling

. TAG

o TAG,, (value 8) - Poseidon tag for root commitment computation (binds file root
and depth)

challenge (value 6) - Poseidon tag for challenge index derivation and rejection

state (value 7) - Poseidon tag for state accumulator updates

o TAG altenge per file (Value 9) - Poseidon tag for combining challenge with file index in
multi-file proofs
o TAG altenge sa (Value 10) - SHA-256 domain tag for challenge identifier computation

Domain tags are small integer constants that prevent an adversary from constructing valid
proofs by reusing hash outputs from different contexts. The tagged hash construction

Hposeidon(TAG,2,5) = Hposei 400 (Hpomaon(zac, oY) USES 2-arity Poseidon to build 3-input hashes.

Definition 4 (Merkle Tree). A Merkle tree[8] T over leaves L = [{,, ..., £, ;] with hash
function # is a binary tree where:

+ Leaves are padded to n’ = 2% "1 (next power of two > n)

o Tree depth is d = log, n’

o Each leaf node contains H (TAG, ¢;)

« Each internal node contains H (TAG

children
e The root p = J.root commits to all leaves

left, right) where “left” and “right” are its

node>»

A Merkle proof =, for leaf ¢, is a path from leaf to root consisting of d sibling hashes, one
per level.
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Definition 5 (Reed-Solomon Erasure Code). A Reed-Solomon code[9] over GF(278)
with 31-byte symbols satisfies:
o Encodes data D = [do, ""dndm—l] to codeword C = [co, vy €
e Any ng,, symbols of C suffice to reconstruct D

N gatat Pparity — 1 ]

e
e Tolerates up to n symbol erasures or \_%’WJ symbol errors

parity
In the Kontor protocol, each symbol is a fixed 31-byte unit. The encoding operates at symbol
granularity: a codeword of 231 data symbols yields 24 parity symbols (10% overhead), all
31 bytes each.

8 Related Work

The Kontor storage protocol builds on foundational work in proofs of retrievability[10], [11]
and draws inspiration from several decentralized storage systems, each with distinct design
trade-offs.

Decentralized Storage Networks: Filecoin[12] uses proof-of-spacetime and proof-of-
replication to incentivize storage providers through a marketplace model with renewable
storage deals. Arweave[13] implements a “blockweave” structure with a one-time payment
model for permanent storage, though its economic sustainability depends on decreasing
storage costs over time. Storj[14] uses erasure coding and reputation systems but relies on
trusted auditing rather than zero-knowledge proofs. IPFS[15] provides content-addressed
storage but lacks native economic incentives, leading to data availability challenges[16] that
motivate the need for incentivized permanence guarantees.

Cryptographic Foundations: The protocol leverages recursive proof composition via
Nova[l] folding schemes, enabling efficient aggregation of multiple storage proofs into
compact SNARKs. The implementation uses the Poseidon[7] hash function optimized for
arithmetic circuits, Merkle trees[8] for cryptographic commitments, and Reed-Solomon[9],
[17] erasure coding for fault tolerance. The proof system is built on Spartan[18] for trans-
parent setup without trusted ceremonies.

Design Differentiators: Unlike Filecoin’s renewable deals or Arweave’s economic specu-
lation, Kontor provides perpetual storage guarantees through continuous emissions tied to
the broader smart contract economy. The use of Bitcoin block hashes[6] as an unbiasable
randomness beacon eliminates the need for on-chain random number generation. The pooled
stake model and dynamic challenge selection create strong incentives for honest storage while
maintaining verification efficiency through recursive proof aggregation.
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