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1 Introduction

Kontor Optimistic Consensus is a novel protocol for sub-block transaction confirmation 

in the Kontor Bitcoin metaprotocol [1] that preserves Bitcoin’s position as the ultimate 

source of truth for transaction finality. Kontor’s native currency, KOR, is staked in a virtual 

prediction market executed using a traditional BFT consensus algorithm to generate strong 

economic signals as to which transactions are very likely to confirm in upcoming Bitcoin 

blocks. This allows users to transact without waiting for Bitcoin block confirmations, with 

real-world latency on the order of one to two seconds.1

For stateful metaprotocols in general (as opposed to those that couple contract execution 

to the spending of particular Bitcoin transaction outputs), the ordering of transactions 

is semantically significant: two transactions that modify the same contract state produce 

different results depending on which executes first. But the order of the metaprotocol trans

actions within a Bitcoin block is arbitrary, as the whole block appears to the network at once. 

1Pipelined BFT protocols such as HotStuff [2] achieve 𝑂(𝑛) message complexity per decision, allowing 
batch intervals of ≈1s with modest validator sets. Users wait on average half a batch interval plus one 
network round-trip.
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Stateful metaprotocols traditionally delegate ordering to miners by executing transactions 

in their position within the Bitcoin block and using lexicographic ordering based on the 

block height and transaction index within the block.

In the Kontor system, the order of transactions within any batch expiry window is deter

mined by a quorum of KOR stakers, who produce signed batches of transactions that assign 

deterministic positions to Kontor transactions before Bitcoin confirmation. When stakers 

sign a batch containing transaction 𝑡, they are asserting that 𝑡 is valid and that no conflicting 

transaction will confirm on Bitcoin. If these transactions are not confirmed within the 

specified window, the stakers incur graduated penalties, and the transactions are simply 

rolled back as if a blockchain reorganization had occurred. Equivocation triggers loss of the 

staker’s entire stake. If staker consensus fails in any way, the protocol degrades gracefully: 

transactions still confirm on Bitcoin and append at block-end. This strictly dominates 

vanilla Nakamoto pre-confirmation as an acceptance signal: for stateful metaprotocols the 

within-block order is arbitrary anyway, so an explicit ordering rule is required, and batches 

provide a deterministic ordering before Bitcoin confirmation. Economic finality is market-

priced: each transaction specifies a minimum total bond requirement, and stakers are paid 

for that transaction only when the enclosing batch meets the requirement. Since Bitcoin 

already admits reorgs and conflict confirmations, the remaining rollback risk is not new 

in kind; optimistic consensus makes pre-confirmation assurance explicit, measurable, and 

economically accountable.

2 Model

2.1 State-Machine Replication

A blockchain operates by state-machine replication: a Byzantine fault–tolerant consensus 

protocol, such as Nakamoto Consensus [3], enables untrusted entities to agree on a log of 

events, which are executed deterministically to derive shared state. A metaprotocol extends 

this model with a second state machine that parses additional data from the blockchain and 

derives additional state.

2.2 Actors

• Users submit Kontor transactions. Users broadcast to both the staker set (for 

ordering) and to the Bitcoin network (for finality).

• Stakers validate transactions, produce batches, and sign orderings. Stakers bond 

KOR stake that is subject to slashing for protocol violations. Stakers are paid Kontor 

execution fees (KOR) when batched transactions finalize.

• Recipients query for batch inclusion, store signed batches as proofs, and accept 

optimistic confirmations.

2.3 Assumptions

(a) Partial synchrony [4]: Messages between honest stakers arrive within bound Δ 

after GST.

(b) Honest supermajority: Honest stakers hold > 2
3  of total stake.

(c) Bitcoin liveness: Bitcoin confirms fee-paying transactions.

(d) Bitcoin safety: With 𝑘 confirmations, the probability of blockchain reorgs is negli

gible.

2.4 Threat Model

We consider a Byzantine adversary 𝒜︀ controlling up to 1/3 of total stake.
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Adversary capabilities:

• Control Byzantine stakers (sign arbitrary messages, equivocate, or stay silent)

• Delay messages up to bound Δ after GST

• Observe all network traffic

• Coordinate across all Byzantine stakers

• Adaptively corrupt stakers up to the 1/3 bound, subject to unbonding delay

Adversary limitations:

• Cannot forge signatures (computational assumption)

• Cannot violate Bitcoin consensus

• Cannot control ≥ 1/3 stake without detection and slashing

2.4.1 Attack Vectors

Attack Description Defense

Double-spend Conflicting Bitcoin tx con

firms

Kontor rollback

RBF replacement User replaces batched tx via 

RBF

UTXO locking; user eats fee

Equivocation Staker signs conflicting 

batches

Quorum intersection detects; 

slashing

Censorship Stakers refuse to include tx User bypasses via Bitcoin

Signature griefing Stakers batch tx with invalid 

Bitcoin signature

User validates witness

Low-fee / unconfirmable batch Stakers include txs unlikely 

to confirm before expiry

Fee escrow; expiry penalties; 

recipients treat optimistic 

confirmation as conditional

Low-bond batch Quorum signs but bonds lit

tle stake

Per-tx minimum bond re

quirement 𝐾min(𝑡) with pay

ment-gated rewards; stakers 

compete to clear higher 𝐾min 

flow

Bond double-counting Staker claims more bond 

than stake across active 

batches

Bond exposure invariant en

forced in batch validity

Liveness Stakers halt batch production Graceful degradation to Bit

coin

Long-range Old keys used after unbond

ing

Unbonding delay

Sybil Many low-stake identities Minimum stake

2.4.2 Security Goals

(a) Safety: No two valid batches contain conflicting transactions (under > 2/3 honest 

stake).

(b) Liveness: Valid transactions eventually finalize (under partial synchrony).

(c) Accountability: Any safety violation is attributable to ≥ 1/3 stake with crypto

graphic evidence.

(d) Incentive compatibility: Honest behavior is a dominant strategy for rational 

stakers.
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2.5 Notation and Parameters

The following table summarizes notation and consensus-specific parameters. For the com

plete protocol parameter set, see the Appendix of the Kontor Whitepaper.[1]

Symbol Meaning Suggested

𝒮︀ Set of stakers {𝑠1, …, 𝑠𝑛} (epoch-dependent) —

𝜎𝑠 Stake of staker 𝑠 —

Σ Total stake: ∑𝑠 𝜎𝑠 —

𝜎𝑠,𝑏 Stake bonded (risked) by staker 𝑠 on batch 𝑏 —

Σsigners(𝑏) Total stake of signers of batch 𝑏: ∑𝑠∈𝑏.signers 𝜎𝑠 —

Σbond(𝑏) Total bonded stake on batch 𝑏: ∑𝑠∈𝑏.signers 𝜎𝑠,𝑏 —

𝑡, 𝑡′ Transactions —

𝑏 Batch —

ℎ Bitcoin block height —

𝑓ord(𝑡) Ordering fee for transaction 𝑡 —

𝐾min(𝑡) Transaction-specified minimum total bonded stake required for re

wards on 𝑡
—

⊥ Undefined / null value —

:≡ Definitional equality —

‖ Concatenation —

[𝑋] List of type 𝑋 —

{𝑋} Set of type 𝑋 —

𝑋 → 𝑌 Map from 𝑋 to 𝑌 —

𝑛 Number of stakers 21–100

𝑞 Quorum threshold (stake fraction) 2/3

𝑊 Expiry window (blocks) 12

𝐵 Target transactions per batch ~100

𝑘 Bitcoin finality depth (confirmations) 6

Δ Network synchrony bound —

𝜒consensus Fraction of emissions to consensus stakers 0.10

𝜎min Minimum stake to become a staker 10M KOR

𝜆bond,min Minimum bond as fraction of stake when signing a batch 0.001

𝜆equiv Equivocation penalty (fraction of stake) 1.00

𝜆invalid Invalid batch penalty (fraction of stake) 0.10

𝜆conflict Conflict penalty (fraction of stake) 0.10

𝜎expiry Expiry base penalty per transaction 10K KOR

𝜆cap Max bonded stake lost per batch 0.01

𝛽slash Slash burn rate (rest to reporter) 0.50

𝛽fee Service fee burn rate (ordering and bundling) 0.50
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2.6 Protocol Objects

2.6.1 Primitive Types

We define the following primitive types:

Type Representation Description

TxId bytes32 Transaction identifier (hash of signed transaction)

StakerId bytes32 Staker identifier (public key hash)

Signature bytes64 ECDSA or Schnorr signature

BlockHash bytes32 Bitcoin block hash

BlockHeight ℕ Bitcoin block height

BatchId ℕ Monotonically increasing batch identifier

Epoch ℕ Staker set epoch number

Index ℕ Position within batch

Stake ℕ Stake amount (in base units)

2.6.2 Transactions

A Kontor transaction wraps a Bitcoin transaction with application-specific payload:

Transaction ≔

{



id : TxId

inputs : {UTXO}
outputs : [Output]
witness : Bytes
payload : KontorPayload

(1)

where {𝑋} denotes a set of 𝑋 and [𝑋] denotes a list of 𝑋.

Conflict Relation: Two transactions conflict if they spend at least one common input:

Conflict(𝑡1, 𝑡2) :≡ 𝑡1.inputs ∩ 𝑡2.inputs ≠ ∅ (2)

This captures Bitcoin’s double-spend semantics: conflicting transactions cannot both confirm 

on Bitcoin.

2.6.3 Batches

A batch is an ordered collection of transactions with quorum attestation:

Batch ≔

{






batch_id : BatchId

epoch : Epoch
chain_tip : BlockHash
expiry : BlockHeight
txs : [Transaction]
signers : [StakerId]
bonds : [Stake]
signatures : [Signature]

(3)

The bonds list is aligned with signers: b.bonds[i] is the amount risked by b.signers[i] on 

batch 𝑏. Formally, for staker 𝑠 = 𝑏.signers[𝑖]:

𝜎𝑠,𝑏 :≡ 𝑏.bonds[𝑖] (4)

Bond collateralization: Bonds are stake-at-risk declarations. The protocol enforces that 

the total stake-at-risk implied by a staker’s bonds on unresolved batches is fully collateralized 

by their total stake.
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BondExposure(𝑠, state) :≡ ∑
𝑏∈ ActiveBatches(state):𝑠∈𝑏.signers

𝜎𝑠,𝑏 (5)

ActiveBatches(state) ≔ {𝑏 ∈ state.batches : ∃𝑡 ∈ 𝑏.txs : ¬ IsResolved(𝑡, state)} (6)

Bond exposure invariant: A batch is valid only if each signer remains fully collateralized 

after adding this batch’s bond:

∀𝑠 ∈ 𝑏.signers : BondExposure(𝑠, state) + 𝜎𝑠,𝑏 ≤ 𝜎𝑠 (7)

This prevents over-promising: a staker cannot advertise more maximum per-batch stake-at-

risk across unresolved batches than they actually have.

Batch sequence and dependencies: Batches are decisions of a BFT state-machine repli

cation protocol and therefore form a single ordered log, indexed by batch_id. Batches may 

be produced faster than Bitcoin finalizes earlier batches; as a result, it is normal for nodes 

to observe batches 𝑏, 𝑏 + 1, 𝑏 + 2, … while the Bitcoin outcomes for earlier positions are still 

unresolved. A batch can be structurally valid and have a valid quorum signature regardless of 

whether earlier batches ultimately expire or are rolled back; however, transaction execution 

is conditional on the resolution of all prior positions (see Execution Blocking). In particular, 

if a transaction at some earlier position is rolled back due to a Bitcoin-confirmed conflict, all 

subsequent positions—including those in later batches—are rolled back as well (cascading 

rollback).

The chain_tip field commits the batch to a specific Bitcoin state. Stakers sign only if all 

transaction inputs are unspent as of that block. This prevents using a stale batch to double-

spend after Bitcoin confirmation: once a conflicting transaction confirms on Bitcoin, the 

chain tip advances and the batch is invalidated.

Invariants:

• |𝑏.signers| = |𝑏.bonds| = |𝑏.signatures| — each signer provides one bond + one signa

ture

• ∀𝑖 ≠ 𝑗 : ¬ Conflict(𝑏.txs[𝑖], 𝑏.txs[𝑗]) — no internal conflicts

• 𝑏.txs defines a total order on included transactions

• ∀𝑡 ∈ 𝑏.txs : InputsUnspent(𝑡, 𝑏.chain_tip) — all inputs unspent at chain tip

where InputsUnspent(𝑡, ℎ) :≡ ∀ input ∈ 𝑡.inputs : ¬∃tx′ ∈ TxsConfirmedBy(ℎ) : input ∈
tx′.inputs

and TxsConfirmedBy(ℎ) ≔ {𝑡 : state.bitcoin_confirmed[𝑡.id] ≤ HeightOf(ℎ)} is the set of 

transactions confirmed at or before block ℎ.

Position: A transaction’s position is its unique location in the ordering:

Position ≔ (BatchId, Index) (8)

Position(𝑡, 𝑏) ≔ (𝑏.batch_id, IndexOf(𝑡, 𝑏.txs)) (9)

Positions are totally ordered lexicographically: (𝑏1, 𝑖1) < (𝑏2, 𝑖2) ⇔ 𝑏1 < 𝑏2 ∨ (𝑏1 = 𝑏2 ∧ 𝑖1 <
𝑖2).

2.6.4 Staker Set

The staker set defines the active validators for an epoch:

StakerSet ≔ {epoch : Epoch
stakers : StakerId → Stake (10)

Total Stake:
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TotalStake(𝑆) ≔ ∑
𝑠∈ dom(𝑆.stakers)

𝑆.stakers[𝑠] (11)

Quorum Stake: The minimum stake required for a valid quorum:

QuorumStake(𝑆) ≔ ⌈2
3

× TotalStake(𝑆)⌉ (12)

Valid Quorum: A set of signers forms a valid quorum if their combined stake meets the 

threshold:

ValidQuorum(signers, 𝑆) :≡ ∑
𝑠∈ signers

𝑆.stakers[𝑠] ≥ QuorumStake(𝑆) (13)

Quorum Intersection Property: Any two valid quorums overlap in at least 1
3  of total 

stake:

∀𝑄1, 𝑄2 valid quorums : ∑
𝑠∈𝑄1∩𝑄2

𝑆.stakers[𝑠] ≥ 1
3

⋅ TotalStake(𝑆) (14)

This property is fundamental to safety: if honest stakers hold > 2
3  stake, every two quorums 

share at least one honest staker.

2.6.5 Signature Verification

Batch Digest: The canonical message to sign for a batch:

BatchDigest(𝑏) ≔ Hash(𝑏.batch_id ‖ 𝑏.epoch ‖ 𝑏.chain_tip
‖ 𝑏.expiry ‖ MerkleRoot(𝑏.txs))

(15)

where ‖ denotes concatenation and MerkleRoot computes the Merkle root of transaction IDs.

Bonded Digest: Each signer commits to their chosen bond amount in the signed message:

BondedDigest(𝑏, 𝛽) ≔ Hash(BatchDigest(𝑏) ‖ 𝛽) (16)

where 𝛽 is the bond value.

Signature Validity:

ValidSignature(sig, signer, 𝛽, 𝑏) :≡ Verify(sig, BondedDigest(𝑏, 𝛽), PublicKey(signer))(17)

Witness Validity: A transaction has a valid witness if its signature data correctly autho

rizes spending of all inputs:

ValidWitness(𝑡) :≡ ∀ input ∈ 𝑡.inputs : VerifyScript(input.scriptPubKey, 𝑡, 𝑡.witness)(18)

Batch Signatures: A batch has valid signatures if:

ValidBatchSignatures(𝑏, 𝑆) :≡ |𝑏.signers| = |𝑏.bonds| = |𝑏.signatures|
∧ ∀𝑖 : ValidSignature(𝑏.signatures[𝑖], 𝑏.signers[𝑖], 𝑏.bonds[𝑖], 𝑏)
∧ ∀𝑖 : 𝑏.bonds[𝑖] ≥ 𝜆bond,min ⋅ 𝑆.stakers[𝑏.signers[𝑖]]

∧ 𝑏.bonds[𝑖] ≤ 𝑆.stakers[𝑏.signers[𝑖]]
∧ ∀𝑠 ∈ 𝑏.signers : 𝑠 ∈ dom(𝑆.stakers)
∧ ValidQuorum(𝑏.signers, 𝑆)

(19)

2.6.6 Batch Validity

A batch is valid if it satisfies structural constraints, has valid quorum signatures, and its 

chain tip is on the canonical chain:
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ValidBatch(𝑏, 𝑆, state) :≡ 𝑏.epoch = 𝑆.epoch
∧ 𝑏.chain_tip ∈ state.canonical_history
∧ ValidBatchSignatures(𝑏, 𝑆)
∧ ∀𝑠 ∈ 𝑏.signers : BondExposure(𝑠, state) + 𝜎𝑠,𝑏 ≤ 𝜎𝑠

∧ ∀𝑡 ∈ 𝑏.txs : ValidTransaction(𝑡, state)
∧ ∀𝑖 ≠ 𝑗 : ¬ Conflict(𝑏.txs[𝑖], 𝑏.txs[𝑗])

(20)

Transaction Validity: A transaction is valid if it passes all validation checks:

ValidTransaction(𝑡, state) :≡ InputsUnspent(𝑡, state)
∧ ValidPayload(𝑡.payload)
∧ ValidWitness(𝑡)

(21)

Fee policy: Whether a transaction is worth batching depends on its Bitcoin fee rate 

relative to current network conditions. This is not a consensus-validity rule: it is a local 

policy decision by stakers/recipients.

Minimum bond requirement: Each transaction specifies a minimum total bond require

ment 𝐾min(𝑡). This is not a batch validity rule; it is a payment gating rule for ordering 

rewards (see Staker Rewards).

2.6.7 Global State

The global protocol state separates Bitcoin state from ordering state:

GlobalState ≔

{




block_height : BlockHeight

bitcoin_confirmed : TxId → BlockHeight
canonical_history : {BlockHash}
batches : [Batch]
staker_sets : Epoch → StakerSet
kontor_state : KontorState

(22)

The kontor_state field contains application state (account balances, contract storage, etc.) 

computed deterministically from executed transactions. The canonical_history field tracks 

all block hashes that were part of the canonical Bitcoin chain (for reorg detection). Trans

action validation checks UTXOs against this state.

Block Height Lookup: We define HeightOf : BlockHash → BlockHeight as the lookup 

function that returns the height of a block given its hash. This is well-defined for any block 

in canonical_history.

3 Protocol

3.1 Operations

3.1.1 Transaction Submission

A user submits a transaction by broadcasting to all stakers:

Algorithm 1: Transaction Submission

1: function Submit(tx) 
2: for 𝑠 ∈ 𝒮︀ do
3: result ← Send(tx, 𝑠)
4: end
5: end
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3.1.2 Transaction Validation

Stakers validate transactions before adding them to the pending pool:

Algorithm 2: Transaction Validation

1: function Validate(tx, state) 
2: ▷ Check UTXO validity
3: if ∃ input ∈ tx.inputs : ¬ Unspent(input, state) then
4: return false
5: end
6:
7: ▷ Check payload validity
8: if ¬ ValidPayload(tx.payload) then
9: return false
10: end
11:
12: ▷ Check Bitcoin witness validity
13: if ¬ ValidWitness(tx) then
14: return false
15: end
16:
17: ▷ Check not already batched
18: if ∃𝑏 ∈ state.batches : tx ∈ 𝑏.txs then
19: return false
20: end
21:
22: ▷ Check no conflicts with batched transactions
23: if ∃𝑏 ∈ state.batches : ∃𝑡′ ∈ 𝑏.txs : Conflict(tx, 𝑡′) then
24: return false
25: end
26: return true
27: end

The validation rules ensure:

(a) UTXO validity: All inputs are unspent in current Kontor state

(b) Payload validity: The Kontor payload parses and is well-formed

(c) Witness validity: Bitcoin signatures and scripts are valid (so batched transactions 

can actually confirm on Bitcoin)

(d) Fee policy: Stakers and recipients apply local policy based on Bitcoin miner fee 

rate (e.g., rejecting transactions unlikely to confirm before expiry)

(e) Uniqueness: Transaction not already batched

(f) No conflicts: No existing batched transaction conflicts

3.1.3 Batch Formation

Stakers periodically form batches via BFT consensus. A batch is an ordered list of non-

conflicting transactions with a committed chain tip and expiry block. The leader selects 

transactions from the pending pool (prioritized by fee, filtered for conflicts), constructs a 

proposal, and initiates BFT voting. Upon quorum (> 2
3  stake), the batch is signed and 

published. Each batch assigns deterministic positions to transactions before Bitcoin confir

mation, enabling sub-block finality.

Algorithm 3: Batch Formation

1: function FormBatch(pending, state) 
2: ▷ Select non-conflicting transactions from pending pool
3: txs ← Select(pending, MaxBatchSize)
4:
5: ▷ Construct batch proposal
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6: batch ← (batch_id : NextBatchId(state), epoch : CurrentEpoch(state), chain_tip :
LatestBlockHash(state), expiry : state.block_height + 𝑊, txs : txs, signers :
[], bonds : [], signatures : [])

7:
8: ▷ Run BFT consensus to get quorum signatures
9: return BFTConsensus(batch)
10: end

The Select function chooses transactions from the pending pool, respecting the constraint 

that no two selected transactions conflict.

3.1.4 Batch Signing

Each staker in the quorum signs valid batch proposals:

Algorithm 4: Batch Signing

1: function SignBatch(batch, staker) 
2: if ValidBatchProposal(batch) then
3: bond ← ChooseBond(batch, staker)
4: sig ← Sign(BondedDigest(batch, bond), PrivateKey(staker))
5: return (staker.id, bond, sig)
6: end
7: return ⊥
8: end

Honest Staker Rule: An honest staker signs a batch proposal only if:

(a) The batch is well-formed

(b) The chain_tip is on the canonical chain and all transaction inputs are unspent as of 

that block

(c) No transaction in the batch conflicts with any previously-signed batch

(d) The batch epoch matches the staker’s current epoch

3.1.5 Batch Publication

Signed batches are broadcast to all nodes:

Algorithm 5: Batch Publication

1: function PublishBatch(batch) 
2: for 𝑛 ∈ Nodes do
3: result ← Send(batch, 𝑛)
4: end
5: end

3.1.6 Recipient Verification

Recipients verify batches before accepting optimistic confirmations:

Algorithm 6: Optimistic Confirmation Verification

1: function VerifyOptimisticConfirmation(tx, batch, state) 
2: ▷ Verify transaction is in batch
3: if tx ∉ batch.txs then
4: return false
5: end
6:
7: ▷ Verify batch has valid quorum signatures
8: if ¬ ValidBatch(batch, state.staker_sets[batch.epoch], state) then
9: return false
10: end
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11:
12: ▷ Verify batch has not expired
13: if batch.expiry ≤ state.block_height then
14: return false
15: end
16:
17: ▷ Verify chain_tip is on canonical chain and recent
18: if batch.chain_tip ∉ state.canonical_history ∨ HeightOf(batch.chain_tip) <

state.block_height − 𝑊  then
19: return false
20: end
21:
22: ▷ Verify Bitcoin transaction signatures are valid
23: for 𝑡 ∈ batch.txs do
24: if ¬ ValidWitness(𝑡) then
25: return false
26: end
27: end
28: return true
29: end

Recipients should store the signed batch locally as evidence of the ordering.

3.1.7 Bitcoin Broadcast

Users broadcast transactions to Bitcoin independently:

Algorithm 7: Bitcoin Broadcast

1: function BroadcastBitcoin(tx) 
2: result ← BitcoinBroadcast(tx)
3: end

The user controls when and whether to broadcast. This preserves UTXO sovereignty.

3.2 Conflict Resolution

Bitcoin is the ultimate arbiter of transaction validity. When a Bitcoin-confirmed transaction 

conflicts with a batched transaction (e.g., a double-spend or RBF replacement), the batched 

transaction is rolled back and stakers are slashed. This algorithm handles three cases: (1) 

the batched transaction itself confirms—finalize it at its assigned position, (2) a conflicting 

transaction confirms—trigger cascading rollback of the batched transaction and all subse

quent positions, or (3) an unbatched transaction confirms—append it at block-end.

When a transaction 𝑡𝐵 confirms on Bitcoin at height ℎ:

Algorithm 8: Conflict Resolution

1: function Resolve(𝑡𝐵, ℎ, state) 
2: ▷ Check if this is the batched transaction confirming
3: if WasBatched(𝑡𝐵, state) then
4: ▷ Batched transaction confirmed; finalize at its batch position
5: result ← Finalize(𝑡𝐵, ℎ)
6: return 
7: end
8:
9: ▷ Find any conflicting batched transaction
10: 𝑡𝐴 ← FindConflictingBatchedTx(𝑡𝐵, state)
11:
12: if 𝑡𝐴 ≠ ⊥ then
13: ▷ Conflicting tx confirmed; rollback 𝑡𝐴 and all subsequent txs
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14: result ← CascadingRollback(𝑡𝐴, state)
15: end
16:
17: ▷ Append Bitcoin-Confirmed tx at block-end
18: result ← Append(𝑡𝐵, ℎ)
19: end

Cascading rollback: When transaction 𝑡𝐴 at position (𝑏, 𝑖) is rolled back, all transactions 

at positions ≥ (𝑏, 𝑖) must also be rolled back. State changes cannot be selectively undone—

execution is sequential, and later transactions may depend on earlier ones.

3.2.1 Block-End Ordering

Unbatched transactions are appended at “block-end” with a deterministic tie-breaker.

Batched transactions have positions of the form (BatchId, Index). Unbatched transactions 

use a separate ordering domain: for an unbatched transaction confirmed at height ℎ with 

index 𝑖 within that block, its position is (BlockEnd, ℎ, 𝑖).

Global ordering: Execution proceeds in two phases: (1) all batched transactions execute in 

batch order (by batch_id, then index within batch), then (2) unbatched transactions execute 

ordered by (ℎ, 𝑖) where ℎ is the Bitcoin confirmation height and 𝑖 is the transaction’s index 

within block ℎ. This ensures all indexers derive identical ordering from Bitcoin data alone.

𝑡1 → 𝑡5 → 𝑡3 → 𝑡2 → 𝑡4

𝑡1, 𝑡5

Batchℎ,𝑛

𝑡3

Batchℎ,𝑛+1

… 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5

Blockℎ+𝑖

Figure 1. Execution Order: Batched transactions (Batchℎ,𝑛, 

Batchℎ,𝑛+1) execute first in batch order, followed by unbatched transac

tions (gray) at block-end.

3.2.2 Conflict Search

Algorithm 9: Conflict Search

1: function FindConflictingBatchedTx(𝑡𝐵, state) 
2: for 𝑏 ∈ state.batches do
3: for 𝑡𝐴 ∈ 𝑏.txs do
4: if Conflict(𝑡𝐴, 𝑡𝐵) then
5: return 𝑡𝐴
6: end
7: end
8: end
9: return ⊥
10: end

3.2.3 RBF Handling

Bitcoin’s Replace-By-Fee (RBF) mechanism allows users to replace unconfirmed transactions 

with higher-fee alternatives. This creates an attack vector: a user could submit a transaction, 

receive optimistic confirmation via batching, then broadcast an RBF replacement before 

Bitcoin confirmation.

UTXO Locking: The protocol prevents this by treating batched UTXOs as spent for 

validation purposes. The “No conflicts” validation rule (Section 3.1.2) rejects any Kontor 

transaction that spends inputs already claimed by a pending batched transaction. Indexers 
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must process batches (which propagate via the staker network) in addition to Bitcoin blocks 

to maintain consistent state; batch signatures make them self-authenticating.

If a user broadcasts an RBF replacement on Bitcoin after their transaction has been batched:

• The batched transaction will fail to confirm (the replacement spends the same inputs)

• The batched transaction expires

• The user loses their Kontor execution fee (KOR)

• No rollback occurs (there was no optimistic execution of the expired transaction)

This places the cost of RBF replacement squarely on the user who initiated it, rather than 

on stakers or counterparties.

Signature Griefing Defense: UTXO locking would be unsafe if batches could include 

transactions with invalid Bitcoin signatures: such transactions would never confirm, but 

could lock UTXOs until expiry. Kontor prevents this by making ValidWitness(𝑡) part of 

transaction and batch validity. Invalid-witness transactions are rejected and do not trigger 

UTXO locking. Recipients may still validate witnesses independently before accepting an 

optimistic confirmation.

3.2.4 Cross-Batch Conflict Tiebreaker

Under honest majority, safety prevents conflicting transactions in different batches. This 

tiebreaker handles Byzantine scenarios where safety is violated:

Algorithm 10: Cross-Batch Tiebreaker

1: function Tiebreaker(𝑡𝐴, 𝑡𝐵) 
2: (𝑏𝐴, 𝑖𝐴) ← Position(𝑡𝐴)
3: (𝑏𝐵, 𝑖𝐵) ← Position(𝑡𝐵)
4:
5: if 𝑏𝐴 < 𝑏𝐵 then
6: return 𝑡𝐴
7: end
8: if 𝑏𝐵 < 𝑏𝐴 then
9: return 𝑡𝐵
10: end
11:
12: ▷ Same batch: use index
13: if 𝑖𝐴 < 𝑖𝐵 then
14: return 𝑡𝐴
15: end
16: return 𝑡𝐵
17: end

This deterministic tiebreaker ensures all nodes resolve conflicts identically, even in the 

presence of Byzantine behavior.

3.3 State Execution

A transaction progresses through distinct states before execution. Understanding these states 

is critical to the protocol’s semantics.

3.3.1 Transaction States

State Definition Guarantee

Batched Included in a signed batch with a 

position

Economic finality: ≥ 2/3 stake at

tests to ordering

Bitcoin-Confirmed Confirmed on Bitcoin Bitcoin finality (probabilistic)

Batch-Confirmed Batched AND Bitcoin-Confirmed Full finality: ordering + Bitcoin

13



State Definition Guarantee

Expired Batch expiry passed without confir

mation

Stakers penalized; may re-batch

Rolled back Conflicting tx confirmed on Bitcoin Stakers slashed (unless griefing 

proof)

3.3.2 Execution Order

Kontor state executes strictly by position:

Algorithm 11: State Execution

1: function ExecuteState(state) 
2: ▷ Collect all finalized transactions
3: pending ← CollectFinalizedTxs(state)
4:
5: ▷ Sort by position for deterministic ordering
6: ordered ← SortByPosition(pending)
7:
8: ▷ Apply transactions in order
9: for tx ∈ ordered do
10: result ← ApplyToKontorState(tx, state.kontor_state)
11: end
12: end

3.3.3 Position Ordering

Algorithm 12: Position Ordering

1: function SortByPosition(txs) 
2: ▷ Sort transactions lexicographically by (batch_id, index)
3: return Sort(txs, (𝑡𝐴, 𝑡𝐵) ⇒ Position(𝑡𝐴) < Position(𝑡𝐵))
4: end

3.3.4 Finalization Criteria

A batched transaction is Batch-Confirmed when it is both batched and the same trans

action confirmed on Bitcoin:

IsBatchConfirmed(𝑡, state) :≡ WasBatched(𝑡, state)
∧ IsBitcoinConfirmed(𝑡, state)
∧ ¬ IsRolledBack(𝑡, state)

(23)

IsBitcoinConfirmed(𝑡, state) :≡ 𝑡.id ∈ state.bitcoin_confirmed (24)

IsRolledBack(𝑡, state) :≡ WasBatched(𝑡, state)
∧ ∃𝑡′ ∈ state.bitcoin_confirmed : 𝑡′ ≠ 𝑡 ∧ Conflict(𝑡, 𝑡′)

(25)

3.3.5 Execution Blocking

Transactions wait for all prior positions to resolve:

CanExecute(𝑡, state) :≡ let (𝑏, 𝑖) = Position(𝑡)
∧ IsBatchConfirmed(𝑡, state)
∧ ∀𝑝 ∈ PriorPositions(𝑏, 𝑖) : IsResolved(𝑝, state)

(26)
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IsResolved(𝑝, state) :≡ let 𝑡 = TxAt(𝑝, state)
∧ (IsBatchConfirmed(𝑡, state)
∨ IsExpired(𝑡, state)
∨ IsRolledBack(𝑡, state))

(27)

This ensures that execution proceeds in position order, maintaining determinism even as 

transactions confirm out of order on Bitcoin.

3.3.6 Auxiliary State Functions

The following functions complete the state execution semantics:

Prior Positions: All positions that must resolve before (𝑏, 𝑖):

PriorPositions(𝑏, 𝑖) ≔ {(𝑏′, 𝑖′) : 𝑏′ < 𝑏} ∪ {(𝑏, 𝑖′) : 𝑖′ < 𝑖} (28)

Transaction Lookup: Retrieve transaction at a given position:

TxAt((𝑏, 𝑖), state) ≔ state.batches[𝑏].txs[𝑖] (29)

Batch Lookup: Find the batch containing a transaction:

BatchOf(𝑡, state) ≔ 𝑏 where 𝑡 ∈ 𝑏.txs for some 𝑏 ∈ state.batches (30)

Expiration: A batched transaction expires if its batch expiry passes without Bitcoin 

confirmation:

IsExpired(𝑡, state) :≡ let 𝑏 = BatchOf(𝑡, state)
∧ ¬ IsBitcoinConfirmed(𝑡, state)
∧ ¬ IsRolledBack(𝑡, state)
∧ state.block_height ≥ 𝑏.expiry

(31)

Batched Check: Whether a transaction was included in any batch:

WasBatched(𝑡, state) :≡ ∃𝑏 ∈ state.batches : 𝑡 ∈ 𝑏.txs (32)

3.4 Implementation Requirements

3.4.1 Epoch Transitions

Epochs partition time into periods with fixed staker sets. Any epoch mechanism must satisfy:

Duration: Epochs have bounded duration 𝐸min ≤ |𝑒| ≤ 𝐸max in Bitcoin blocks.

Determinism: Epoch boundaries are deterministically computable from Bitcoin state.

Overlap: For safety across transitions, batches signed in epoch 𝑒 remain valid for 𝑊  blocks 

into epoch 𝑒 + 1, ensuring pending batches can finalize.

Unbonding delay: Stakers must wait ≥ 1 epoch after requesting unbonding before with

drawal. This prevents long-range attacks where an attacker unbonds, then uses old keys to 

sign conflicting batches.

Quorum continuity: Honest stake > 2
3  must hold in every epoch. Staker set changes must 

preserve this invariant.

3.4.2 Timing Parameters

Timing parameters must satisfy the following relationships:

BatchInterval < 𝑊
2

(33)

where 𝑊  is the expiry window. This ensures transactions have time to confirm after batching.
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UnbondingDelay > 𝑊 (34)

Stakers remain slashable for the full expiry window of any batch they signed.

Confirmation timing:

OptimisticConfirmationTime ≈ BatchInterval + Δ (35)

FinalConfirmationTime ≈ OptimisticConfirmationTime + 𝑘 × 𝛽 (36)

where 𝛽 ≈ 600s is Bitcoin block time and 𝑘 is finality depth.

3.4.3 BFT Consensus

The protocol requires any BFT consensus satisfying:

Safety: No two conflicting batches receive quorum signatures (under > 2
3  honest stake).

Liveness: Valid transactions are eventually included in batches (under partial synchrony).

Accountability: Safety violations produce cryptographic evidence attributable to ≥ 1
3  

stake.

Stake-weighted voting: Votes and quorums are weighted by each staker’s total stake 𝜎𝑠 

in the epoch staker set. The per-batch bond 𝜎𝑠,𝑏 does not affect BFT voting power; it only 

determines (i) how consensus emissions and batch fees are paid, and (ii) how much stake is at 

risk for non-fatal batch failures. This separation preserves standard BFT safety assumptions 

while letting the market price economic finality.

Minimum stake: The minimum stake 𝜎min bounds the number of consensus participants 

and mitigates Sybil attacks on the network layer. It is orthogonal to bond sizing: even a 

high-stake staker can choose to bond less on a particular batch. Transactions express desired 

economic finality by setting 𝐾min(𝑡), and stakers must clear those thresholds to earn rewards.

Standard protocols (PBFT [5], HotStuff [2], Tendermint [6]) satisfy these properties. The 

choice is an implementation detail.

3.4.4 Network Layer

Batch propagation: Signed batches reach all honest nodes within bounded time Δ.

Batch retrieval: Any staker can serve batch data; quorum signatures make batches self-

authenticating.

Fraud proofs: If stakers withhold a signed batch, the batch in the recipient’s possession is 

the fraud proof.

3.5 Protocol Flows

The normal protocol flow:

(a) User submits transaction 𝑡 to stakers

(b) Stakers validate 𝑡 and include it in the next batch via BFT consensus

(c) Batch 𝑏 is signed by a quorum (≥ 2
3  stake) and published

(d) Transaction 𝑡 receives position (𝑏.batch_id, 𝑖) in the global ordering

(e) User broadcasts 𝑡 to Bitcoin

(f) When 𝑡 confirms on Bitcoin, 𝑡 becomes Batch-Confirmed; if a conflict confirms, 𝑡 is 
rolled back

If the staker set fails, users can still transact via Bitcoin directly.
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Figure 2. Normal Protocol Flow

3.5.1 Outcome Matrix

Scenario Kontor Payload Stakers User

Batched, confirms Batch-Confirmed at posi

tion (𝑏, 𝑖)
Paid Success

Not batched, confirms Appended at block-end N/A Success (no ordering)

Batched 𝑡𝐴, conflicting 𝑡𝐵 

confirms

𝑡𝐴 + subsequent txs rolled 

back

Slashed Double-spend; rollback

Batched, expires Expired Not paid May re-batch

4 Incentives & Economics

4.1 Stake Requirements

Consensus stakers must lock KOR to participate. This stake:

• Provides the capital backing for ordering guarantees

• Creates skin-in-the-game for honest behavior

• Enables slashing for protocol violations

Consensus staking is part of Kontor’s unified staking model: the same KOR can simulta

neously back storage commitments, consensus participation, and bridge operations. An 

operator’s total stake must exceed the sum of their commitments across all roles; slashing 

in one role affects capacity in all others. (See the Kontor Whitepaper. [1])

4.1.1 Minimum Stake

𝜎𝑠 ≥ 𝜎min (37)

The minimum stake 𝜎min bounds the maximum number of stakers. With 1B total KOR 

supply and the suggested 𝜎min, each staker would lock at least 1% of supply, implying a 

theoretical maximum of 100 stakers.

4.1.2 Staker Set

The set of consensus stakers at epoch 𝑒 is denoted 𝒮︀. Each staker 𝑠 ∈ 𝒮︀ has stake 𝜎𝑠 ≥ 𝜎min.

Total consensus stake: Σ ≝ ∑𝑠∈𝒮︀ 𝜎𝑠
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4.2 Staker Rewards

Stakers earn revenue from two sources: protocol emissions and ordering fees. For a unified 

view of staking yields across all protocol services, see the Kontor Staking Yield Analysis.[7]

4.2.1 Emission Share

A fraction 𝜒consensus of total KOR emissions is allocated to consensus stakers. Per block ℎ:

𝜀consensus(ℎ) ≝ 𝜀(ℎ) ⋅ 𝜒consensus (38)

where 𝜀(ℎ) is total network emissions per block (see Kontor Whitepaper [1] for the emission 

schedule).

Emissions are distributed to stakers who successfully provide optimistic-consensus service. 

Let EligibleConfirmedTxs(𝑏, ℎ) be the subset of transactions in batch 𝑏 that become Batch-

Confirmed at Bitcoin height ℎ and whose minimum bond requirement is met:

EligibleConfirmedTxs(𝑏, ℎ) ≔ {𝑡 ∈ ConfirmedTxs(𝑏, ℎ) : Σbond(𝑏) ≥ 𝐾min(𝑡)} (39)

Let ℬ︀succ(ℎ) be the set of batches for which at least one eligible transaction becomes Batch-

Confirmed at Bitcoin height ℎ:

ℬ︀succ(ℎ) ≔ {𝑏 : |EligibleConfirmedTxs(𝑏, ℎ)| > 0} (40)

Define the bonded stake weight for height ℎ:

𝑤𝑠(ℎ) :≡ ∑
𝑏∈ℬ︀succ(ℎ):𝑠∈𝑏.signers

|EligibleConfirmedTxs(𝑏, ℎ)| ⋅ 𝜎𝑠,𝑏 (41)

𝑊(ℎ) :≡ ∑
𝑠∈𝒮︀

𝑤𝑠(ℎ) (42)

Then emissions are distributed proportionally to bonded stake weight (zero if 𝑊(ℎ) = 0):

𝑟emission(𝑠, ℎ) ≝ {𝜀consensus(ℎ) ⋅ ( 𝑤𝑠(ℎ)
𝑊(ℎ)) if 𝑊(ℎ) > 0

0 otherwise
(43)

This makes emissions a payment for successful optimistic confirmations, avoids paying for 

unresolved batches, and preserves the interpretation of 𝜎𝑠,𝑏 as stake-at-risk per batch.

4.2.2 Ordering Fees

Ordering stakers are funded primarily by emissions, which cover the base cost of providing 

optimistic consensus. The ordering fee 𝑓ord(𝑡) is an optional payment that users can include 

to increase priority or express willingness to pay for service.

Ordering fees are escrowed when a transaction is included in a signed batch. On Batch-

Confirmed, fees are paid to signers; on expiry or rollback, fees are burned.

Let ConfirmedTxs(𝑏, ℎ) be the subset of 𝑏.txs that become Batch-Confirmed at Bitcoin 

height ℎ. Ordering fee payouts are payment-gated per transaction: if Σbond(𝑏) < 𝐾min(𝑡), 
then 𝑡’s non-burned fee portion is not paid to signers (it is burned). A fraction 𝛽fee of fees is 

burned even on success; the remainder of eligible fees is distributed to signers proportionally 

to bonded stake:

𝑟fee(𝑠, 𝑏, ℎ) ≝ (1 − 𝛽fee) ⋅
(
 ∑

𝑡∈ EligibleConfirmedTxs(𝑏,ℎ)
𝑓ord(𝑡)

)
 ⋅ (

𝜎𝑠,𝑏

Σbond
(𝑏)) (44)

where Σbond(𝑏) = ∑𝑠∈𝑏.signers 𝜎𝑠,𝑏.
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4.2.3 Total Staker Revenue

𝑟staker(𝑠, ℎ) ≝ 𝑟emission(𝑠, ℎ) + ∑
𝑏∈ℬ︀succ(ℎ)

𝑟fee(𝑠, 𝑏, ℎ) (45)

4.2.4 Dynamic Bond Sizing (Prediction-Market Designs)

Kontor treats optimistic consensus as a virtual prediction market on the event 

this batch confirms on Bitcoin before expiry without conflict. Each signer chooses how 

much stake to bond to the batch, 𝜎𝑠,𝑏, trading off higher expected reward against higher 

loss if the batch expires or is rolled back.

Design A: Free-market bonding (yield clears).

• The protocol fixes the consensus emission stream 𝜀consensus(ℎ).
• Stakers allocate 𝜎𝑠,𝑏 batch-by-batch. Users express their desired economic finality by 

setting 𝐾min(𝑡) on transactions. If the market is under-bonding relative to demand, 

batches with higher Σbond(𝑏) capture a larger share of the transaction flow whose 

rewards are gated by 𝐾min, increasing the realized return to bonding and attracting 

additional bonding. If the market is over-bonding, the reward rate per bonded KOR 

on successful flow falls and bonding decreases.

4.2.5 Expected Yields

The yield decreases as more stakers join, creating natural equilibrium where entry occurs 

until yield matches required return.

Example (with suggested parameters, 𝜎min = 10M KOR, 𝜒consensus = 0.10, and assuming 

bonded stake usage is proportional to total stake and near-continuous):

Stakers Total Stake Per-Staker Emissions Yield (emissions only)

10 100M KOR 1M KOR/year 10.0%

30 300M KOR 333K KOR/year 3.3%

50 500M KOR 200K KOR/year 2.0%

4.3 Slashing Conditions

Stakers are slashed for protocol violations. Slashing severity varies by offense type and 

participation level.

4.3.1 Equivocation (Fatal)

A staker equivocates by signing two batches containing conflicting transactions:

Equivocation(𝑠, 𝑏1, 𝑏2) :≡ 𝑠 ∈ 𝑏1.signers ∧ 𝑠 ∈ 𝑏2.signers
∧ ∃𝑡1 ∈ 𝑏1.txs, 𝑡2 ∈ 𝑏2.txs : Conflict(𝑡1, 𝑡2)

(46)

Equivocation is provable malice. Penalty: 𝜆equiv of stake.

penaltyequiv(𝑠) = 𝜆equiv ⋅ 𝜎𝑠 (47)

4.3.2 Invalid Batch (Severe)

A batch containing an invalid transaction (malformed, internal double-spend, etc.):

InvalidBatch(𝑏) :≡ ∃𝑡 ∈ 𝑏.txs : ¬ ValidTransaction(𝑡) (48)

Signers failed their validation duty. Penalty: 𝜆invalid of bonded stake.

penaltyinvalid(𝑠, 𝑏) = 𝜆invalid ⋅ 𝜎𝑠,𝑏 (49)
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4.3.3 Conflict Confirmation (Severe)

When a conflicting transaction 𝑡𝐵 confirms on Bitcoin instead of the batched 𝑡𝐴, stakers 

who signed the batch containing 𝑡𝐴 are slashed. The staker asserted that no conflict would 

confirm; the assertion was false.

ConflictConfirmed(𝑏, 𝑡𝐵) :≡ ∃𝑡𝐴 ∈ 𝑏.txs : Conflict(𝑡𝐴, 𝑡𝐵) ∧ BitcoinConfirmed(𝑡𝐵) (50)

Penalty: 𝜆conflict of bonded stake.

penaltyconflict(𝑠, 𝑏) = 𝜆conflict ⋅ 𝜎𝑠,𝑏 (51)

User Griefing Defense: If a user submits a transaction to stakers, receives batching, then 

broadcasts a conflicting transaction to Bitcoin (griefing attack), stakers can submit proof 

that the user signed both conflicting transactions. In this case, stakers are exonerated and 

the user forfeits their Kontor execution fee (KOR). This proof consists of:

• The signed batch containing 𝑡𝐴
• The Bitcoin-confirmed conflicting transaction 𝑡𝐵
• Proof that both transactions were signed by the same key (the user)

4.3.4 Batch Expiry (Graduated)

When transactions in a batch fail to confirm within the expiry window 𝑊 , signers are 

penalized. The penalty scales inversely with signature participation—fewer signers means 

each bears more responsibility.

Let 𝜑 ≝ Σsigners
𝑏
Σ  be the fraction of total stake that signed batch 𝑏, where 𝜑 ∈ [2

3 , 1].

Let 𝑛expired(𝑏) be the number of transactions in batch 𝑏 that expired without Bitcoin 

confirmation. Total batch penalty:

𝑃batch ≝ 𝜎expiry ⋅ 𝑛expired(𝑏) ⋅ ( 1
𝜑

) (52)

Per-staker penalty (distributed among signers):

penaltyexpiry(𝑠, 𝑏) ≝ min(𝑃batch ⋅ (
𝜎𝑠,𝑏

Σbond
(𝑏)), 𝜆cap ⋅ 𝜎𝑠,𝑏) (53)

where 𝜆cap caps any single batch’s damage to a fraction of bonded stake.

The penalty roughly doubles when going from full participation to minimum quorum:

Signature % Total Penalty

100% 𝜎expiry

90% 1.11 ⋅ 𝜎expiry

80% 1.25 ⋅ 𝜎expiry

67% 1.49 ⋅ 𝜎expiry

4.3.5 Slash Distribution

Slashed funds are split between burning and rewarding the evidence submitter:

burn = 𝛽slash ⋅ amount
reward = (1 − 𝛽slash) ⋅ amount

(54)

Slashing and bond exposure: Slashing reduces a staker’s stake. If slashing causes 

BondExposure(𝑠, state) > 𝜎𝑠, then any further batches signed by 𝑠 will fail the bond expo

sure invariant until active batches resolve and bond exposure falls below remaining stake. 

Slashing for non-fatal batch failures is charged against the staker’s pooled stake; realized 
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slashing is capped by the staker’s remaining stake. Equivocation (which slashes total stake) 

immediately removes the staker from the active set and marks their participation in other 

pending batches as zero-weight for future slashing purposes (though their signatures remain 

valid for quorum calculation on already-signed batches).

4.3.6 Liveness Failures

Repeated failure to participate in consensus rounds results in:

(a) Reduced reward share (proportional to missed rounds)

(b) Eventual ejection from staker set if below participation threshold

(c) Stake returned (not slashed) since liveness failures may be due to network issues

4.3.7 Fraud Proofs

Any user can submit fraud proofs to trigger slashing:

Equivocation proof: Two signed batches containing conflicting transactions. Self-con

tained cryptographic evidence.

Invalid batch proof: A signed batch containing a demonstrably invalid transaction.

Conflict proof: A signed batch plus Bitcoin proof that a conflicting transaction confirmed 

(unless griefing proof exonerates stakers).

Griefing proof: A signed batch containing 𝑡𝐴 plus Bitcoin-confirmed 𝑡𝐵 where 

Conflict(𝑡𝐴, 𝑡𝐵) and both transactions were signed by the same user key. Exonerates stakers 

from conflict slashing.

Expiry proof: A signed batch plus Bitcoin proof that transactions did not confirm within 

window 𝑊 .

Note: Non-publication is not slashable (cannot prove a negative).

4.4 Economic Security

4.4.1 Attack Costs

Corrupting 1
3  of stake enables equivocation attacks (signing conflicting batches). The attack 

is profitable only if the value extracted exceeds the stake destroyed:

AttackCost ≥ 1
3

⋅ Σ (55)

Bonds and security: The per-batch bond 𝜎𝑠,𝑏 does not change BFT safety (votes remain 

stake-weighted by 𝜎𝑠), but it does change the strength of the economic guarantee a trans

action can purchase. Transactions specify a minimum total bond requirement 𝐾min(𝑡), and 

ordering rewards for 𝑡 are payment-gated: if Σbond(𝑏) < 𝐾min(𝑡), stakers are not paid for 𝑡. 
This produces a market for economic finality without changing BFT assumptions.

Deliberately bad batches: A quorum can always choose to sign batches that are “bad” in 

the economic sense (e.g., including transactions that are unlikely to confirm before expiry). 

Under the assumed honest supermajority, this is bounded by slashing and by the fee-escrow 

rule: stakers are paid only when transactions become Batch-Confirmed, while expiry and 

conflict events trigger penalties. If a coalition controlling ≥ 2
3  of total stake is willing to burn 

money to harm users, no purely economic mechanism can prevent service degradation; the 

protocol’s guarantee in that case is graceful fallback to Bitcoin and objective evidence of 

what was signed.

Example (illustrative KOR prices):
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Total Stake Σ Corruption Cost At $0.20/KOR

100M KOR 33M KOR $6.6M

300M KOR 100M KOR $20M

500M KOR 167M KOR $33M

4.4.2 Rational Staker Behavior

A rational staker maximizes expected profit:

𝔼[profit(𝑠)] = 𝑟staker(𝑠) − 𝔼[penalties(𝑠)] − 𝜎𝑠 ⋅ 𝜌 (56)

where 𝜌 is the opportunity cost of capital.

Honest behavior dominates because:

(a) Emissions and fees accrue to honest stakers

(b) Equivocation destroys entire stake (penalty 𝜆equiv)

(c) Invalid batches and conflicts cost 𝜆invalid, 𝜆conflict of stake

(d) Even expiry penalties exceed any fee savings from careless validation

4.4.3 Incentive Alignment

Staker Action Outcome Incentive Effect

Sign valid batch that confirms Paid emissions + fees Rewarded

Sign valid batch, conflict confirms Rollback; 𝜆conflict slashed Deterred

Sign batch that expires Penalized (graduated) Deterred

Sign invalid batch 𝜆invalid stake slashed Strongly deterred

Equivocate 𝜆equiv stake slashed Catastrophically deterred

Censor transactions Forgo fees Opportunity cost

4.4.4 Miner Participation

Bitcoin miners have a natural economic incentive to participate as consensus stakers. A miner 

who also stakes KOR earns both mining revenue (block rewards plus Bitcoin transaction fees) 

and staking revenue (KOR emissions and execution fees). More importantly, miner-stakers 

can provide stronger guarantees: when a miner signs a batch, they are implicitly committing 

to include those transactions in blocks they mine. This reduces the probability of conflict 

between batched and mined transactions, since the same economic actors control both. The 

result is a virtuous cycle: miner participation increases staking finality confidence, which 

increases Kontor adoption, which increases Kontor execution fee revenue, which further 

incentivizes miner participation.

5 Security Analysis

5.1 Security Properties

BFT safety is inherited from the underlying consensus protocol. We establish the following 

core properties:

(a) Ordering Determinism: Same batches → same execution order

(b) Finality Equivalence: WasBatched ∧ Bitcoin-Confirmed ⇔ Batch-Confirmed

The forward direction of Finality Equivalence (⇒) follows from the definition of Batch-Con

firmed. The reverse direction (⇐) holds because if the same transaction is Bitcoin-Confirmed, 

no conflicting transaction can be Bitcoin-Confirmed (Bitcoin prevents double-spends), so 

the transaction cannot be rolled back without a Bitcoin reorganization.
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5.1.1 Safety

This is a standard BFT quorum intersection argument, inherited from the underlying 

consensus protocol.

Theorem (No Conflicting Batched Transactions): If honest stakers hold > 2
3  of total 

stake, then for all valid batches 𝑏1, 𝑏2:

∀𝑡1 ∈ 𝑏1.txs, 𝑡2 ∈ 𝑏2.txs : Conflict(𝑡1, 𝑡2) ⇒ (𝑏1 = 𝑏2 ∧ 𝑡1 = 𝑡2) (57)

Proof sketch:

(a) Quorum requires 2
3Σ stake.

(b) Any two quorums overlap by ≥ 1
3Σ stake.

(c) Overlap contains at least one honest staker.

(d) Honest stakers refuse to sign batches containing conflicts with previously-signed 

batches.

(e) Therefore, conflicting transactions cannot appear in two valid batches. □

5.1.2 Determinism

Theorem (State Determinism): All honest nodes compute identical Kontor state from 

identical Bitcoin state and batch set:

∀𝑠1, 𝑠2 : (𝑠1.bitcoin = 𝑠2.bitcoin ∧ 𝑠1.batches = 𝑠2.batches) ⇒ 𝑠1.kontor = 𝑠2.kontor(58)

Proof: Execution order is deterministic (sorted by position), conflict resolution is determin

istic (Bitcoin authoritative), and state transitions are deterministic functions. □

5.1.3 Rollback Detectability

Theorem: If a batched transaction is rolled back, there exists Bitcoin evidence (a conflicting 

transaction in a confirmed block). Rollback cascades to all subsequent transactions.

Proof: Rollback occurs only when a conflicting transaction confirms on Bitcoin. Bitcoin 

confirmations are publicly observable. Cascading follows from sequential execution seman

tics. □

5.1.4 Accountability

Theorem (Attributable Faults): Any safety violation is attributable to ≥ 1
3Σ stake.

Proof sketch:

(a) Safety violation requires two conflicting batches with valid quorum signatures.

(b) Quorums overlap by ≥ 1
3Σ.

(c) Stakers in overlap signed both batches.

(d) Their identities are recorded in both batch.signers. □

5.1.5 Censorship Resistance

Property (Censorship Cost): A staker who censors transaction 𝑡 forgoes expected fee 

share (1 − 𝛽fee) ⋅ 𝛿𝑡 ⋅ ( 𝜎𝑠,𝑏
Σbond

(𝑏)) on any batch 𝑏 that would have included 𝑡, weighted by the 

probability 𝑝 that 𝑡 would have become Batch-Confirmed.

Property (Censorship Fallback): Users can bypass stakers entirely. Transaction confirms 

on Bitcoin and is appended at block-end.

5.1.6 Liveness

Property (Graceful Degradation): If staker liveness fails, users can still transact via 

Bitcoin directly. Transactions confirm and append at block-end without optimistic ordering.
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5.2 Cryptographic Proofs

We prove that any safety violation can be attributed to specific stakers whose stake exceeds 

the Byzantine threshold.

5.2.1 Security Model

Let Σ = (KeyGen, Sign, Verify) be an EUF-CMA secure signature scheme.

Definition (EUF-CMA Security): A signature scheme is EUF-CMA secure if for any 

PPT adversary 𝒜︀:

AdvEUF-CMA
Σ (𝒜︀) ≔ Pr[EUF-CMA𝒜︀

Σ = 1] ≤ negl(𝜆) (59)

where the EUF-CMA game allows 𝒜︀ to query a signing oracle and must output a valid 

signature on a message not queried.

5.2.2 Accountability Theorem

Theorem (Accountable Safety): Let 𝒫︀ be the Kontor Optimistic Consensus protocol 

using signature scheme Σ. If Σ is EUF-CMA secure, then any safety violation is attributable 

to a set of stakers holding ≥ 1
3  of total stake.

Proof:

Suppose a safety violation occurs: there exist two valid batches 𝑏1, 𝑏2 containing transactions 

𝑡1 ∈ 𝑏1.txs and 𝑡2 ∈ 𝑏2.txs with Conflict(𝑡1, 𝑡2).

Step 1: Quorum Intersection.

Since both batches are valid:

ValidQuorum(𝑏1.signers, 𝑆) ∧ ValidQuorum(𝑏2.signers, 𝑆) (60)

By the Quorum Intersection Lemma:

∑
𝑠∈𝑏1.signers ∩𝑏2.signers

𝑆.stakers[𝑠] ≥ 1
3

⋅ TotalStake(𝑆) (61)

Step 2: Signature Evidence.

For each staker 𝑠 ∈ 𝑏1.signers ∩ 𝑏2.signers:
• There exists 𝜎1 such that Verify(𝜎1, BatchDigest(𝑏1), pk𝑠) = 1
• There exists 𝜎2 such that Verify(𝜎2, BatchDigest(𝑏2), pk𝑠) = 1

Since 𝑏1 ≠ 𝑏2 (they contain conflicting transactions), we have BatchDigest(𝑏1) ≠
BatchDigest(𝑏2).

Step 3: Attribution.

Define the guilty set:

𝐺 ≔ {𝑠 ∈ 𝑏1.signers ∩ 𝑏2.signers : ValidSignature(𝜎𝑠
1, 𝑠, 𝑏1) ∧ ValidSignature(𝜎𝑠

2, 𝑠, 𝑏2)}(62)

By Step 1, ∑𝑠∈𝐺 𝑆.stakers[𝑠] ≥ 1
3 ⋅ TotalStake(𝑆).

Step 4: Non-Repudiation.

Suppose staker 𝑠 ∈ 𝐺 claims innocence (did not sign one of the batches). Without loss of 

generality, suppose 𝑠 claims they did not sign 𝑏1.

Construct an EUF-CMA adversary ℬ︀:

• ℬ︀ receives pk𝑠 as challenge public key

• ℬ︀ simulates the protocol, using the signing oracle for 𝑠’s signatures

• When the safety violation occurs, ℬ︀ outputs (𝜎𝑠
1, BatchDigest(𝑏1))
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If 𝑠 truly did not sign 𝑏1, then BatchDigest(𝑏1) was never queried to the oracle, so 

(𝜎𝑠
1, BatchDigest(𝑏1)) is a valid EUF-CMA forgery.

This contradicts EUF-CMA security of Σ. Therefore, 𝑠 must have signed both batches. □

5.2.3 Slashing Correctness

Corollary (Slashing Correctness): The slashing mechanism is sound: an honest staker 

is never slashed, and any slashed staker is guilty of a protocol violation.

Proof:

Soundness (no false positives): An honest staker only signs batches that do not conflict 

with previously-signed batches. By the honest staker rule, if 𝑠 is honest and 𝑏 ∈ signed𝑠, 

then for all 𝑏′ ∈ signed𝑠: ∀𝑡 ∈ 𝑏.txs, 𝑡′ ∈ 𝑏′.txs : ¬ Conflict(𝑡, 𝑡′).

Slashing requires equivocation evidence: two batches with conflicting transactions both 

signed by 𝑠. This cannot occur for honest 𝑠.

Completeness (guilty stakers slashable): By the Accountability Theorem, any safety 

violation produces cryptographic evidence (two signatures by the same staker on conflicting 

batches). This evidence constitutes valid slashing evidence. □

5.3 Game-Theoretic Analysis

5.3.1 Inclusion Incentive

Setting: Stakers collectively decide which transactions to include in batches.

Staker payoff for including transaction 𝑡:

𝜋𝑠(𝑡) =
{

(1 − 𝛽fee) ⋅ 𝛿𝑡 ⋅ ( 𝜎𝑠

Σsigners
) if 𝑡 confirms before expiry

0 if 𝑡 expires or is rolled back
(63)

Theorem (Inclusion Incentive): A utility-maximizing staker includes all valid transac

tions.

Proof:

Let 𝑡 be a valid transaction with fee 𝛿𝑡 and confirmation probability 𝑝 > 0.

Expected payoff from including 𝑡:

𝔼[𝜋𝑠(𝑡) | include] = 𝑝 ⋅ (1 − 𝛽fee) ⋅ 𝛿𝑡 ⋅ ( 𝜎𝑠
Σsigners

) (64)

Expected payoff from excluding 𝑡:

𝔼[𝜋𝑠(𝑡) | exclude] = 0 (65)

Since 𝑝 > 0 and 𝛿𝑡 > 0, inclusion strictly dominates exclusion. □

5.3.2 Censorship Cost

Censorship has a quantifiable cost: foregone fees. For a coalition 𝐶 censoring transaction 𝑡:

CensorshipCost(𝐶, 𝑡) = (1 − 𝛽fee) ⋅ 𝛿𝑡 ⋅ ( Σ𝐶
Σsigners

) (66)

where Σ𝐶 is the total stake of the censoring coalition.

Case 1: 𝐶 does not form a quorum. Then 𝑡 is included by honest stakers anyway, and 𝐶 

merely forgoes their share.
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Case 2: 𝐶 forms a quorum (≥ 2
3  stake). The user bypasses stakers and broadcasts to Bitcoin. 

Transaction confirms at block-end; 𝐶 receives nothing.

Censorship is profitable if and only if the external bribe 𝐵 > CensorshipCost(𝐶, 𝑡). The 

protocol does not prevent censorship—it makes the cost transparent and quantifiable.

5.4 Lean 4 Formalization

The protocol’s fundamental claim: Bitcoin provides finality, batches provide ordering—

these are orthogonal. The following Lean 4 code provides machine-checked proofs of three 

properties:

(a) Ordering determinism: Same batches and unbatched transaction lists produce 

the same execution order, regardless of L1 state.

(b) Finality inheritance: Kontor-final implies L1-final—no transaction is considered 

final without Bitcoin confirmation.

(c) Conflict handling: When a conflicting transaction (RBF, double-spend) confirms 

on L1, the batched transaction is invalidated.

Ordering is static—determined by batch structure and block positions. Validity is dynamic

—a transaction’s position is fixed, but whether it executes depends on L1 state (expiry, 

conflicts). Together these prove: (1) we inherit Bitcoin’s finality, (2) ordering is deterministic, 

and (3) conflicts are handled correctly.

import Mathlib.Data.Finset.Basic

import Mathlib.Data.List.Basic

namespace KontorConsensus

/-! ## Core Types -/

abbrev TxId := Nat

abbrev BlockHeight := Nat

abbrev UTXO := Nat

/-- A transaction with inputs -/

structure Transaction where

  id : TxId

  inputs : Finset UTXO

  deriving DecidableEq

/-- A batch is an ordered sequence of transactions with an expiry -/

structure Batch where

  id : Nat

  txs : List Transaction

  expiry : BlockHeight

  deriving DecidableEq

/-- An unbatched transaction confirmed on L1, with its block position -/

structure UnbatchedTx where

  tx : Transaction

  block_height : BlockHeight

  block_index : Nat

  deriving DecidableEq

/-- Protocol state -/

structure State where

  l1_height : BlockHeight

  l1_confirmed : Finset TxId
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  batches : List Batch

  unbatched : List UnbatchedTx

/-! ## Ordering

Ordering is static: determined entirely by batch structure and block 

positions.

Execution order: batched transactions first (by batch), then unbatched at 

block-end.

-/

/-- Position of a batched transaction: (batch_id, index_in_batch) -/

def batchPosition (batches : List Batch) (tx : Transaction) : Option (Nat × 

Nat) :=

  batches.enum.findSome? fun (_, batch) =>

    batch.txs.enum.findSome? fun (tx_idx, t) =>

      if t.id = tx.id then some (batch.id, tx_idx) else none

/-- Sort unbatched transactions by (block_height, block_index) -/

def sortUnbatched (unbatched : List UnbatchedTx) : List UnbatchedTx :=

  unbatched.mergeSort fun a b =>

    a.block_height < b.block_height ||

    (a.block_height = b.block_height && a.block_index ≤ b.block_index)

/-- Execution order: batched first, then unbatched sorted by block position -/

def executionOrder (s : State) : List Transaction :=

  let batched := s.batches.bind (·.txs)

  let unbatchedSorted := (sortUnbatched s.unbatched).map (·.tx)

  batched ++ unbatchedSorted

/-! ## Validity

Validity is dynamic: depends on L1 state (expiry, conflicts).

A transaction's position is fixed, but whether it executes depends on L1.

-/

/-- Conflict relation: transactions share at least one input (RBF, double-

spend) -/

def conflict (tx1 tx2 : Transaction) : Prop :=

  tx1.id ≠ tx2.id ∧ (tx1.inputs ∩ tx2.inputs).Nonempty

/-- A batch is expired if current height exceeds expiry -/

def batchExpired (s : State) (b : Batch) : Prop :=

  s.l1_height > b.expiry

/-- A batched transaction is conflicted if a different tx spending the same 

inputs confirmed on L1 -/

def isConflicted (s : State) (tx : Transaction) : Prop :=

  ∃ conflicting_tx : Transaction,

    conflicting_tx.id ∈ s.l1_confirmed ∧

    conflicting_tx.id ≠ tx.id ∧

    conflict tx conflicting_tx

/-- A batched transaction is valid if its batch hasn't expired and it's not 

conflicted -/

def batchedTxValid (s : State) (tx : Transaction) : Prop :=

  ∃ b ∈ s.batches, tx ∈ b.txs ∧ ¬batchExpired s b ∧ ¬isConflicted s tx

/-- Transactions at or after a rolled-back position must also roll back -/

def cascadeRollback (batches : List Batch) (rollback_pos : Nat × Nat) (tx : 

Transaction) : Prop :=
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  match batchPosition batches tx with

  | some pos => pos.1 > rollback_pos.1 ∨ (pos.1 = rollback_pos.1 ∧ pos.2 ≥ 

rollback_pos.2)

  | none => False

/-! ## Property 1: Ordering Determinism

Ordering is static—same batches and unbatched lists yield the same order.

L1 state affects validity, not ordering.

-/

/-- Ordering depends only on batches and unbatched list, not L1 state -/

theorem ordering_determinism (s1 s2 : State)

    (h_batches : s1.batches = s2.batches)

    (h_unbatched : s1.unbatched = s2.unbatched) :

    executionOrder s1 = executionOrder s2 := by

  simp only [executionOrder, h_batches, h_unbatched]

/-- Batch position depends only on batches -/

theorem batch_position_determinism (s1 s2 : State)

    (h_batches : s1.batches = s2.batches)

    (tx : Transaction) :

    batchPosition s1.batches tx = batchPosition s2.batches tx := by

  simp only [h_batches]

/-! ## Property 2: Finality Inheritance

Finality comes from L1, not from batching. Kontor-final implies L1-final.

-/

/-- L1 finality: transaction confirmed on Bitcoin -/

def l1Final (s : State) (tx : Transaction) : Prop :=

  tx.id ∈ s.l1_confirmed

/-- Kontor finality: L1 confirmation of a valid batched tx, or unbatched 

confirmation -/

def kontorFinal (s : State) (tx : Transaction) : Prop :=

  l1Final s tx ∧ (batchedTxValid s tx ∨ ∃ utx ∈ s.unbatched, utx.tx = tx)

/-- Finality inheritance: Kontor-final implies L1-final -/

theorem finality_requires_l1

    (s : State) (tx : Transaction)

    (h : kontorFinal s tx) :

    l1Final s tx :=

  h.1

/-- Contrapositive: no L1 confirmation means no Kontor finality -/

theorem no_l1_no_kontor_final

    (s : State) (tx : Transaction)

    (h_not_l1 : ¬l1Final s tx) :

    ¬kontorFinal s tx := by

  intro h_kontor

  exact h_not_l1 h_kontor.1

/-! ## Property 3: Conflict Handling

When a conflicting transaction confirms on L1, the batched transaction is 

invalidated.

This models RBF and double-spend scenarios.

-/
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/-- If a conflict confirms, the batched tx becomes invalid -/

theorem conflict_invalidates

    (s : State) (tx : Transaction) (conflict_tx : Transaction)

    (h_conflict : conflict tx conflict_tx)

    (h_confirmed : conflict_tx.id ∈ s.l1_confirmed) :

    isConflicted s tx := by

  exact ⟨conflict_tx, h_confirmed, h_conflict.1.symm, h_conflict⟩

/-- Conflicted transactions are not valid -/

theorem conflicted_not_valid

    (s : State) (tx : Transaction)

    (h_conflicted : isConflicted s tx) :

    ¬batchedTxValid s tx := by

  intro ⟨_, _, _, _, h_not_conflicted⟩

  exact h_not_conflicted h_conflicted

end KontorConsensus
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