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1 Introduction

Kontor Optimistic Consensus is a novel protocol for sub-block transaction confirmation
in the Kontor Bitcoin metaprotocol [1] that preserves Bitcoin’s position as the ultimate
source of truth for transaction finality. Kontor’s native currency, KOR, is staked in a virtual
prediction market executed using a traditional BFT consensus algorithm to generate strong
economic signals as to which transactions are very likely to confirm in upcoming Bitcoin
blocks. This allows users to transact without waiting for Bitcoin block confirmations, with
real-world latency on the order of one to two seconds.!

For stateful metaprotocols in general (as opposed to those that couple contract execution
to the spending of particular Bitcoin transaction outputs), the ordering of transactions
is semantically significant: two transactions that modify the same contract state produce
different results depending on which executes first. But the order of the metaprotocol trans-
actions within a Bitcoin block is arbitrary, as the whole block appears to the network at once.

'Pipelined BFT protocols such as HotStuff [2] achieve O(n) message complexity per decision, allowing
batch intervals of ~1s with modest validator sets. Users wait on average half a batch interval plus one
network round-trip.
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Stateful metaprotocols traditionally delegate ordering to miners by executing transactions
in their position within the Bitcoin block and using lexicographic ordering based on the
block height and transaction index within the block.

In the Kontor system, the order of transactions within any batch expiry window is deter-
mined by a quorum of KOR stakers, who produce signed batches of transactions that assign
deterministic positions to Kontor transactions before Bitcoin confirmation. When stakers
sign a batch containing transaction ¢, they are asserting that ¢ is valid and that no conflicting
transaction will confirm on Bitcoin. If these transactions are not confirmed within the
specified window, the stakers incur graduated penalties, and the transactions are simply
rolled back as if a blockchain reorganization had occurred. Equivocation triggers loss of the
staker’s entire stake. If staker consensus fails in any way, the protocol degrades gracefully:
transactions still confirm on Bitcoin and append at block-end. This strictly dominates
vanilla Nakamoto pre-confirmation as an acceptance signal: for stateful metaprotocols the
within-block order is arbitrary anyway, so an explicit ordering rule is required, and batches
provide a deterministic ordering before Bitcoin confirmation. Economic finality is market-
priced: each transaction specifies a minimum total bond requirement, and stakers are paid
for that transaction only when the enclosing batch meets the requirement. Since Bitcoin
already admits reorgs and conflict confirmations, the remaining rollback risk is not new
in kind; optimistic consensus makes pre-confirmation assurance explicit, measurable, and
economically accountable.

2 Model

2.1 State-Machine Replication

A Dblockchain operates by state-machine replication: a Byzantine fault—tolerant consensus
protocol, such as Nakamoto Consensus [3], enables untrusted entities to agree on a log of
events, which are executed deterministically to derive shared state. A metaprotocol extends
this model with a second state machine that parses additional data from the blockchain and
derives additional state.

2.2 Actors

o Users submit Kontor transactions. Users broadcast to both the staker set (for
ordering) and to the Bitcoin network (for finality).

e Stakers validate transactions, produce batches, and sign orderings. Stakers bond
KOR stake that is subject to slashing for protocol violations. Stakers are paid Kontor
execution fees (KOR) when batched transactions finalize.

« Recipients query for batch inclusion, store signed batches as proofs, and accept
optimistic confirmations.

2.3 Assumptions

(a) Partial synchrony [4]: Messages between honest stakers arrive within bound A
after GST.

(b) Honest supermajority: Honest stakers hold > 2 of total stake.

(c) Bitcoin liveness: Bitcoin confirms fee-paying transactions.

(d) Bitcoin safety: With k confirmations, the probability of blockchain reorgs is negli-
gible.

2.4 Threat Model

We consider a Byzantine adversary A controlling up to 1/3 of total stake.



Adversary capabilities:

o Control Byzantine stakers (sign arbitrary messages, equivocate, or stay silent)
¢ Delay messages up to bound A after GST

¢ Observe all network traffic

o Coordinate across all Byzantine stakers
o Adaptively corrupt stakers up to the 1/3 bound, subject to unbonding delay

Adversary limitations:

o Cannot forge signatures (computational assumption)

« Cannot violate Bitcoin consensus

o Cannot control > 1/3 stake without detection and slashing

2.4.1 Attack Vectors

Attack

Description

Defense

Double-spend

Conflicting Bitcoin tx con-
firms

Kontor rollback

RBF replacement

User replaces batched tx via
RBF

UTXO locking; user eats fee

Equivocation Staker signs conflicting Quorum intersection detects;
batches slashing
Censorship Stakers refuse to include tx User bypasses via Bitcoin

Signature griefing

Stakers batch tx with invalid
Bitcoin signature

User validates witness

Low-fee / unconfirmable batch

Stakers include txs unlikely
to confirm before expiry

Fee escrow; expiry penalties;
recipients treat optimistic
confirmation as conditional

Low-bond batch

Quorum signs but bonds lit-
tle stake

Per-tx minimum bond re-
quirement K, (t) with pay-

n

ment-gated rewards; stakers
compete to clear higher K,

min

flow

Bond double-counting

Staker claims more bond
than stake across active
batches

Bond exposure invariant en-
forced in batch validity

Liveness Stakers halt batch production | Graceful degradation to Bit-
coin
Long-range Old keys used after unbond- Unbonding delay
ing
Sybil Many low-stake identities Minimum stake

2.4.2 Security Goals

(a) Safety: No two valid batches contain conflicting transactions (under > 2/3 honest

stake).

(b) Liveness: Valid transactions eventually finalize (under partial synchrony).

(c) Accountability: Any safety violation is attributable to > 1/3 stake with crypto-

graphic evidence.

(d) Incentive compatibility: Honest behavior is a dominant strategy for rational

stakers.




2.5 Notation and Parameters

The following table summarizes notation and consensus-specific parameters. For the com-
plete protocol parameter set, see the Appendix of the Kontor Whitepaper.[1]

Symbol | Meaning Suggested

8 Set of stakers {sq,...,s,} (epoch-dependent) —

Stake of staker s —

s

z Total stake: - o, —
Tsb Stake bonded (risked) by staker s on batch b —
Zsigners(b) Total stake of signers of batch b: Zseb'signem o, —

Shond (D) Total bonded stake on batch b: Zseb_signers Tsp

t,t Transactions —

b Batch —

h Bitcoin block height —

Fora(®) Ordering fee for transaction ¢ —

K, .. (t) Transaction-specified minimum total bonded stake required for re- —
wards on t

1 Undefined / null value —

= Definitional equality —

I Concatenation -
[X] List of type X —
{X} Set of type X

XY Map from X to Y —

n Number of stakers 21-100

q Quorum threshold (stake fraction) 2/3

w Expiry window (blocks) 12

B Target transactions per batch ~100

k Bitcoin finality depth (confirmations) 6

A Network synchrony bound —

Xconsensus | Fraction of emissions to consensus stakers 0.10

Omin Minimum stake to become a staker 10M KOR

Abondmin | Minimum bond as fraction of stake when signing a batch 0.001
equiv Equivocation penalty (fraction of stake) 1.00

Alnvalid Invalid batch penalty (fraction of stake) 0.10

Aconflict Conflict penalty (fraction of stake) 0.10

O expiry Expiry base penalty per transaction 10K KOR

Acap Max bonded stake lost per batch 0.01

Balash Slash burn rate (rest to reporter) 0.50

Bree Service fee burn rate (ordering and bundling) 0.50




2.6 Protocol Objects

2.6.1 Primitive Types
We define the following primitive types:

Type Representation | Description

TxId bytes32 Transaction identifier (hash of signed transaction)
Stakerld bytes32 Staker identifier (public key hash)

Signature bytes64 ECDSA or Schnorr signature

BlockHash bytes32 Bitcoin block hash

BlockHeight | N Bitcoin block height

Batchld N Monotonically increasing batch identifier

Epoch N Staker set epoch number

Index N Position within batch

Stake N Stake amount (in base units)

2.6.2 Transactions

A Kontor transaction wraps a Bitcoin transaction with application-specific payload:

id : TxId
inputs : {UTXO}
Transaction := < outputs : [Output] (1)

witness : Bytes
payload : KontorPayload
where {X} denotes a set of X and [X] denotes a list of X.
Conflict Relation: Two transactions conflict if they spend at least one common input:
Conlflict(t,t5) := t;.inputs N ¢,.inputs # 0 (2)

This captures Bitcoin’s double-spend semantics: conflicting transactions cannot both confirm
on Bitcoin.

2.6.3 Batches

A batch is an ordered collection of transactions with quorum attestation:

batch id : Batchld
epoch : Epoch
chain_tip : BlockHash

Batch := J SXPIY : BlockHeight

txs : [Transaction]
signers  : [Stakerld]
bonds : [Stake]

signatures : [Signature]

The bonds list is aligned with signers: b.bonds[i] is the amount risked by b.signers[i] on
batch b. Formally, for staker s = b.signers][i]:

o = b.bonds[i] (4)
Bond collateralization: Bonds are stake-at-risk declarations. The protocol enforces that

the total stake-at-risk implied by a staker’s bonds on unresolved batches is fully collateralized
by their total stake.



BondExposure(s, state) := E Teb (5)
be ActiveBatches(state):seb.signers

ActiveBatches(state) := {b € state.batches : 3t € b.txs : —~ IsResolved(t, state)}  (6)

Bond exposure invariant: A batch is valid only if each signer remains fully collateralized
after adding this batch’s bond:

Vs € b.signers : BondExposure(s, state) + o, , < o, (7)

This prevents over-promising: a staker cannot advertise more maximum per-batch stake-at-
risk across unresolved batches than they actually have.

Batch sequence and dependencies: Batches are decisions of a BFT state-machine repli-
cation protocol and therefore form a single ordered log, indexed by batch id. Batches may
be produced faster than Bitcoin finalizes earlier batches; as a result, it is normal for nodes
to observe batches b,b + 1,b + 2, ... while the Bitcoin outcomes for earlier positions are still
unresolved. A batch can be structurally valid and have a valid quorum signature regardless of
whether earlier batches ultimately expire or are rolled back; however, transaction execution
is conditional on the resolution of all prior positions (see Execution Blocking). In particular,
if a transaction at some earlier position is rolled back due to a Bitcoin-confirmed conflict, all
subsequent positions—including those in later batches—are rolled back as well (cascading
rollback).

The chain_tip field commits the batch to a specific Bitcoin state. Stakers sign only if all
transaction inputs are unspent as of that block. This prevents using a stale batch to double-
spend after Bitcoin confirmation: once a conflicting transaction confirms on Bitcoin, the
chain tip advances and the batch is invalidated.

Invariants:
o |b.signers| = |b.bonds| = |b.signatures| — each signer provides one bond + one signa-
ture
o Vi j:— Conflict(b.txs[i], b.txs[j]) — no internal conflicts
o b.txs defines a total order on included transactions
o Vt € b.txs : InputsUnspent(t, b.chain_tip) — all inputs unspent at chain tip

where  InputsUnspent(¢,h) := V input € t.inputs : =3tx” € TxsConfirmedBy(h) : input €
tx’.inputs

and TxsConfirmedBy(h) := {t : state.bitcoin_confirmed|[t.id] < HeightOf(h)} is the set of
transactions confirmed at or before block h.

Position: A transaction’s position is its unique location in the ordering:
Position := (Batchld, Index) (8)
Position(¢, b) := (b.batch_id, IndexOf(¢, b.txs)) (9)
Positions are totally ordered lexicographically: (by,4;) < (b, %9) < by < by V (by = by Aiy <
iy).
2.6.4 Staker Set

The staker set defines the active validators for an epoch:

epoch : Epoch

StakerSet := {stakers : StakerId — Stake

Total Stake:



TotalStake(S) := Z S.stakers][s] (11)

s€ dom(S.stakers)

Quorum Stake: The minimum stake required for a valid quorum:

2
QuorumStake(S) := [g X TotalStake(S)—‘ (12)
Valid Quorum: A set of signers forms a valid quorum if their combined stake meets the
threshold:
ValidQuorum(signers, S) := Z S.stakers[s] > QuorumStake(S) (13)
S€E signers

Quorum Intersection Property: Any two valid quorums overlap in at least % of total
stake:

V@, @, valid quorums : Z S.stakers[s] >
s€Q1NQ,

- TotalStake(S) (14)

W =

This property is fundamental to safety: if honest stakers hold > % stake, every two quorums
share at least one honest staker.

2.6.5 Signature Verification
Batch Digest: The canonical message to sign for a batch:

BatchDigest(b) := Hash(b.batch_id | b.epoch || b.chain_tip

15

| b.expiry | MerkleRoot(b.txs)) (15)
where || denotes concatenation and MerkleRoot computes the Merkle root of transaction IDs.
Bonded Digest: Each signer commits to their chosen bond amount in the signed message:

BondedDigest (b, 3) := Hash(BatchDigest(b) | 3) (16)

where ( is the bond value.
Signature Validity:

ValidSignature(sig, signer, 3, b) := Verify(sig, BondedDigest (b, 3), PublicKey(signer))17)
Witness Validity: A transaction has a valid witness if its signature data correctly autho-
rizes spending of all inputs:

ValidWitness(t) := V input € ¢.inputs : VerifyScript(input.scriptPubKey, ¢, t. witness{18)
Batch Signatures: A batch has valid signatures if:

ValidBatchSignatures(b, S) := |b.signers| = |b.bonds| = |b.signatures|
A Vi : ValidSignature(b.signatures[i], b.signers|[i], b.bonds][i], b)
AVi: b.bonds[i] > A4,
A b.bonds[i] < S.stakers[b.signers[i]|
A Vs € b.signers : s € dom(S.stakers)
A ValidQuorum(b.signers, S)

- S.stakers[b.signers[i]]

o)

2.6.6 Batch Validity
A batch is valid if it satisfies structural constraints, has valid quorum signatures, and its
chain tip is on the canonical chain:



ValidBatch(b, S, state) := b.epoch = S.epoch

A b.chain_tip € state.canonical_history

A ValidBatchSignatures(b, S)

A Vs € b.signers : BondExposure(s, state) + o, , < o (20)
AVt € b.txs : ValidTransaction(¢, state)

A Vi # j: = Conflict(b.txs[i], b.txs[j])
Transaction Validity: A transaction is valid if it passes all validation checks:

ValidTransaction(t, state) := InputsUnspent(t, state)
A ValidPayload(t.payload) (21)
A ValidWitness(t)
Fee policy: Whether a transaction is worth batching depends on its Bitcoin fee rate

relative to current network conditions. This is not a consensus-validity rule: it is a local
policy decision by stakers/recipients.

Minimum bond requirement: Each transaction specifies a minimum total bond require-
ment K. (t). This is not a batch validity rule; it is a payment gating rule for ordering
rewards (see Staker Rewards).

2.6.7 Global State
The global protocol state separates Bitcoin state from ordering state:
block_height : BlockHeight

bitcoin_confirmed : TxId — BlockHeight
GlobalState = canonical history : {BlockHash}

batches : [Batch] (22)
staker_sets : Epoch — StakerSet
kontor_state : KontorState

The kontor_state field contains application state (account balances, contract storage, etc.)
computed deterministically from executed transactions. The canonical history field tracks
all block hashes that were part of the canonical Bitcoin chain (for reorg detection). Trans-
action validation checks UTXOs against this state.

Block Height Lookup: We define HeightOf : BlockHash — BlockHeight as the lookup
function that returns the height of a block given its hash. This is well-defined for any block
in canonical history.

3 Protocol

3.1 Operations

3.1.1 Transaction Submission

A user submits a transaction by broadcasting to all stakers:

Algorithm 1: Transaction Submission

1:  function SUBMIT(tx)

2 for s € § do

3: result « Send(tx, s)
4 end

5. end




3.1.2 Transaction Validation

Stakers validate transactions before adding them to the pending pool:

Algorithm 2: Transaction Validation

1:  function VALIDATE(tx, state)

2: > Check UTXO validity

3: if 3 input € tx.inputs : = Unspent(input, state) then
4: return false

5: end

6:

T > Check payload validity

8: if = ValidPayload(tx.payload) then
9: return false

10: end

11:

12: > Check Bitcoin witness validity
13:  if - ValidWitness(tx) then

14: return false
15: end
16:

17: > Check not already batched
18: if Jb € state.batches : tx € b.txs then

19: return false

20: end

21:

22: > Check no conflicts with batched transactions

23:  if 3b € state.batches : 3t € b.txs : Conlflict(tx,¢") then
24: return false

25: end

26: return true

27: end

The validation rules ensure:

(a) UTXO validity: All inputs are unspent in current Kontor state

(b) Payload validity: The Kontor payload parses and is well-formed

(c) Witness validity: Bitcoin signatures and scripts are valid (so batched transactions
can actually confirm on Bitcoin)

(d) Fee policy: Stakers and recipients apply local policy based on Bitcoin miner fee
rate (e.g., rejecting transactions unlikely to confirm before expiry)

(e) Uniqueness: Transaction not already batched

(f) No conflicts: No existing batched transaction conflicts

3.1.3 Batch Formation

Stakers periodically form batches via BFT consensus. A batch is an ordered list of non-
conflicting transactions with a committed chain tip and expiry block. The leader selects
transactions from the pending pool (prioritized by fee, filtered for conflicts), constructs a
proposal, and initiates BFT voting. Upon quorum (> % stake), the batch is signed and
published. Each batch assigns deterministic positions to transactions before Bitcoin confir-
mation, enabling sub-block finality.

Algorithm 3: Batch Formation

function FORMBATCH(pending, state)
> Select non-conflicting transactions from pending pool
txs + Select(pending, MaxBatchSize)

AN >

> Construct batch proposal




6: batch «+ (batch_id : NextBatchld(state), epoch : CurrentEpoch(state), chain_tip :
LatestBlockHash(state), expiry : state.block_height + W, txs : txs, signers :
[, bonds : [], signatures : [])

return BFTConsensus(batch)

7
8: > Run BFT consensus to get quorum signatures
9:
10: end

The Select function chooses transactions from the pending pool, respecting the constraint
that no two selected transactions conflict.

3.1.4 Batch Signing

Each staker in the quorum signs valid batch proposals:

Algorithm 4: Batch Signing

function SIGNBATCH(batch, staker)
if ValidBatchProposal(batch) then
bond < ChooseBond(batch, staker)
sig < Sign(BondedDigest(batch, bond), PrivateKey (staker))
return (staker.id, bond, sig)
end
return L
end

Honest Staker Rule: An honest staker signs a batch proposal only if:
(a) The batch is well-formed
(b) The chain_tip is on the canonical chain and all transaction inputs are unspent as of
that block
(c) No transaction in the batch conflicts with any previously-signed batch
(d) The batch epoch matches the staker’s current epoch

3.1.5 Batch Publication

Signed batches are broadcast to all nodes:

Algorithm 5: Batch Publication

1:  function PUBLISHBATCH(batch)
2 for n € Nodes do

3: result <— Send(batch, n)

4 end

5: end

3.1.6 Recipient Verification

Recipients verify batches before accepting optimistic confirmations:

Algorithm 6: Optimistic Confirmation Verification

function VERIFYOPTIMISTICCONFIRMATION(tx, batch, state)
> Verify transaction is in batch
if tx ¢ batch.txs then
return false
end

> Verify batch has valid quorum signatures

if — ValidBatch(batch, state.staker_sets[batch.epoch], state) then
return false

0: end

10



12: > Verify batch has not expired
13: if batch.expiry < state.block_height then

14: return false

15: end

16:

17: > Verify chain_ tip is on canonical chain and recent

18:  if batch.chain_tip ¢ state.canonical history V HeightOf(batch.chain_tip) <
state.block_height — W then

19: return false

20: end

21:

22: > Verify Bitcoin transaction signatures are valid

23: for t € batch.txs do

24: if - ValidWitness(¢) then

25: return false

26: end

27: end

28: return true

29: end

Recipients should store the signed batch locally as evidence of the ordering.

3.1.7 Bitcoin Broadcast

Users broadcast transactions to Bitcoin independently:

Algorithm 7: Bitcoin Broadcast

1:  function BROADCASTBITCOIN(tx)
2: result < BitcoinBroadcast(tx)
3: end

The user controls when and whether to broadcast. This preserves UTXO sovereignty.

3.2 Conflict Resolution

Bitcoin is the ultimate arbiter of transaction validity. When a Bitcoin-confirmed transaction
conflicts with a batched transaction (e.g., a double-spend or RBF replacement), the batched
transaction is rolled back and stakers are slashed. This algorithm handles three cases: (1)
the batched transaction itself confirms—finalize it at its assigned position, (2) a conflicting
transaction confirms—trigger cascading rollback of the batched transaction and all subse-
quent positions, or (3) an unbatched transaction confirms—append it at block-end.

When a transaction ¢p confirms on Bitcoin at height h:

Algorithm 8: Conflict Resolution

1:  function RESOLVE(tg, h, state)

2: > Check if this is the batched transaction confirming

3: if WasBatched(¢p, state) then

4: > Batched transaction confirmed; finalize at its batch position
5: result < Finalize(tg, h)

6: return

7 end

8:

9: > Find any conflicting batched transaction

10: | t4 « FindConflictingBatched Tx(t g, state)

11:

12:  ift, # 1 then

13: > Conflicting tx confirmed; rollback ¢, and all subsequent txs

11



14: result < CascadingRollback(t 4, state)

15:  end

16:

17: > Append Bitcoin-Confirmed tx at block-end
18: | result < Append(tg, h)

19: end

Cascading rollback: When transaction ¢, at position (b,%) is rolled back, all transactions
at positions > (b,7) must also be rolled back. State changes cannot be selectively undone—
execution is sequential, and later transactions may depend on earlier ones.

3.2.1 Block-End Ordering

Unbatched transactions are appended at “block-end” with a deterministic tie-breaker.

Batched transactions have positions of the form (Batchld,Index). Unbatched transactions
use a separate ordering domain: for an unbatched transaction confirmed at height h with
index ¢ within that block, its position is (BlockEnd, h, ).

Global ordering: Execution proceeds in two phases: (1) all batched transactions execute in
batch order (by batch_id, then index within batch), then (2) unbatched transactions execute
ordered by (h,%) where h is the Bitcoin confirmation height and 4 is the transaction’s index
within block h. This ensures all indexers derive identical ordering from Bitcoin data alone.

Batchy, ,, Batchy, ,, 14 Block,, ;
t17 t5 > t3 _>[ ]_>[ t15t27t37t47t5 ]
b ooty = by = by — 1y l

FIGURE 1. Execution Order: Batched transactions (Batch, ,
Batch, ,,.,) execute first in batch order, followed by unbatched transac-
tions (gray) at block-end.

3.2.2 Conflict Search

Algorithm 9: Conflict Search

function FINDCONFLICTINGBATCHEDTX( 5, state)
for b € state.batches do
for t, € b.txs do
if Conflict(t4,t5) then
return t 4
end
end
end
return L
0: end

3.2.3 RBF Handling

Bitcoin’s Replace-By-Fee (RBF) mechanism allows users to replace unconfirmed transactions
with higher-fee alternatives. This creates an attack vector: a user could submit a transaction,
receive optimistic confirmation via batching, then broadcast an RBF replacement before
Bitcoin confirmation.

UTXO Locking: The protocol prevents this by treating batched UTXOs as spent for
validation purposes. The “No conflicts” validation rule (Section 3.1.2) rejects any Kontor
transaction that spends inputs already claimed by a pending batched transaction. Indexers

12



must process batches (which propagate via the staker network) in addition to Bitcoin blocks
to maintain consistent state; batch signatures make them self-authenticating.

If a user broadcasts an RBF replacement on Bitcoin after their transaction has been batched:
o The batched transaction will fail to confirm (the replacement spends the same inputs)
e The batched transaction expires
o The user loses their Kontor execution fee (KOR)
o No rollback occurs (there was no optimistic execution of the expired transaction)

This places the cost of RBF replacement squarely on the user who initiated it, rather than
on stakers or counterparties.

Signature Griefing Defense: UTXO locking would be unsafe if batches could include
transactions with invalid Bitcoin signatures: such transactions would never confirm, but
could lock UTXOs until expiry. Kontor prevents this by making ValidWitness(¢) part of
transaction and batch validity. Invalid-witness transactions are rejected and do not trigger
UTXO locking. Recipients may still validate witnesses independently before accepting an
optimistic confirmation.

3.2.4 Cross-Batch Conflict Tiebreaker

Under honest majority, safety prevents conflicting transactions in different batches. This
tiebreaker handles Byzantine scenarios where safety is violated:

Algorithm 10: Cross-Batch Tiebreaker

function TIEBREAKER(t 4, tg)
(ba,iy) < Position(t,)
(bg,ip) « Position(tp)

1
2
3
4:
5: if by < bp then
6.
7
8
9

return t 4
end
if by < by then
: return tg
10: end
11:
12: > Same batch: use index
13:  ifiy <ip then
14: return ¢ 4
15: end
16: return tg
17: end

This deterministic tiebreaker ensures all nodes resolve conflicts identically, even in the
presence of Byzantine behavior.

3.3 State Execution

A transaction progresses through distinct states before execution. Understanding these states
is critical to the protocol’s semantics.

3.3.1 Transaction States

State Definition Guarantee

Batched Included in a signed batch with a Economic finality: > 2/3 stake at-
position tests to ordering

Bitcoin-Confirmed | Confirmed on Bitcoin Bitcoin finality (probabilistic)

Batch-Confirmed | Batched AND Bitcoin-Confirmed Full finality: ordering + Bitcoin

13



State Definition Guarantee
Expired Batch expiry passed without confir- | Stakers penalized; may re-batch
mation
Rolled back Conflicting tx confirmed on Bitcoin | Stakers slashed (unless griefing
proof)

3.3.2 Execution Order

Kontor state executes strictly by position:

Algorithm 11: State Execution

1:  function EXECUTESTATE(state)

2 > Collect all finalized transactions

3 pending < CollectFinalized Txs(state)

4:

5: > Sort by position for deterministic ordering
6: ordered < SortByPosition(pending)

7

8: > Apply transactions in order

9: for tx € ordered do

10: result «+ ApplyToKontorState(tx, state.kontor_state)
11: end

12: end

3.3.3 Position Ordering

Algorithm 12: Position Ordering

1: function SORTBYPOSITION(txs)

2 > Sort transactions lexicographically by (batch_id, index)
3: return Sort(txs, (t4,t5) = Position(t,) < Position(tg))
4: end

3.3.4 Finalization Criteria
A batched transaction is Batch-Confirmed when it is both batched and the same trans-
action confirmed on Bitcoin:
IsBatchConfirmed(t, state) := WasBatched(t, state)
A IsBitcoinConfirmed(t, state) (23)
A — IsRolledBack(t, state)

IsBitcoinConfirmed(t, state) := t.id € state.bitcoin_confirmed (24)

IsRolledBack(t, state) := WasBatched(, state)
A 3t’ € state.bitcoin_confirmed : t" # ¢ A Conflict(¢,t")

(25)

3.3.5 Execution Blocking
Transactions wait for all prior positions to resolve:
CanExecute(t, state) := let (b, i) = Position(t)
A IsBatchConfirmed (¢, state) (26)
A Vp € PriorPositions(b, i) : IsResolved(p, state)

14



IsResolved(p, state) := let t = TxAt(p, state)
A (IsBatchConfirmed(t, state)
V IsExpired(t, state)
V IsRolledBack(t, state))

(27)

This ensures that execution proceeds in position order, maintaining determinism even as
transactions confirm out of order on Bitcoin.

3.3.6 Auxiliary State Functions
The following functions complete the state execution semantics:
Prior Positions: All positions that must resolve before (b,1):
PriorPositions(b, ) := {(b",4") : b’ < b} U {(b,4) : i’ < i} (28)
Transaction Lookup: Retrieve transaction at a given position:

TxAt((b,1), state) := state.batches[b].txs[i] (29)

Batch Lookup: Find the batch containing a transaction:

BatchOf(¢, state) := b where t € b.txs for some b € state.batches (30)

Expiration: A batched transaction expires if its batch expiry passes without Bitcoin
confirmation:

IsExpired(t, state) := let b = BatchOf(t, state)
A — IsBitcoinConfirmed (¢, state)

(31)
A — IsRolledBack(t, state)
A state.block_height > b.expiry
Batched Check: Whether a transaction was included in any batch:
WasBatched (¢, state) := 3b € state.batches : ¢ € b.txs (32)

3.4 Implementation Requirements

3.4.1 Epoch Transitions

Epochs partition time into periods with fixed staker sets. Any epoch mechanism must satisfy:
Duration: Epochs have bounded duration E, ;, < |e| < E,,, in Bitcoin blocks.
Determinism: Epoch boundaries are deterministically computable from Bitcoin state.

Overlap: For safety across transitions, batches signed in epoch e remain valid for W blocks
into epoch e 4 1, ensuring pending batches can finalize.

Unbonding delay: Stakers must wait > 1 epoch after requesting unbonding before with-
drawal. This prevents long-range attacks where an attacker unbonds, then uses old keys to
sign conflicting batches.

Quorum continuity: Honest stake > % must hold in every epoch. Staker set changes must
preserve this invariant.

3.4.2 Timing Parameters

Timing parameters must satisfy the following relationships:
w
BatchInterval < > (33)
where W is the expiry window. This ensures transactions have time to confirm after batching.
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UnbondingDelay > W (34)

Stakers remain slashable for the full expiry window of any batch they signed.
Confirmation timing:
OptimisticConfirmationTime ~ BatchInterval + A (35)
FinalConfirmationTime ~ OptimisticConfirmationTime + k x 8 (36)
where 8 ~ 600s is Bitcoin block time and k is finality depth.

3.4.3 BFT Consensus
The protocol requires any BFT consensus satisfying;:
Safety: No two conflicting batches receive quorum signatures (under > % honest stake).

Liveness: Valid transactions are eventually included in batches (under partial synchrony).

Accountability: Safety violations produce cryptographic evidence attributable to > 1

=3
stake.

Stake-weighted voting: Votes and quorums are weighted by each staker’s total stake o,
in the epoch staker set. The per-batch bond o, , does not affect BF'T voting power; it only
determines (i) how consensus emissions and batch fees are paid, and (ii) how much stake is at
risk for non-fatal batch failures. This separation preserves standard BFT safety assumptions
while letting the market price economic finality.

Minimum stake: The minimum stake o, bounds the number of consensus participants

min
and mitigates Sybil attacks on the network layer. It is orthogonal to bond sizing: even a
high-stake staker can choose to bond less on a particular batch. Transactions express desired
economic finality by setting K,

min

(), and stakers must clear those thresholds to earn rewards.

Standard protocols (PBFT [5], HotStuff [2], Tendermint [6]) satisfy these properties. The
choice is an implementation detail.

3.4.4 Network Layer
Batch propagation: Signed batches reach all honest nodes within bounded time A.

Batch retrieval: Any staker can serve batch data; quorum signatures make batches self-
authenticating.

Fraud proofs: If stakers withhold a signed batch, the batch in the recipient’s possession is
the fraud proof.

3.5 Protocol Flows

The normal protocol flow:

(a) User submits transaction ¢ to stakers
Stakers validate ¢ and include it in the next batch via BFT consensus
Batch b is signed by a quorum (> % stake) and published

)
)
(d) Transaction ¢ receives position (b.batch_id, ) in the global ordering
) User broadcasts ¢ to Bitcoin

)

When ¢ confirms on Bitcoin, ¢t becomes Batch-Confirmed; if a conflict confirms, ¢ is
rolled back

If the staker set fails, users can still transact via Bitcoin directly.
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FIGURE 2. Normal Protocol Flow

3.5.1 Outcome Matrix

Scenario Kontor Payload Stakers | User
Batched, confirms Batch-Confirmed at posi- Paid Success
tion (b, 1)
Not batched, confirms Appended at block-end N/A Success (no ordering)

Batched t 4, conflicting g t4 + subsequent txs rolled Slashed Double-spend; rollback
confirms back

Batched, expires Expired Not paid | May re-batch

4 Incentives & Economics

4.1 Stake Requirements

Consensus stakers must lock KOR to participate. This stake:
e Provides the capital backing for ordering guarantees
o Creates skin-in-the-game for honest behavior
o Enables slashing for protocol violations

Consensus staking is part of Kontor’s unified staking model: the same KOR can simulta-
neously back storage commitments, consensus participation, and bridge operations. An
operator’s total stake must exceed the sum of their commitments across all roles; slashing
in one role affects capacity in all others. (See the Kontor Whitepaper. [1])

4.1.1 Minimum Stake

Os Z Omin

(37)

bounds the maximum number of stakers. With 1B total KOR
each staker would lock at least 1% of supply, implying a

The minimum stake o

min

supply and the suggested o,

min>

theoretical maximum of 100 stakers.

4.1.2 Staker Set

The set of consensus stakers at epoch e is denoted 8. Each staker s € § has stake o, > o,

Total consensus stake: X £ 5" o
se8 S
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4.2 Staker Rewards

Stakers earn revenue from two sources: protocol emissions and ordering fees. For a unified
view of staking yields across all protocol services, see the Kontor Staking Yield Analysis.|[7]

4.2.1 Emission Share
A fraction Xgopsensus Of total KOR emissions is allocated to consensus stakers. Per block h:
ECOHSCHSUS(h) g E(h) : XCODSCHSUS (38)

where €(h) is total network emissions per block (see Kontor Whitepaper [1] for the emission
schedule).

Emissions are distributed to stakers who successfully provide optimistic-consensus service.
Let EligibleConfirmedTxs(b, h) be the subset of transactions in batch b that become Batch-
Confirmed at Bitcoin height h and whose minimum bond requirement is met:

EligibleConfirmedTxs(b, h) := {t € ConfirmedTxs(b, h) : £y,,4(0) > Kin(t)}  (39)

Let By, (h) be the set of batches for which at least one eligible transaction becomes Batch-
Confirmed at Bitcoin height h:

B, (h) := {b : |EligibleConfirmedTxs(b, h)| > 0} (40)
Define the bonded stake weight for height h:

Wy () 1= Z |EligibleConfirmed Txs(b, h)| - o, (41)

be B, .(h):s€b.signers

W(h) = wyp (42)

seS

Then emissions are distributed proportionally to bonded stake weight (zero if W (h) = 0):

(W) s
Feision (5. 1) £ {E”““““(h) () 1) >0 (43)

0 otherwise

This makes emissions a payment for successful optimistic confirmations, avoids paying for
unresolved batches, and preserves the interpretation of o, ;, as stake-at-risk per batch.

4.2.2 Ordering Fees

Ordering stakers are funded primarily by emissions, which cover the base cost of providing
optimistic consensus. The ordering fee f, 4(¢) is an optional payment that users can include
to increase priority or express willingness to pay for service.

Ordering fees are escrowed when a transaction is included in a signed batch. On Batch-
Confirmed, fees are paid to signers; on expiry or rollback, fees are burned.

Let ConfirmedTxs(b,h) be the subset of b.txs that become Batch-Confirmed at Bitcoin
height h. Ordering fee payouts are payment-gated per transaction: if 3, ,(b) < K (%),
then #’s non-burned fee portion is not paid to signers (it is burned). A fraction S, of fees is
burned even on success; the remainder of eligible fees is distributed to signers proportionally
to bonded stake:

def Us,b
Tfee(sv b7 h) = (1 - Bfee) ' Z ford (t) ' D) (b) (44)
te EligibleConfirmedTxs(b,h) bond

where Ebond (b) = Z

. O, p-
seb.signers s,b
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4.2.3 Total Staker Revenue

Tstaker(s7 h) = remission(‘s? h) + Z Tfee(sv b7 h) (45)
beB . (h)

suce (

4.2.4 Dynamic Bond Sizing (Prediction-Market Designs)

Kontor treats optimistic consensus as a virtual prediction market on the event
this batch confirms on Bitcoin before expiry without conflict. Each signer chooses how
much stake to bond to the batch, o, ;, trading off higher expected reward against higher
loss if the batch expires or is rolled back.

Design A: Free-market bonding (yield clears).
o The protocol fixes the consensus emission stream ¢ h).

e Stakers allocate o, ; batch-by-batch. Users express their desired economic finality by

consensus (

setting K, ; () on transactions. If the market is under-bonding relative to demand,
batches with higher X, 4(b) capture a larger share of the transaction flow whose

rewards are gated by K, increasing the realized return to bonding and attracting

min>’

additional bonding. If the market is over-bonding, the reward rate per bonded KOR
on successful flow falls and bonding decreases.

4.2.5 Expected Yields

The yield decreases as more stakers join, creating natural equilibrium where entry occurs
until yield matches required return.

= 10M KOR, X onsensus = 0-10, and assuming
bonded stake usage is proportional to total stake and near-continuous):

Example (with suggested parameters, o,

Stakers | Total Stake | Per-Staker Emissions | Yield (emissions only)
10 100M KOR 1M KOR/year 10.0%
30 300M KOR 333K KOR/year 3.3%
50 500M KOR 200K KOR/year 2.0%

4.3 Slashing Conditions

Stakers are slashed for protocol violations. Slashing severity varies by offense type and
participation level.

4.3.1 Equivocation (Fatal)

A staker equivocates by signing two batches containing conflicting transactions:

Equivocation(s, by, by) := s € by .signers A s € by.signers

A 3t; € by.txs, ty € by.txs : Conflict(ty,t,) (46)
Equivocation is provable malice. Penalty: A, of stake.
pena’ltycquiv(s) = >‘0quiv 10, (47)
4.3.2 Invalid Batch (Severe)
A batch containing an invalid transaction (malformed, internal double-spend, etc.):
InvalidBatch(b) := 3t € b.txs : — ValidTransaction(t) (48)
Signers failed their validation duty. Penalty: A, .;q of bonded stake.
penalty; i (5, 0) = Apyatia - 9.0 (49)
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4.3.3 Conflict Confirmation (Severe)

When a conflicting transaction ¢z confirms on Bitcoin instead of the batched ¢4, stakers
who signed the batch containing ¢, are slashed. The staker asserted that no conflict would
confirm; the assertion was false.

ConflictConfirmed (b, tz) := 3t 4 € b.txs : Conflict(t4,tg) A BitcoinConfirmed(tgz) (50)

Penalty: A . of bonded stake.

conflic
penaltyconﬂict(s’ b) = Aconﬂict “Osh (51)

User Griefing Defense: If a user submits a transaction to stakers, receives batching, then
broadcasts a conflicting transaction to Bitcoin (griefing attack), stakers can submit proof
that the user signed both conflicting transactions. In this case, stakers are exonerated and
the user forfeits their Kontor execution fee (KOR). This proof consists of:

o The signed batch containing ¢ 4

o The Bitcoin-confirmed conflicting transaction tg

o Proof that both transactions were signed by the same key (the user)

4.3.4 Batch Expiry (Graduated)

When transactions in a batch fail to confirm within the expiry window W, signers are
penalized. The penalty scales inversely with signature participation—fewer signers means
each bears more responsibility.

Let o = Esigners% be the fraction of total stake that signed batch b, where ¢ € [%, 1].

Let ngypirea(b) be the number of transactions in batch b that expired without Bitcoin
confirmation. Total batch penalty:

det 1
Baatch = chpiry : ncxpircd(b) : (;) (52)

Per-staker penalty (distributed among signers):

def . g b
penaltyexpiry(s7 b) = min IDbatch : > (b) ?Acap “Osh (53)
Ebond
where A, caps any single batch’s damage to a fraction of bonded stake.

The penalty roughly doubles when going from full participation to minimum quorum:

Signature % | Total Penalty
100% Texpiry
90% 111 0piy
80% 1.25 - 0oy
67% 149 - 7y

4.3.5 Slash Distribution

Slashed funds are split between burning and rewarding the evidence submitter:

burn = g

Jlash © @mount

54

reward = (1 — By,q,) - amount (54)

Slashing and bond exposure: Slashing reduces a staker’s stake. If slashing causes
BondExposure(s, state) > o, then any further batches signed by s will fail the bond expo-
sure invariant until active batches resolve and bond exposure falls below remaining stake.
Slashing for non-fatal batch failures is charged against the staker’s pooled stake; realized
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slashing is capped by the staker’s remaining stake. Equivocation (which slashes total stake)
immediately removes the staker from the active set and marks their participation in other
pending batches as zero-weight for future slashing purposes (though their signatures remain
valid for quorum calculation on already-signed batches).

4.3.6 Liveness Failures
Repeated failure to participate in consensus rounds results in:
(a) Reduced reward share (proportional to missed rounds)
(b) Eventual ejection from staker set if below participation threshold
(c) Stake returned (not slashed) since liveness failures may be due to network issues
4.3.7 Fraud Proofs
Any user can submit fraud proofs to trigger slashing:

Equivocation proof: Two signed batches containing conflicting transactions. Self-con-
tained cryptographic evidence.

Invalid batch proof: A signed batch containing a demonstrably invalid transaction.

Conflict proof: A signed batch plus Bitcoin proof that a conflicting transaction confirmed
(unless griefing proof exonerates stakers).

Griefing proof: A signed batch containing ¢, plus Bitcoin-confirmed tz where
Conflict(t 4,tp) and both transactions were signed by the same user key. Exonerates stakers
from conflict slashing.

Expiry proof: A signed batch plus Bitcoin proof that transactions did not confirm within
window W.

Note: Non-publication is not slashable (cannot prove a negative).

4.4 Economic Security

4.4.1 Attack Costs

Corrupting % of stake enables equivocation attacks (signing conflicting batches). The attack
is profitable only if the value extracted exceeds the stake destroyed:

1
AttackCost > 3 D) (55)
Bonds and security: The per-batch bond o, ;, does not change BFT safety (votes remain
stake-weighted by o), but it does change the strength of the economic guarantee a trans-
(t), and
(t), stakers are not paid for t.

action can purchase. Transactions specify a minimum total bond requirement K, ;,

ordering rewards for ¢ are payment-gated: if Xy 4(b) < K,
This produces a market for economic finality without changing BFT assumptions.
Deliberately bad batches: A quorum can always choose to sign batches that are “bad” in
the economic sense (e.g., including transactions that are unlikely to confirm before expiry).
Under the assumed honest supermajority, this is bounded by slashing and by the fee-escrow
rule: stakers are paid only when transactions become Batch-Confirmed, while expiry and
conflict events trigger penalties. If a coalition controlling > % of total stake is willing to burn
money to harm users, no purely economic mechanism can prevent service degradation; the
protocol’s guarantee in that case is graceful fallback to Bitcoin and objective evidence of
what was signed.

Example (illustrative KOR prices):
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Total Stake X | Corruption Cost | At $0.20/KOR

100M KOR 33M KOR $6.6M
300M KOR 100M KOR $20M
500M KOR 167TM KOR $33M

4.4.2 Rational Staker Behavior

A rational staker maximizes expected profit:
]E[prOﬁt(s)} = Tstaker(s) - E[pena‘lties(s)} — 05 P (56)
where p is the opportunity cost of capital.

Honest behavior dominates because:
(a) Emissions and fees accrue to honest stakers
(b) Equivocation destroys entire stake (penalty Ay
(c) Invalid batches and conflicts cost Aipvagids Aconfice OF Stake
)

(d) Even expiry penalties exceed any fee savings from careless validation

4.4.3 Incentive Alignment

Staker Action Outcome Incentive Effect

Sign valid batch that confirms Paid emissions + fees Rewarded

Sign valid batch, conflict confirms | Rollback; A, g slashed | Deterred

Sign batch that expires Penalized (graduated) Deterred

Sign invalid batch Ainvalia Stake slashed Strongly deterred
Equivocate Aequiv Stake slashed Catastrophically deterred
Censor transactions Forgo fees Opportunity cost

4.4.4 Miner Participation

Bitcoin miners have a natural economic incentive to participate as consensus stakers. A miner
who also stakes KOR earns both mining revenue (block rewards plus Bitcoin transaction fees)
and staking revenue (KOR emissions and execution fees). More importantly, miner-stakers
can provide stronger guarantees: when a miner signs a batch, they are implicitly committing
to include those transactions in blocks they mine. This reduces the probability of conflict
between batched and mined transactions, since the same economic actors control both. The
result is a virtuous cycle: miner participation increases staking finality confidence, which
increases Kontor adoption, which increases Kontor execution fee revenue, which further
incentivizes miner participation.

5 Security Analysis

5.1 Security Properties

BFT safety is inherited from the underlying consensus protocol. We establish the following
core properties:

(a) Ordering Determinism: Same batches — same execution order
(b) Finality Equivalence: WasBatched A Bitcoin-Confirmed <> Batch-Confirmed

The forward direction of Finality Equivalence (=) follows from the definition of Batch-Con-
firmed. The reverse direction (<) holds because if the same transaction is Bitcoin-Confirmed,
no conflicting transaction can be Bitcoin-Confirmed (Bitcoin prevents double-spends), so
the transaction cannot be rolled back without a Bitcoin reorganization.
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5.1.1 Safety

This is a standard BFT quorum intersection argument, inherited from the underlying
consensus protocol.

Theorem (No Conflicting Batched Transactions): If honest stakers hold > % of total
stake, then for all valid batches b, by:

Vi, € by .txs,ty € by.txs : Conflict(ty,ty) = (b = by At; =15) (57)
Proof sketch:
(a) Quorum requires 2% stake.
(b) Any two quorums overlap by > 3 stake.
(¢) Overlap contains at least one honest staker.
(d) Honest stakers refuse to sign batches containing conflicts with previously-signed

batches.
(e) Therefore, conflicting transactions cannot appear in two valid batches. O

5.1.2 Determinism
Theorem (State Determinism): All honest nodes compute identical Kontor state from
identical Bitcoin state and batch set:

Vs, 8q ¢ (81.bitcoin = s,.bitcoin A s;.batches = s,.batches) = s;.kontor = s,.kontoxr58)

Proof: Execution order is deterministic (sorted by position), conflict resolution is determin-
istic (Bitcoin authoritative), and state transitions are deterministic functions. O

5.1.3 Rollback Detectability

Theorem: If a batched transaction is rolled back, there exists Bitcoin evidence (a conflicting
transaction in a confirmed block). Rollback cascades to all subsequent transactions.

Proof: Rollback occurs only when a conflicting transaction confirms on Bitcoin. Bitcoin
confirmations are publicly observable. Cascading follows from sequential execution seman-
tics. O

5.1.4 Accountability
Theorem (Attributable Faults): Any safety violation is attributable to > $3 stake.

Proof sketch:
(a) Safety violation requires two conflicting batches with valid quorum signatures.
1
(b) Quorums overlap by > 3.
(c) Stakers in overlap signed both batches.
)

(d) Their identities are recorded in both batch.signers. O

5.1.5 Censorship Resistance

Property (Censorship Cost): A staker who censors transaction ¢ forgoes expected fee
share (1 — Bge) - 0, - (g""’d (b)) on any batch b that would have included ¢, weighted by the

'bon

probability p that ¢ would have become Batch-Confirmed.

Property (Censorship Fallback): Users can bypass stakers entirely. Transaction confirms
on Bitcoin and is appended at block-end.

5.1.6 Liveness

Property (Graceful Degradation): If staker liveness fails, users can still transact via
Bitcoin directly. Transactions confirm and append at block-end without optimistic ordering.
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5.2 Cryptographic Proofs

We prove that any safety violation can be attributed to specific stakers whose stake exceeds
the Byzantine threshold.

5.2.1 Security Model
Let ¥ = (KeyGen, Sign, Verify) be an EUF-CMA secure signature scheme.

Definition (EUF-CMA Security): A signature scheme is EUF-CMA secure if for any
PPT adversary A:

AdvEUF-CMA (4 .= Pr[EUF-CMAY = 1] < negl()) (59)

where the EUF-CMA game allows A to query a signing oracle and must output a valid
signature on a message not queried.

5.2.2 Accountability Theorem

Theorem (Accountable Safety): Let P be the Kontor Optimistic Consensus protocol
using signature scheme 3. If ¥ is EUF-CMA secure, then any safety violation is attributable
to a set of stakers holding > % of total stake.

Proof:

Suppose a safety violation occurs: there exist two valid batches b, b, containing transactions
t; € by.txs and t, € by.txs with Conflict(tq,1,).

Step 1: Quorum Intersection.
Since both batches are valid:
ValidQuorum(b, .signers, S) A ValidQuorum(b,.signers, S) (60)

By the Quorum Intersection Lemma:

Z S.stakers[s] >

s€b, .signers Nb, .signers

- TotalStake(S) (61)

W =

Step 2: Signature Evidence.

For each staker s € b,.signers N b,.signers:
o There exists o, such that Verify(o,, BatchDigest(b; ), pk,) =1
o There exists o4 such that Verify(o,, BatchDigest(b,), pk,) = 1

Since by # b, (they contain conflicting transactions), we have BatchDigest(b,) #
BatchDigest(b,).

Step 3: Attribution.
Define the guilty set:
G := {s € b, .signers N b,.signers : ValidSignature(c$, s,b;) A ValidSignature(cs, s, b,)(62)
By Step 1, 3°__, S.stakers[s] > 1 - TotalStake(S).
Step 4: Non-Repudiation.

Suppose staker s € G claims innocence (did not sign one of the batches). Without loss of
generality, suppose s claims they did not sign b;.

Construct an EUF-CMA adversary B:
o 3B receives pk, as challenge public key
e B simulates the protocol, using the signing oracle for s’s signatures
o When the safety violation occurs, B outputs (o3, BatchDigest(b;))
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If s truly did not sign b;, then BatchDigest(b;) was never queried to the oracle, so
(o3, BatchDigest(b, )) is a valid EUF-CMA forgery.

This contradicts EUF-CMA security of ¥. Therefore, s must have signed both batches. O

5.2.3 Slashing Correctness

Corollary (Slashing Correctness): The slashing mechanism is sound: an honest staker
is never slashed, and any slashed staker is guilty of a protocol violation.

Proof:

Soundness (no false positives): An honest staker only signs batches that do not conflict
with previously-signed batches. By the honest staker rule, if s is honest and b € signed,,
then for all b’ € signed,: Vt € b.txs,t’” € b’.txs : = Conflict(t,t’).

Slashing requires equivocation evidence: two batches with conflicting transactions both
signed by s. This cannot occur for honest s.

Completeness (guilty stakers slashable): By the Accountability Theorem, any safety
violation produces cryptographic evidence (two signatures by the same staker on conflicting
batches). This evidence constitutes valid slashing evidence. O

5.3 Game-Theoretic Analysis

5.3.1 Inclusion Incentive

Setting: Stakers collectively decide which transactions to include in batches.

Staker payoff for including transaction t:

g, . . .
Ty = (1 — Bieo) * 6 - (2%!‘8’5) %f t conflrms bfzfore expiry (63)
0 if ¢t expires or is rolled back
Theorem (Inclusion Incentive): A utility-maximizing staker includes all valid transac-
tions.
Proof:

Let ¢ be a valid transaction with fee ¢, and confirmation probability p > 0.

Expected payoff from including ¢:

E[my | include] =p- (1—Bg) -6, - (205 ) (64)

signers
Expected payoff from excluding ¢:

IE['/rs(t) | exclude] =0 (65)
Since p > 0 and d, > 0, inclusion strictly dominates exclusion. O

5.3.2 Censorship Cost

Censorship has a quantifiable cost: foregone fees. For a coalition C' censoring transaction ¢:

signers

D)
CensorshipCost(C, ) = (1 — fB4.) - 0; - ( o ) (66)
where X is the total stake of the censoring coalition.

Case 1: C does not form a quorum. Then ¢ is included by honest stakers anyway, and C
merely forgoes their share.
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Case 2: C forms a quorum (> % stake). The user bypasses stakers and broadcasts to Bitcoin.
Transaction confirms at block-end; C' receives nothing.

Censorship is profitable if and only if the external bribe B > CensorshipCost(C,t). The
protocol does not prevent censorship—it makes the cost transparent and quantifiable.

5.4 Lean 4 Formalization

The protocol’s fundamental claim: Bitcoin provides finality, batches provide ordering—
these are orthogonal. The following Lean 4 code provides machine-checked proofs of three
properties:

(a) Ordering determinism: Same batches and unbatched transaction lists produce
the same execution order, regardless of L1 state.

(b) Finality inheritance: Kontor-final implies L1-final—mo transaction is considered
final without Bitcoin confirmation.

(¢) Conflict handling: When a conflicting transaction (RBF, double-spend) confirms
on L1, the batched transaction is invalidated.

Ordering is static—determined by batch structure and block positions. Validity is dynamic
—a transaction’s position is fixed, but whether it executes depends on L1 state (expiry,
conflicts). Together these prove: (1) we inherit Bitcoin’s finality, (2) ordering is deterministic,
and (3) conflicts are handled correctly.

import Mathlib.Data.Finset.Basic
import Mathlib.Data.List.Basic

namespace KontorConsensus
/- ## Core Types -/

abbrev TxId := Nat
abbrev BlockHeight := Nat
abbrev UTX0 := Nat

/-- A transaction with inputs -/
structure Transaction where

id : TxId

inputs : Finset UTXO0

deriving DecidableEq

/-- A batch is an ordered sequence of transactions with an expiry -/
structure Batch where

id : Nat

txs : List Transaction

expiry : BlockHeight

deriving DecidableEq

/-- An unbatched transaction confirmed on L1, with its block position -/
structure UnbatchedTx where

tx : Transaction

block_height : BlockHeight

block index : Nat

deriving DecidableEq

/-- Protocol state -/
structure State where
11 height : BlockHeight
11 _confirmed : Finset TxId
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batches : List Batch
unbatched : List UnbatchedTx

/-! ## Ordering

Ordering is static: determined entirely by batch structure and block
positions.

Execution order: batched transactions first (by batch), then unbatched at
block-end.

2/

/-- Position of a batched transaction: (batch id, index in batch) -/
def batchPosition (batches : List Batch) (tx : Transaction) : Option (Nat x
Nat) :=
batches.enum.findSome? fun (_, batch) =>
batch.txs.enum.findSome? fun (tx_idx, t) =>
if t.id = tx.id then some (batch.id, tx_idx) else none

/-- Sort unbatched transactions by (block height, block index) -/
def sortUnbatched (unbatched : List UnbatchedTx) : List UnbatchedTx :=
unbatched.mergeSort fun a b =>
a.block height < b.block height ||
(a.block height = b.block height &% a.block index = b.block index)

/-- Execution order: batched first, then unbatched sorted by block position -/
def executionOrder (s : State) : List Transaction :=

let batched := s.batches.bind (-.txs)

let unbatchedSorted := (sortUnbatched s.unbatched).map (-.tx)

batched ++ unbatchedSorted

/-1 ## Validity

Validity is dynamic: depends on L1 state (expiry, conflicts).
A transaction's position is fixed, but whether it executes depends on L1.
=(/

/-- Conflict relation: transactions share at least one input (RBF, double-
spend) -/
def conflict (txl tx2 : Transaction) : Prop :=

tx1l.id # tx2.id A (tx1l.inputs n tx2.inputs).Nonempty

/-- A batch is expired if current height exceeds expiry -/
def batchExpired (s : State) (b : Batch) : Prop :=
s.11 height > b.expiry

/-- A batched transaction is conflicted if a different tx spending the same
inputs confirmed on L1 -/
def isConflicted (s : State) (tx : Transaction) : Prop :=
3 conflicting tx : Transaction,
conflicting tx.id € s.l1 confirmed A
conflicting tx.id # tx.id A
conflict tx conflicting tx

/-- A batched transaction is valid if its batch hasn't expired and it's not
conflicted -/
def batchedTxValid (s : State) (tx : Transaction) : Prop :=

3 b € s.batches, tx € b.txs A -batchExpired s b A -isConflicted s tx

/-- Transactions at or after a rolled-back position must also roll back -/
def cascadeRollback (batches : List Batch) (rollback pos : Nat x Nat) (tx :
Transaction) : Prop :=
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match batchPosition batches tx with

| some pos => pos.1l > rollback pos.1 v (pos.1l = rollback pos.l A pos.2 =
rollback pos.2)

| none => False

/- ## Property 1: Ordering Determinism

Ordering is static—same batches and unbatched lists yield the same order.
L1 state affects validity, not ordering.
Y/

/-- Ordering depends only on batches and unbatched list, not L1 state -/
theorem ordering determinism (sl s2 : State)
(h_batches : sl.batches = s2.batches)
(h_unbatched : sl.unbatched = s2.unbatched)
executionOrder sl = executionOrder s2 := by
simp only [executionOrder, h batches, h unbatched]

/-- Batch position depends only on batches -/
theorem batch position determinism (sl s2 : State)
(h_batches : sl.batches = s2.batches)
(tx : Transaction)
batchPosition sl.batches tx = batchPosition s2.batches tx := by
simp only [h_batches]

/- ## Property 2: Finality Inheritance

Finality comes from L1, not from batching. Kontor-final implies L1l-final.
Y/

/-- L1 finality: transaction confirmed on Bitcoin -/
def 11Final (s : State) (tx : Transaction) : Prop :=
tx.id € s.11 _confirmed

/-- Kontor finality: L1 confirmation of a valid batched tx, or unbatched
confirmation -/
def kontorFinal (s : State) (tx : Transaction) : Prop :=

11Final s tx A (batchedTxValid s tx v 3 utx € s.unbatched, utx.tx = tx)

/-- Finality inheritance: Kontor-final implies L1-final -/
theorem finality requires 11
(s : State) (tx : Transaction)
(h : kontorFinal s tx)
11Final s tx :=
h.1

/-- Contrapositive: no L1 confirmation means no Kontor finality -/
theorem no_11 no_kontor_ final
(s : State) (tx : Transaction)
(h_not 11 : -11Final s tx)
-kontorFinal s tx := by
intro h_kontor
exact h_not_11 h_kontor.1

/- ## Property 3: Conflict Handling

When a conflicting transaction confirms on L1, the batched transaction is
invalidated.

This models RBF and double-spend scenarios.

={
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/-- If a conflict confirms, the batched tx becomes invalid -/
theorem conflict invalidates
(s : State) (tx : Transaction) (conflict tx : Transaction)
(h_conflict : conflict tx conflict tx)
(h_confirmed : conflict_tx.id € s.11_confirmed)
isConflicted s tx := by
exact (conflict tx, h confirmed, h conflict.l.symm, h conflict)

/-- Conflicted transactions are not valid -/
theorem conflicted not valid
(s : State) (tx : Transaction)
(h_conflicted : isConflicted s tx)
—batchedTxValid s tx := by
intro (_, _, _, _, h_not_conflicted)
exact h not conflicted h conflicted

end KontorConsensus
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