
KONTOR STORAGE PROTOCOL

January 10, 2026

ADAM KRELLENSTEIN ALEXEY GRIBOV OUZIEL SLAMA

adam@kontor.network alexey@kontor.network ouziel@kontor.network

Contents

1 Introduction . ⁠2

2 Protocol . ⁠3

2.1 Summary . ⁠3

2.2 State-Machine Replication . ⁠3

2.3 Actors . ⁠3

2.4 Protocol Objects and State Variables . ⁠5

2.5 Protocol Flow . ⁠10

2.6 Off-Chain Flows . ⁠15

2.7 Transaction Processing . ⁠21

2.8 Block Processing . ⁠29

3 Economic Analysis . ⁠37

3.1 Storage Node Economics . ⁠37

3.2 Node Decision Framework . ⁠38

3.3 Macroeconomic Stability . ⁠40

3.4 Capital Cost Dominance . ⁠41

3.5 Failure Detection . ⁠41

4 Security Analysis . ⁠42

4.1 Protocol Security . ⁠42

4.2 Economic Security . ⁠44

5 Appendix . ⁠47

5.1 Parameter Selection . ⁠47

6. Bibliography . ⁠49

1

mailto:adam@kontor.network
mailto:alexey@kontor.network
mailto:ouziel@kontor.network

1 Introduction

The Kontor Storage Protocol is a system for ensuring that a set of untrusted actors are

continuously and correctly storing data that they have publicly committed to preserving.

This protocol implements a proof-of-retrievability (PoR) scheme on a blockchain coupled

with crypto-economic incentives to provide scalable, perpetual storage that complements

the state-machine replication architecture of the blockchain network within which the file

storage system runs as a smart contract.

This protocol is a core feature of the Kontor Bitcoin metaprotocol. Kontor Indexers imple

ment the greater Kontor protocol and execute the contracts that define the rules of the

storage system. Each Indexer acts as a Verifier, independently verifying the integrity and

validity of cryptographic proofs—published to the Bitcoin blockchain by a Storage Node

(the Prover)—that claim to demonstrate that the node in question possesses a copy of

certain data when it generates the proof in question.

Storage nodes are challenged pseudo-randomly by the Indexers using a shared source of

entropy (in Kontor, the Bitcoin block hash). With each block, the Indexers use this shared

entropy as a seed for the pseudo-random selection of file-node pairs, and the chosen Storage

Nodes must respond to each of these Challenges by publishing a proof that they possess a

copy of a pseudo-random subset of the file data that they have previously agreed to store.

If a Storage Node fails to produce a valid proof within the allotted timeframe, the node is

subject to a slashing of their escrowed balance of the KOR cryptocurrency as recorded by

each Indexer.

The cryptographic proof system, implemented in the Kontor-Crypto Rust library, uses the

Nova[1] recursive SNARKs via the arecibo[2] library. The compressed SNARK is constant-

size (~12 kB) regardless of the number of challenged symbols; the full proof includes per-file

metadata adding ~40 bytes per file. These proofs are efficient to verify (approximately 50ms),

making it feasible for the Kontor system to provide strong guarantees for decentralized data

storage at scale. For the cryptographic proof generation and verification algorithms, see the

Kontor Proof-of-Retrievability.[3]

Perpetual storage is funded by constant emissions: new KOR tokens are minted at a fixed

annual rate (𝜇0, relative to total supply) and distributed to storage nodes as rewards.

This design is viable because Kontor’s cost structure is fundamentally intrinsic. Traditional

decentralized storage systems cannot directly observe real-world storage costs or token

exchange rates; any mechanism depending on external price feeds introduces centralization

risks and manipulation vectors. Kontor solves this by ensuring the dominant cost of storage

provision is the opportunity cost of staking KOR, not physical infrastructure. When capital

costs dwarf physical storage costs, the system becomes a closed loop: storage providers earn

KOR for staking KOR. Node operators compare KOR rewards against KOR staking costs

—both intrinsic to the protocol—so no oracle is needed. Market forces naturally balance

supply and demand: when profitability falls, nodes exit and rewards concentrate among

remaining nodes; when rewards rise, new nodes join and dilute rewards. This equilibrium-

finding process maintains adequate replication through natural market dynamics without

protocol intervention.

For a high-level overview of the Kontor system as a whole, see the Kontor Whitepaper.[4]

For protocol parameters, see the Appendix of the Whitepaper.

2

2 Protocol

2.1 Summary

In the Kontor data storage protocol, users upload their data to storage nodes, which

commit to storing their data forever. A user pays a one-time fee per file, which is calculated

based on the file’s size and the network’s current state. This entire fee is burned.

An initial set of storage nodes are party to a file agreement upon its creation. These nodes are

not paid from the user’s fee; instead, they (and any nodes that join later) are compensated

through ongoing emissions of the Kontor native token, KOR. The protocol uses a pooled

stake model: to participate, a node must maintain a single, total KOR stake balance that

is sufficient to cover all of its file storage commitments. This stake is part of Kontor’s

unified staking system, where the same KOR can simultaneously back storage commitments,

consensus participation, and bridge operations.

With the mining of each Bitcoin block, every Kontor indexer deterministically derives from

the block hash a challenge that pseudo-randomly identifies a set of previously uploaded

files to be audited. For each challenged file, one of its storage nodes is selected to publish

a proof to the Bitcoin blockchain that it is indeed storing the data. This proof must be

submitted within a fixed window of blocks.

If a storage node fails to produce a valid proof in time, a portion of its staked KOR is

slashed. A part of the slashed funds is burned, and the remainder is distributed to the other

nodes storing that same file. Conversely, nodes in a file agreement are rewarded each block

a share of that file’s KOR emissions.

After an agreement is created, nodes may join or leave it based on their operational costs and

expected profits, as long as the file’s replication level remains above a minimum threshold.

Nodes pay a fee to leave based on (1) the quantity of KOR they escrowed to join the

agreement and (2) the number of nodes in the agreement. Storage nodes are thus strongly

incentivized to store all files that they have committed to.

2.2 State-Machine Replication

A blockchain operates by state-machine replication in which a Byzantine fault–tolerant

consensus protocol is used by untrusted entities to agree on a log of events which are then

executed deterministically to arrive at a shared state. A metaprotocol extends the model

with the addition of a second state machine.

Each Kontor Indexer is deterministic and operates on an identical stream of input data

(the Bitcoin blockchain); thus all correct Indexers act as a single effective Indexer that

implements the protocol itself.

2.3 Actors

• Users 𝒰︀ = {𝑢1, …, 𝑢𝑛}: A user is any account that stores data on the network. Users

submit transactions to create file agreements and pay storage fees. They may also

retrieve from storage nodes data uploaded by them or by other users.

• Storage Nodes 𝒩︀ = {𝑛1, …, 𝑛𝑚}: A storage node is any account that commits to

store files. Storage nodes submit transactions to join/leave file agreements and submit

storage proofs.

3

File Upload

File Retrieval

Create Agreement
Join/Leave,

Proof

Stake/Unstake

State Derivation

User
Storage

Node

Bitcoin Blockchain

Indexer

Figure 1: Actor Interaction Model

Blue: off-chain data transfer

Green: transactions

Grey: state derivation

1. Prepare

Agreement
2. Generate

Storage Proof

1. Generate

Storage Challenge

5. Validate

Storage Proof

2. Distribute File and Agreement

3. Sign Agreement

4. Broadcast

Storage Agreement

3. Broadcast

Storage Proof

5. Process

Agreement

4. Process

Storage Proof

Storage

User

Storage

Staker

Bitcoin

Blockchain

Kontor

Indexer

Figure 1. File storage flow: agreement creation and challenge-response

proof cycle.

4

2.4 Protocol Objects and State Variables

All state is maintained by Kontor indexers and updated deterministically as Bitcoin blocks

are processed.

Time Semantics: Throughout this document, 𝑡 denotes the current state of the protocol

state machine. The value 𝑡 increments with each state transition: transaction processing,

block start, and block end. State variables like Ω(𝑡) and |ℱ︀(𝑡)| represent current values at

step 𝑡.

2.4.1 Global Protocol State

• ℱ︀: Set of active file agreements

• Pending agreements: File agreements awaiting activation

• 𝒪︀: Set of active sponsorship offers

• ℳ︀: Set of active sponsorship agreements

• Sponsorship bond escrow: Mapping from (𝑛entrant, 𝑓) to escrowed bond amount (in

KOR)

• Total files ever created (counter for assigning rank𝑓)

• For each file agreement 𝑓 ∈ ℱ︀: 𝒩︀𝑓 - the set of storage nodes storing file 𝑓
• For each node 𝑛: ℱ︀𝑛 - the set of active file agreements stored by node 𝑛
• Active challenges awaiting proofs

Activation Permanence: Once a file agreement enters ℱ︀ (by reaching 𝑛min nodes), it

NEVER leaves ℱ︀. The agreement remains active forever, even if all nodes are removed

through slashing or stake insufficiency. In such cases, the agreement becomes under-repli

cated (|𝒩︀𝑓 | < 𝑛min or even |𝒩︀𝑓 | = 0) but stays in ℱ︀ and continues to accrue emissions

(though emissions are not minted when |𝒩︀𝑓 | = 0, see Section 2.8.2). This ensures Ω is

monotonically increasing and 𝑘𝑓 calculations for new files remain deterministic.

All algorithm references to “files” or ℱ︀ mean ACTIVE files only. Pending agreements are

tracked separately until activation.

2.4.2 Global Emission State

Indexers maintain a single global emission weight value:

• Ω - Total network emission weight, defined as:

Ω ≝ {
1.0 if ℱ︀ = ∅
∑𝑓∈ℱ︀ 𝜔𝑓 otherwise (1)

Initialized at genesis as Ω = 1.0 to prevent division-by-zero. This is a single mutable

global variable.

State Update Rule: When a file agreement 𝑓 activates (reaches 𝑛min nodes in Join-

Agreement):

Ω ← Ω + 𝜔𝑓 (2)

Files never deactivate, so Ω is monotonically increasing. This value determines each file’s

share of network emissions and is used to calculate per-node base stakes for new files. When

creating a new file agreement, use the current value of Ω (which reflects the state before this

new file is added).

Edge Cases: The genesis value Ω = 1.0 enables deterministic stake calculations when the

first file is created. If all nodes leave a file agreement (|𝒩︀𝑓 | = 0), the file remains in ℱ︀ with

its 𝜔𝑓 counted in Ω, but emissions for that file are not minted (see Section 2.8.2). This

maintains determinism in fee and stake calculations for new files.

5

2.4.3 Account Balances

Each account (user or storage node) has an address id and KOR balance in one of two states:

• Spendable KOR (𝑏): Can be transferred, used to pay fees (storage fees, leave fees),

or deposited into stake.

• Staked KOR (𝑘𝑛, storage nodes only): Locked as security deposit to cover file

agreements. Cannot be transferred and is subject to slashing. The protocol uses a

pooled stake model where each node maintains a single stake balance 𝑘𝑛 that covers

all their file agreements. There is no per-agreement stake.

2.4.4 Files

A file 𝐹 consists of raw data that has been prepared for storage using erasure coding and

Merkle tree commitment:

𝐹 = (id𝑓 , unique identifier

data, raw file bytes
size, |data| in bytes

𝜌, Merkle root commitment
𝑛symbols, number of data symbols (31-byte units)

𝑛codewords, number of RS codewords
𝑛total, total symbols including parity

𝒯︀ Merkle tree over all symbols)

(3)

The file preparation function transforms raw data into a prepared file with metadata:

Prepare-File : {0, 1}∗ → ℱ︀prep × ℳ︀ (4)

where ℱ︀prep contains the Merkle tree and ℳ︀ is metadata stored on-chain.

2.4.5 File Agreements

A file agreement 𝒜︀ represents the protocol’s commitment to store a specific file. An

agreement is created when a user pays the storage fee and becomes active when 𝑛min storage

nodes join:

𝒜︀ = (id𝑎, agreement identifier
file_id, file being stored

𝑀, file metadata (root, size, etc.)
𝒩︀𝑎 ⊆ 𝒩︀, set of storing nodes

creation_block, block height when created
rank𝑓 ∈ ℕ+, file creation order (immutable)

𝜔𝑓 ∈ ℝ+, file emission weight (immutable)

𝑘𝑓 ∈ ℝ+, per-node base stake for this file (in KOR, immutable)

active true when |𝒩︀𝑎| ≥ 𝑛min)

(5)

The values stored in the agreement structure (rank𝑓 , 𝜔𝑓 , 𝑘𝑓) are computed at creation time:

1. File rank: rank𝑓 = total number of files ever created + 1 (sequential counter)

2. File emission weight: 𝜔𝑓 = ln(𝑠bytes
𝑓)

ln(1+rank𝑓)
3. Network emission weight: Retrieve current Ω from global state

4. Per-node base stake: 𝑘𝑓 = (𝜔𝑓
Ω) ⋅ 𝑐stake ⋅ ln(1 + |ℱ︀ |

𝐹scale
)

Note: These calculations use the current network state (before this file is added to ℱ︀ or Ω).

6

For each agreement, the protocol tracks:

• rank𝑓 - immutable creation order (1 for first file, 2 for second, etc.)

• 𝜔𝑓 - file emission weight (determines share of network emissions)

• 𝑠bytes
𝑓 - file size in bytes

• 𝑛symbols,𝑓 = ⌈𝑠bytes
𝑓
31 ⌉ - number of data symbols

• 𝑛codewords,𝑓 = ⌈𝑛symbols,𝑓
231 ⌉ - number of RS codewords

• 𝑛total,𝑓 = 𝑛codewords,𝑓 × 255 - total symbols including parity

• 𝑘𝑓 - per-node base stake for this file (in KOR)

• 𝒩︀𝑓 - set of storage nodes storing this file agreement

2.4.6 Sponsorship Offers

A sponsorship offer 𝑜 ∈ 𝒪︀ is a public, on-chain commitment by an existing storage node to

sponsor a specific entrant for a file agreement:

𝑜 = (id𝑜, offer identifier
𝑓, file agreement

𝑛sponsor, offering node

𝑛entrant, target entrant node
𝛾rate ∈ [0, 1], commission rate

𝛾duration, duration in blocks
𝛽bond, bond amount in KOR

creation_block, when offer created
expiration_block creation_block + 𝑊offer)

(6)

Offers are created via the Create-Sponsorship-Offer procedure and remain valid until either

accepted by the entrant (converted to a sponsorship agreement) or expired. Expired offers

are removed during block-end processing.

2.4.7 Sponsorship Agreements

A sponsorship agreement 𝑚 ∈ ℳ︀ is an active arrangement where a node (entrant) receives

emissions commission from a sponsor for a file agreement. Sponsorship agreements are

created when an entrant accepts a sponsorship offer as part of the Join-Agreement procedure:

𝑚 = (𝑓, 𝑛entrant, 𝑛sponsor, 𝛾rate, 𝛾duration, 𝛽bond, 𝑡start, first_proof_complete) (7)

where:

• 𝑓 - the file agreement being sponsored

• 𝑛entrant - the node joining via sponsorship

• 𝑛sponsor - the existing node providing the file data

• 𝛾rate ∈ [0, 1] - fractional commission rate paid to sponsor

• 𝛾duration - duration in blocks

• 𝛽bond - bond amount in KOR (held in escrow until first proof)

• 𝑡start - activation block height

• first_proof_complete - boolean flag, set to true after entrant successfully proves first

challenge for this file

The sponsorship is active from block 𝑡start through 𝑡start + 𝛾duration − 1, expiring when 𝑡 ≥
𝑡start + 𝛾duration.

Creation Mechanism: Sponsorship agreements are created through a trustless bond-

escrow process:

1. Sponsor posts a public sponsorship offer on-chain via Create-Sponsorship-Offer,

specifying commission terms and required bond amount

7

2. Entrant accepts via Join-Agreement, which atomically: (a) locks the bond in escrow,

(b) creates the sponsorship agreement, (c) adds the entrant to the file agreement

3. Sponsor transfers file data off-chain after offer acceptance

4. Resolution occurs when the entrant is first challenged for this file:

• If entrant proves successfully: bond is returned to entrant, sponsorship continues

normally

• If entrant fails first challenge: bond is transferred to sponsor (compensating

Bitcoin miner fees and bandwidth costs), sponsorship voids retroactively (no

commission ever paid), entrant is slashed normally

This bond mechanism makes the protocol fully trustless: the sponsor cannot extort (terms

fixed on-chain first), the entrant cannot grief (bond at risk), and both parties have symmetric

incentives to perform honestly.

Commission Scope: The commission rate applies exclusively to emissions from the spon

sored file 𝑓 . For each block during the sponsorship period:

• Entrant receives: (1 − 𝛾rate) × 𝜀𝑓
𝑡

|𝒩︀𝑓| from file 𝑓
• Sponsor receives: (𝛾rate × 𝜀𝑓

𝑡
|𝒩︀𝑓|) additional from file 𝑓 , plus full rewards from other

files

The commission does not affect rewards from other files stored by the entrant, and slashing

penalties are borne entirely by the slashed node without commission sharing.

2.4.8 Challenges

A challenge 𝒞︀ is a deterministically generated event that requires a storage node to prove

possession of specific file data within a window of blocks:

𝒞︀ = (id𝑐, unique challenge identifier
node_id, challenged storage node

file_id, file to prove possession of
𝑀, file metadata

block_height, creation block height
expiration_block, block_height + 𝑊proof

𝑠, number of symbols to prove
𝜎 random seed for symbol selection)

(8)

The challenged symbols are sampled pseudo-randomly using the Bitcoin block hash as seed.

If a file has fewer symbols than the protocol’s sample size (𝑛total,𝑓 < 𝑠chal), all symbols are

challenged.

Challenge Timing: A challenge created at block height ℎ has expiration block ℎ + 𝑊proof.

The challenged node must submit a valid proof transaction that is included in the blockchain

by the END of block ℎ + 𝑊proof − 1. Expiration is checked in Process-Failed-Challenges

during On-Block-End.

Challenge Frequency: Each file is selected for challenge with constant probability 𝑝𝑓 =
𝐶target

𝐵 per block. For each selected file, one of its storing nodes is chosen uniformly at random.

This ensures each file receives approximately 𝐶target challenges per year regardless of network

size.

For parameter values, see Parameter Selection in the Appendix.

2.4.9 Storage Proofs

A storage proof 𝜋 demonstrates that a node possesses file data at challenge time. A valid

proof for challenge 𝒞︀ is a Nova IVC proof demonstrating:

8

1. Possession of 𝑠 randomly selected symbols from the committed file agreement data

2. Correct Merkle path verification for each challenged symbol

3. Consistency with the public Merkle root 𝜌
4. All files exist at their claimed ledger indices in the proof’s ledger root 𝜌ℒ︀

Cross-Block Aggregation: The proof includes the ledger root 𝜌ℒ︀ used for proof gener

ation. Provers typically use the current ledger root, which contains all files they’re being

challenged on. The verifier checks that this root is in its set of accepted historical roots

(covering at least 𝑊proof blocks of file activations). This enables aggregation across challenges

from different blocks: even if new files activate during the proof window, proofs generated

against an earlier (but still valid) ledger state remain acceptable.

Nodes can aggregate multiple challenges into a single proof transaction to minimize Bitcoin

fees. For the cryptographic construction, see the Kontor Proof-of-Retrievability.[3] For

economic analysis of proving costs, see Section 3.4.2.

2.4.10 Storage Node Operations

Indexer Requirements: Storage nodes must run Kontor indexers to participate in the

protocol. The indexer maintains the complete protocol state by processing Bitcoin blocks

deterministically, enabling nodes to:

• Track which file agreements they have joined

• Monitor incoming challenges directed at their node ID

• Maintain the current file ledger state (for proof generation)

• Determine optimal proof batching strategies

• Submit proof transactions at appropriate times

Without an indexer, a storage node cannot know when it has been challenged or what the

current protocol state is. The indexer provides the authoritative view of all active challenges,

file metadata, and expiration deadlines.

Proof Batching Autonomy: Storage nodes have complete autonomy in deciding which

challenges to batch together and when to submit proof transactions. Within the expiration

window (𝑊proof blocks), nodes can:

• Batch any subset of their pending challenges into a single proof

• Time their submissions strategically to optimize Bitcoin miner fees

• Aggregate challenges from multiple files and multiple block heights

• Choose to respond to high-value challenges immediately while batching others

This autonomy enables nodes to optimize their operational costs. A node might batch

many challenges into a single proof transaction (typically 12-50 kB depending on batch

size), amortizing the Bitcoin transaction fee across all challenges. The protocol imposes no

requirements on batching strategy beyond the expiration deadline.

Multi-Batch Aggregation: The cryptographic proof system supports aggregating chal

lenges with different parameters:

• Different seeds: Each challenge has its own seed 𝜎 derived from the block hash at

challenge creation. Proofs can aggregate challenges with distinct seeds, enabling cross-

batch aggregation.

• Different block heights: Challenges created at blocks ℎ1, ℎ2, …, ℎ𝑘 can be proven

together, even if they span multiple blocks.

• Different files: Multi-file proofs naturally aggregate challenges across the node’s

entire storage portfolio.

9

2.4.11 Transactions and Procedures

Transactions are submitted to Bitcoin and processed deterministically by all indexers. Each

transaction invokes one or more procedures with the authority of a signer. The storage

protocol defines the following procedures:

• Create-Storage-Agreement - User creates file agreement

• Join-Agreement - Storage node joins file agreement (optionally accepting sponsorship

offer)

• Leave-Agreement - Storage node voluntarily exits file agreement

• Create-Sponsorship-Offer - Storage node posts public offer to sponsor an entrant

• Verify-Storage-Proof - Storage node submits proof for challenge verification

• Stake-Tokens - Move spendable KOR to staked balance

• Unstake-Tokens - Move staked KOR to spendable balance

All procedures follow the signature: Procedure(state, signer, ..., block_height) where

the middle parameters are procedure-specific.

2.5 Protocol Flow

The protocol operates in a cycle for each Bitcoin block:

1. Block Start: Generate challenges deterministically from block hash

2. Transaction Processing: Process user and storage node transactions

3. Block End: Process failed challenges, handle stake insufficiency, distribute emissions

2.5.1 File Agreement Creation Flow

The following sequence diagram shows the complete flow for creating a file agreement, from

file preparation through activation.

10

User Storage Nodes Bitcoin Blockchain Indexer

User Storage Nodes Bitcoin Blockchain Indexer

Prepare File (Erasure + Merkle)

Distribute File Data

Create Agreement Tx

Mine Block

Create Inactive Agreement

Join Agreement Tx

Mine Block

Add Node to Agreement

Activate (when n_min reached)

Figure 2: File Agreement Creation Flow. Users prepare files locally with erasure coding

and Merkle tree commitment, distribute data to storage nodes off-chain, and broadcast the

Create Agreement transaction. The agreement remains inactive until 𝑛min storage nodes

join, after which it activates and begins receiving emissions.

2.5.2 Challenge-Response Flow

The following sequence diagram shows the continuous challenge-response cycle that ensures

storage nodes maintain possession of committed data.

11

Bitcoin Blockchain Indexer Storage Node

Bitcoin Blockchain Indexer Storage Node

Mine Block (height h)

Generate Challenges

Fetch Challenges

Generate Nova IVC Proof

Submit Proof Tx

Mine Block (height h+k)

Verify Proof

Process Expired (h+W_proof)

Figure 3: Challenge-Response Flow. Each block, indexers deterministically generate chal

lenges from the block hash. Storage nodes fetch their challenges, generate Nova IVC proofs,

and submit them within 𝑊proof blocks or face slashing. At block end, the indexer processes

expired challenges, slashes failed nodes, distributes penalties, and mints emissions to honest

storers.

2.5.3 File Retrieval Flow

The following sequence diagram shows how users retrieve files from storage nodes through

off-chain payment channels.

12

User Storage Node Bitcoin Blockchain Indexer

User Storage Node Bitcoin Blockchain Indexer

Query N_f for file

Return node list

Request Price Quote

Submit Proposal

Select Provider

Open Payment Channel

Co-sign Channel

Channel Active

Send Symbol + Merkle Path

Verify Against Root

Sign Payment Update

Repeat Until n_data + k

Close Channel

Co-sign Close

Figure 4: File Retrieval Flow. Users query indexer state for storage nodes (𝒩︀𝑓), negotiate

pricing off-chain, establish Bitcoin payment channels, and perform atomic symbol-for-pay

ment exchanges. Each symbol is verified against the on-chain Merkle root before payment.

The erasure coding structure (each codeword requires 231 symbols minimum) solves the final-

symbol problem: users request extra symbols beyond the reconstruction threshold, ensuring

file recovery even if the provider withholds final symbols.

2.5.4 Block Start Processing

Algorithm 1: Block Start Processing

1: procedure On-Block-Start(state, block_height, block_hash)
2: ▷ Called at the start of each block before processing transactions
3: ▷ Block has been mined; its hash is known
4: ▷ Step 1: Generate challenges for this block
5: 𝒞︀new ← Generate-Challenges-For-Block(state, block_height, block_hash)
6: ▷ Deterministically select files and nodes to challenge
7:
8: ▷ Step 2: Log challenge events

13

9: if |𝒞︀new| > 0 then
10: for 𝒞︀id ∈ 𝒞︀new do
11: 𝒞︀ ← state.challenges.get(𝒞︀id)
12: if 𝒞︀ ≠ ⊥ then
13: ▷ Publish challenge created event for monitoring
14: state.active_challenges.add(𝒞︀)
15: end
16: end
17: end
18: return success
19: end

2.5.5 Transaction Processing

Between block start and block end, the protocol processes a sequence of transactions

previously submitted to the mempool by users and storage nodes (indexers do not produce

transactions) and included within the block by Bitcoin miners. Each transaction contains

one or more procedure calls executed with the authority of a specific signer.

Algorithm 2: Transaction Processing

1: procedure Process-Transactions(state, block_height, transactions)
2: ▷ Called after On-Block-Start, before On-Block-End
3: ▷ Executes all transactions in block order
4: for 𝒯︀ ∈ transactions do
5: ▷ Each transaction contains one or more procedure calls
6: for 𝒫︀ ∈ 𝒯︀.calls do
7: ▷ Extract call parameters
8: signer ← 𝒫︀.signer
9: procedure ← 𝒫︀.procedure
10: params ← 𝒫︀.params
11:
12: ▷ Dispatch to procedure with signature-specific parameters
13: result ← procedure(state, signer, params, block_height)
14:
15: ▷ Validate result
16: if result = ⊥ then
17: ▷ Procedure call failed, transaction aborted
18: return ⊥ (transaction failed)
19: end
20: end
21: end
22: return success
23: end

Each procedure call is validated for permissions (signer must match the actor), state validity,

and economic constraints during execution.

2.5.6 Block End Processing

Algorithm 3: Block End Processing

1: procedure On-Block-End(state, block_height)
2: ▷ Called at the end of each block after processing transactions
3: ▷ Executes state transitions and economic updates
4: ▷ Step 1: Process failed challenges (expired and invalid proofs)
5: Process-Failed-Challenges(state, block_height)
6: ▷ Identify expired challenges, slash nodes, distribute penalties
7:
8: ▷ Step 2: Handle stake insufficiency for all nodes
9: for 𝑛 ∈ state.all_nodes do

14

10: 𝑘𝑛 ← state.get_stake(𝑛)
11: ℱ︀𝑛 ← state.get_files_for_node(𝑛)
12: stake_sum ← ∑𝑓∈ℱ︀𝑛

state.get_agreement(𝑓).base_stake
13: 𝜆stake ← 1 + 𝜆slash

ln(2+ |ℱ︀𝑛|)
14: 𝑘required ← stake_sum ⋅ 𝜆stake
15: ▷ Total required stake from economic model
16: if 𝑘𝑛 < 𝑘required then
17: Handle-Stake-Insufficiency(𝑛, state)
18: ▷ Graceful exit or total forfeiture
19: end
20: end
21:
22: ▷ Step 3: Distribute emissions
23: total_emitted ← Distribute-Storage-Rewards(state, block_height)
24: ▷ Mint and distribute KOR to storing nodes
25:
26: ▷ Step 4: Expire sponsorship offers that were not accepted
27: for 𝑜 ∈ state.offers do
28: if block_height ≥ 𝑜.expiration_block then
29: state.offers.remove(𝑜)
30: ▷ Offer expired without acceptance
31: end
32: end
33:
34: ▷ Step 5: Expire sponsorships that reached their duration
35: for 𝑚 ∈ state.sponsorships do
36: if block_height ≥ 𝑚.𝑡start + 𝑚.𝛾duration then
37: state.sponsorships.remove(𝑚)
38: ▷ Sponsorship commission period ended
39: end
40: end
41: return success
42: end

2.6 Off-Chain Flows

These flows represent voluntary actions taken by users and storage nodes. Transaction

creation is voluntary and economically motivated. See Section 3.2 for the economic incentives

that drive these behaviors.

2.6.1 File Upload

Before creating a file agreement on-chain, users perform off-chain preparation and distrib

ution of file data to potential storage nodes. This preparation phase transforms raw data into

a fault-tolerant, self-authenticating structure that storage nodes can independently verify

and use to generate proofs when challenged.

The upload process has three stages: (1) encode the file with erasure coding and build a

Merkle commitment, (2) distribute the original file and metadata to storage nodes off-chain,

and (3) broadcast a contract procedure call to create the on-chain agreement. Storage nodes

independently prepare the file using the protocol’s deterministic algorithm, ensuring all

nodes storing a file compute identical Merkle trees without trusting the user’s computation.

2.6.1.1 File Preparation

The file preparation algorithm transforms raw data into a structure optimized for challenge-

based proof-of-retrievability.

Merkle Tree Commitment:

15

The protocol requires a cryptographic commitment enabling verification of individual data

units without requiring the entire file. Merkle trees provide: constant-size commitment,

logarithmic proof size, no trusted setup, and efficient verification in SNARK circuits.

• Succinct commitment: A single root hash (32 bytes) commits to arbitrary amounts

of data

• Selective opening: Proving possession of one unit requires only a Merkle path (𝑑

sibling hashes), where 𝑑 = 𝑂(log 𝑛)
• Binding: Cryptographic collision-resistance ensures nodes cannot equivocate about

file contents

Design decisions:

• Hash function: Poseidon is optimized for arithmetic circuits, requiring hundreds of

constraints per invocation versus thousands for SHA-256 or Blake2, reducing IVC

proving cost by orders of magnitude.

• Symbol-leaf correspondence: Each 31-byte symbol (data or parity) encodes to

exactly one Merkle leaf, ensuring 1:1 alignment between symbols and tree leaves.

• Binary structure: Two children per node. Higher-arity trees (quaternary, octal)

reduce depth but increase proof size (more siblings per level) and circuit complexity

(multiple hash inputs per verification step).

• Odd-node handling: When a tree level has an odd number of nodes, the final node

is duplicated (hashed with itself) to maintain uniform circuit structure. This ensures

all internal nodes result from hashing two children.

• Domain separation: Distinct tags separate leaf encoding from internal node hashing,

preventing cross-layer collision attacks.

Symbols and Field Element Encoding:

Files are partitioned into fixed 31-byte symbols. This size is the maximum that fits within a

Pallas scalar field element (255 bits), enabling symbols to encode directly as Merkle leaves

via little-endian byte representation with no intermediate hashing.

This direct encoding is critical for proof-of-retrievability. Challenges specify random symbol

indices derived from the block hash. To prove symbol at index 𝑖, a node must possess the

actual 31 bytes at that position, encode them as a field element, and provide the Merkle path.

The field element encoding is reversible - the original 31 bytes can be extracted via inverse

decoding. An attacker storing only the Merkle tree (field elements) without underlying bytes

cannot answer challenges, because the SNARK circuit verification requires demonstrating

knowledge of the bytes that encode to each challenged leaf.

Reed-Solomon Encoding:

Symbols are encoded using Reed-Solomon over GF(2^8) in a multi-codeword structure.

Each codeword contains 231 data symbols and generates 24 parity symbols (10% overhead),

totaling 255 symbols. The GF(2^8) field imposes a 255-symbol maximum per codeword. Files

larger than 231 symbols (7,161 bytes) use multiple independent codewords. The GF(2^8)

field is chosen for encoding speed; larger fields would reduce codeword count but slow

encoding, an acceptable trade-off for one-time file preparation.

Erasure coding ensures that files passing challenges remain fully retrievable. Random

sampling provides probabilistic detection: a node missing fraction 𝜈 of symbols has detection

probability 1 − (1 − 𝜈)𝑠 per challenge. This creates a gap where small losses may go unde

tected yet render files unrecoverable. Reed-Solomon encoding closes this gap - each codeword

tolerates loss of up to 10% of its symbols while remaining reconstructible. Nodes can answer

challenges for missing symbols by Reed-Solomon decoding from other symbols in the same

16

codeword. The 10% parity overhead provides a safety margin: files remain retrievable when

nodes retain sufficient symbols to avoid detection.

Reed-Solomon codes provide three properties: Maximum Distance Separable (any 231 of 255

symbols suffice for reconstruction), per-codeword independence (graceful degradation for

multi-codeword files), and systematic encoding (data symbols preserved unchanged, parity

appended).

Encoding Procedure:

For file of size 𝑠bytes
𝑓 :

1. Partition: 𝑛symbols = ⌈𝑠bytes
𝑓
31 ⌉ data symbols (final symbol zero-padded to 31 bytes)

2. Group: 𝑛codewords = ⌈𝑛symbols
231 ⌉ codewords (≤231 data symbols each)

3. Reed-Solomon encode (GF(2^8)): Each codeword generates 24 parity symbols →

𝑛total = 𝑛codewords × 255 total symbols

4. Merkle tree: Pad to 𝑛′ = 2⌈log2 𝑛total⌉, encode symbols as field elements, build Poseidon

binary tree with depth 𝑑 = log2 𝑛′

Example: 1 MB file → 33,826 data symbols → 147 codewords → 37,485 total symbols →

65,536 padded → depth 16.

Reconstruction:

Given available symbols (some possibly missing), the decoder groups symbols into codewords

(every 255 consecutive symbols). For each codeword with ≥231 available symbols, Reed-

Solomon decoding recovers missing symbols and extracts the 231 data symbols. Codewords

with fewer than 231 symbols cannot be reconstructed. The file is reassembled by concate

nating data symbols from successfully reconstructed codewords and truncating to original

size. This enables partial file recovery when data loss is concentrated in specific codewords.

Outputs:

File identifier: id𝑓 = ℋ︀SHA256(data)

Off-chain (storage nodes): All 𝑛total symbols (31 bytes each) + Merkle tree 𝒯︀

On-chain (blockchain): Merkle root 𝜌, file identifier, padded leaf count 𝑛′, original size 𝑠bytes
𝑓 ,

filename

Constraints: 𝑠min = 10 KB ≤ 𝑠bytes
𝑓 ≤ 𝑠max = 100 MB

Algorithm 4: File Preparation

1: procedure Prepare-File(data, filename)
2: ▷ Step 1: Compute file identifier
3: id𝑓 ← ℋ︀SHA256(data)
4: 𝑠bytes

𝑓 ← |data|
5:
6: ▷ Step 2: Partition into 31-byte symbols
7: 𝑛symbols ← ⌈𝑠bytes

𝑓
31 ⌉

8: 𝑫 ← 𝒫︀(data, 𝑛symbols, 31)
9: ▷ Partition into symbols, zero-pad final symbol to 31 bytes
10:
11: ▷ Step 3: Apply multi-codeword Reed-Solomon encoding
12: 𝑛codewords ← ⌈𝑛symbols

231 ⌉
13: ▷ Group symbols into codewords of 231 data symbols each
14: 𝑺 ← empty list
15: ▷ Will hold all symbols: data + parity from all codewords
16: for cw ∈ [1, 𝑛codewords] do

17

17: 𝑫cw ← symbols for this codeword (231 or remainder)
18: 𝑷cw ← RS-EncodeGF(28)(𝑫cw)
19: ▷ Generate 24 parity symbols for this codeword
20: 𝑺.extend(𝑫cw)
21: 𝑺.extend(𝑷cw)
22: end
23: 𝑛total ← 𝑛codewords × 255
24: ▷ Each codeword contributes 255 symbols (231 data + 24 parity)
25:
26: ▷ Step 4: Pad to power-of-two count
27: 𝑛′ ← 2⌈log2 𝑛total⌉

28: while |𝑺| < 𝑛′ do
29: 𝑺.append(𝟎31)
30: end
31:
32: ▷ Step 5: Encode each symbol as Merkle leaf
33: 𝑳 ← empty list
34: for 𝒔 ∈ 𝑺 do
35: ℓ ← encodeLE(𝒔)
36: ▷ Direct little-endian encoding to field element
37: 𝑳.append(ℓ)
38: end
39:
40: ▷ Step 6: Build Merkle tree
41: (𝒯︀, 𝜌) ← ℳ︀Poseidon(𝑳)
42:
43: ▷ Step 7: Return prepared file and metadata
44: 𝐹prep ← {tree : 𝒯︀, file_id : id𝑓 , root : 𝜌}
45: 𝑀 ← {root : 𝜌, file_id : id𝑓 , padded_len : 𝑛′, original_size : 𝑠bytes

𝑓 , filename :
filename}

46: ▷ Derived values: 𝑛chunks, 𝑛codewords, 𝑛total computed from 𝑠bytes
𝑓

47: return (𝐹prep, 𝑀)
48: end

2.6.1.2 File Distribution

After preparing the file locally, the user distributes data to potential storage nodes off-chain.

This distribution is independent of the on-chain agreement creation and may occur before,

during, or after the agreement transaction is broadcast.

Data Transmitted: The user shares the original file bytes and the public metadata with

each storage node. Nodes do not receive the user’s prepared Merkle tree; instead, each node

independently prepares the file using the protocol’s deterministic preparation algorithm.

This ensures nodes can verify data integrity without trusting the user’s computation.

Verification by Recipients: When a storage node receives a file from a user, it performs

the following verification:

1. Compute file identifier: id′
𝑓 = ℋ︀SHA256(received data)

2. Verify identifier matches metadata: id′
𝑓 = id𝑓

3. Run Prepare-File on received data with metadata’s erasure configuration

4. Verify computed Merkle root matches metadata: 𝜌′ = 𝜌

If verification succeeds, the node stores the prepared file structure (Merkle tree and all

symbols). If verification fails, the node rejects the data. This independent preparation ensures

all nodes storing a file compute identical Merkle trees and can generate consistent proofs.

User Incentives for Wide Distribution: Users benefit from sharing files with as many

storage nodes as possible before creating the on-chain agreement:

• Faster activation: More nodes with the file data means the agreement can reach 𝑛min

nodes and activate more quickly, beginning to accrue anti-decay emissions sooner.

18

• Reduced gatekeeping risk: If only one or two nodes possess the file initially, they

can extract monopoly rents through sponsorship agreements. Wide initial distribution

creates a competitive market and prevents data monopolization.

• Lower future sponsorship costs: New nodes joining later can obtain the file

from any existing storer. More initial nodes means more potential sponsors, driving

sponsorship commission rates down through competition.

The user typically distributes files through direct peer-to-peer transfer, public portals, or

other off-chain channels. The protocol does not enforce or verify off-chain distribution; it

merely incentivizes it through economic mechanisms.

2.6.2 File Retrieval

File retrieval occurs entirely off-chain using Bitcoin payment channels with atomic symbol-

for-payment exchanges. The protocol leverages the erasure coding structure to solve the

sequential exchange problem where one party must accept risk on the final transfer.

Discovery and Negotiation: The user identifies storage nodes holding the target file by

querying the protocol state for 𝒩︀𝑓 . The user contacts providers off-chain to request price

quotes. Providers respond with pricing (typically in satoshis per symbol or per full file) and

payment channel coordinates. The user selects one or more providers based on price, latency,

and redundancy preferences.

Payment Channel Establishment: The user and selected provider(s) establish bidirec

tional Bitcoin payment channels using standard payment-channel protocols. The user

commits the agreed payment amount to the channel. This channel setup occurs entirely on

the Bitcoin layer and does not involve the Kontor protocol state.

Atomic Symbol Exchange: The file preparation yields 𝑛symbols data symbols. With erasure

coding across 𝑛codewords codewords, each codeword requires 231 symbols minimum (90%) for

reconstruction. The retrieval proceeds via atomic exchanges:

For each symbol 𝑖 ∈ {1, …, 𝑛symbols + 𝑘} where 𝑘 ≥ 1:

1. Provider sends symbol 𝑠𝑖 (31 bytes) and its Merkle path 𝜋𝑖 to user

2. User verifies Merkle path against on-chain root 𝜌: Verify-Merkle-Path(𝜌, 𝑠𝑖, 𝜋𝑖)
3. If valid: User signs payment channel update transferring 𝑝symbol to provider

4. If invalid: User aborts retrieval, closes channel with current state

5. Both parties sign the updated channel state

Final-Symbol Problem Resolution: In sequential exchanges without a trusted third

party[5], one party must accept risk on the final transfer. The erasure coding structure

eliminates this asymmetry: the user requests 𝑛symbols + 𝑘 symbols where 𝑘 ≥ 1 represents

redundancy beyond the reconstruction threshold. After receiving sufficient symbols per

codeword (≥231 per codeword), the user can reconstruct the complete file. If the provider

withholds the final 𝑘 symbols:

• User loses: Payment for 𝑘 symbols (minimal overhead)

• Provider loses: Payment for withheld symbols

• User obtains reconstructible file data regardless

The economic incentive is symmetric: withholding final symbols costs the provider more in

lost payment than the user loses in redundancy overhead. In practice, providers deliver all

symbols to maximize payment.

Channel Settlement: After complete file transfer and verification, both parties coopera

tively close the payment channel, settling the final state on the Bitcoin blockchain. The

channel can also remain open for future retrievals between the same parties, amortizing the

channel open/close costs across multiple file transfers.

19

Trust Model: This retrieval mechanism is effectively trustless: cryptographic verification

(Merkle paths) ensures data validity, and economic incentives (redundancy overhead) ensure

completion. The protocol does not track or enforce retrieval agreements on-chain; file

retrieval is a bilateral contract between user and provider settled through Bitcoin payment

channels.

2.6.3 Sponsored Join Negotiation

When a node wishes to join a file agreement but cannot obtain the file data through public

channels, it can request sponsorship from existing storers. The trustless two-step sponsorship

mechanism ensures neither party can exploit the other.

Discovery Phase: The entrant identifies a target file agreement and queries the existing

storers (𝒩︀𝑓) for sponsorship availability. This discovery happens off-chain through direct

communication, public registries, or gossip protocols.

Offer Creation (On-Chain): A willing sponsor posts a public sponsorship offer by

invoking Create-Sponsorship-Offer. The offer specifies:

• Target entrant (specific node identifier)

• Commission rate (𝛾rate) and duration (𝛾duration)

• Required bond amount (𝛽bond in KOR)

• Expiration deadline (𝑊offer blocks from creation)

The sponsor pays Bitcoin transaction fees to broadcast this offer, creating a credible

commitment with fixed terms visible to all indexers. The bond requirement protects the

sponsor from griefing attacks.

Data Transfer (Off-Chain): After the offer is confirmed on-chain, the sponsor transfers

the file data to the entrant off-chain. Transfer methods are implementation-specific (direct

peer-to-peer, encrypted channels, etc.). The protocol does not observe or enforce this

transfer.

Acceptance and Bond Escrow (On-Chain): If the entrant successfully receives and

verifies the file data (runs Prepare-File and confirms root matches), it invokes Join-

Agreement with the offer identifier. The procedure atomically:

• Validates the offer exists, targets this entrant, and has not expired

• Locks the bond (𝛽bond) in escrow from entrant’s spendable balance

• Creates the sponsorship agreement with the offer’s terms

• Adds the entrant to the file agreement

• Removes the accepted offer from state

The bond remains in escrow until the entrant’s first challenge for this file is resolved.

Bond Resolution: When the entrant is first challenged for the sponsored file:

• Success: If the entrant submits a valid proof, the bond is returned to the entrant’s

balance and the sponsorship continues normally for its full duration.

• Failure: If the entrant fails the challenge (expires or invalid proof), the bond is

transferred to the sponsor (compensating Bitcoin miner fees and bandwidth costs),

the sponsorship is voided retroactively (no commission ever paid), and the entrant is

slashed and removed normally.

This bond-escrow mechanism makes sponsorship fully trustless: the sponsor cannot extort

(terms fixed on-chain first), the entrant cannot grief (bond at risk equals sponsor’s costs),

and both parties have symmetric incentives to perform honestly. If the sponsor posts an

offer but never sends data, they lose Bitcoin fees while the entrant loses nothing (can reject

or let offer expire).

Edge Cases:

20

• Sponsor leaves before acceptance: If the sponsor leaves the file agreement

(voluntarily or via slashing) after posting an offer but before the entrant accepts,

the Join-Agreement procedure rejects the acceptance (lines 1199–1203 validate that

the sponsor is still in the agreement). The entrant loses nothing—they simply cannot

accept that particular offer. The entrant should query alternative sponsors or wait for

new offers.

• Sponsor leaves after acceptance: If the sponsor leaves the file agreement after

the entrant has already accepted (sponsorship agreement is active), the sponsorship is

voided immediately (see Leave-Agreement and slashing procedures). The entrant keeps

the file data they already received, retains their position in the file agreement, and the

sponsorship commission simply ends early. No commission is paid after the sponsor

departs.

• Multiple offers for same entrant: An entrant may receive offers from multiple

sponsors for the same file. The entrant should compare terms (commission rate,

duration, bond requirement) and accept the most favorable. Once one offer is accepted,

the entrant joins the agreement; subsequent offers for that entrant/file pair become

invalid (the entrant is already a member).

Market Dynamics: Multiple sponsors may compete by posting offers with lower 𝛾rate

for the same or different entrants. This competitive market prevents gatekeeping cartels:

any existing member has incentive to defect and capture the commission. The equilibrium

commission rate balances the sponsor’s bandwidth cost against the NPV of commission

payments:

𝛾eq(𝐷) ≈
𝑐USD
transfer ⋅ 𝛿 ⋅ (|𝒩︀𝑓 | + 1)

𝜀𝑓(𝑡) ⋅ 𝜉KOR/USD ⋅ (1 − (1 + 𝛿)−𝐷)
(9)

2.7 Transaction Processing

The protocol deterministically processes transactions that have been included in Bitcoin

blocks. Each transaction contains one or more procedure calls that modify the protocol state.

The following procedures can be invoked by users and storage nodes:

2.7.1 Create Storage Agreement

The user invokes the Create-Storage-Agreement procedure by broadcasting a contract call

to the Bitcoin blockchain. This procedure call includes the file metadata (Merkle root, file

identifier, erasure configuration, and size parameters) and is processed deterministically by

all indexers when the containing Bitcoin transaction is included in a block.

File distribution (see Section 2.6.1.2) is an independent off-chain process that may occur

before, during, or after agreement creation. Users typically distribute files to potential

storage nodes before or concurrently with the on-chain agreement to enable faster activation,

though the protocol does not enforce this ordering.

The procedure performs the following operations: (1) validates the metadata and file size

constraints, (2) calculates the file’s immutable economic parameters (rank, emission weight,

per-node base stake) based on current network state, (3) collects the storage fee from the

user and burns it, (4) creates the file agreement in an inactive state, and (5) initializes the

membership tracking structures. The agreement remains inactive until 𝑛min storage nodes

join, at which point it activates and begins receiving emissions.

The storage fee 𝜐𝑓 is calculated deterministically from current network state: 𝜐𝑓 = 𝜒fee ⋅ 𝑘𝑓

where 𝑘𝑓 = (𝜔𝑓
Ω) ⋅ 𝑐stake ⋅ ln(1 + |ℱ︀ |

𝐹scale
). The values of Ω and |ℱ︀| are read from the protocol

state at the block immediately before this agreement is created, ensuring deterministic and

predictable fee calculation for all indexers.

21

Algorithm 5: Create Storage Agreement

1: procedure Create-Storage-

Agreement(state, signer, file_id, metadata, block_height)
2: ▷ Invoked via contract procedure call in Bitcoin transaction
3: ▷ User has distributed file data off-chain before broadcasting
4: 𝑀 ← metadata
5: ▷ Metadata includes: root hash, erasure config, sizes, filename
6:
7: ▷ Step 1: Compute agreement identifier
8: id𝑎 ← ℋ︀(file_id ‖ block_height)
9:
10: ▷ Step 2: Calculate file rank and emission weight
11: rank𝑓 ← state.total_files_ever_created + 1
12: ▷ Sequential creation counter
13: 𝑠bytes

𝑓 ← 𝑀.size
14: 𝜔𝑓 ←

ln(𝑠bytes
𝑓)

ln(1+rank𝑓)
15: ▷ File emission weight from size and rank
16:
17: ▷ Step 3: Retrieve current network state
18: Ω ← state.get_omega()
19: |ℱ︀| ← |state.active_files|
20: ▷ Current global emission weight and file agreement count
21:
22: ▷ Step 4: Calculate per-node base stake
23: 𝑘𝑓 ← (𝜔𝑓

Ω) ⋅ 𝑐stake ⋅ ln(1 + |ℱ︀ |
𝐹scale

)
24: ▷ Per-node base stake from economic model
25: 𝜐𝑓 ← 𝜒fee ⋅ 𝑘𝑓
26: ▷ Storage fee from economic model
27:
28: ▷ Step 5: User pays storage fee (burned)
29: if state.balance(signer) < 𝜐𝑓 then
30: return ⊥ (insufficient balance)
31: end
32: state.burn_tokens(signer, 𝜐𝑓)
33: ▷ Storage fee is burned to create agreement
34:
35: ▷ Step 6: Increment file creation counter
36: state.increment_total_files_created()
37:
38: ▷ Step 7: Create agreement structure
39: 𝒜︀ ← {id : id𝑎, user_id : signer, file_id : file_id, metadata : 𝑀, nodes :

∅, creation_block : block_height, rank : rank𝑓 , emission_weight : 𝜔𝑓 , base_stake :
𝑘𝑓 , active : false}

40: ▷ File agreement starts inactive until 𝑛min nodes join
41:
42: ▷ Step 8: Store agreement
43: state.agreements.set(id𝑎, 𝒜︀)
44:
45: ▷ Step 9: Initialize membership sets for this file agreement
46: state.set_nodes_for_file(file_id, ∅)
47: return id𝑎
48: end

2.7.2 Create Sponsorship Offer

Existing storage nodes can post public sponsorship offers to facilitate new nodes joining file

agreements. The sponsor invokes the Create-Sponsorship-Offer procedure via a contract

call, committing to provide file data to a specific entrant in exchange for commission

payments.

22

The procedure validates that the sponsor stores the target file, creates the offer with specified

terms (commission rate and duration), and stores it in the active offer set with an expiration

deadline. The sponsor incurs Bitcoin transaction fees to post the offer, creating a credible

commitment before any data transfer occurs. This trustless design prevents sponsor extortion

(terms are fixed on-chain) and entrant fraud (entrant only accepts after verifying data).

Algorithm 6: Create Sponsorship Offer

1: procedure Create-Sponsorship-Offer(state, signer, file_id, entrant_id, gamma_rate, gamma_duration, bond_amount, block_height)
2: ▷ Sponsor posts public offer to sponsor specific entrant
3: ▷ Pays Bitcoin tx fee as credible commitment
4: ▷ Specifies bond amount to protect against griefing
5: ▷ Step 1: Validate sponsor stores the file
6: ℱ︀𝑛 (sponsor’s files) ← state.get_files_for_node(signer)
7: if file_id ¬ ∈ ℱ︀𝑛 then
8: return ⊥ (sponsor does not store file)
9: end
10:
11: ▷ Step 2: Validate commission parameters
12: if 𝛾rate ≤ 0 ∨ 𝛾rate > 1 then
13: return ⊥ (invalid commission rate)
14: end
15: if 𝛾duration ≤ 0 then
16: return ⊥ (invalid duration)
17: end
18: if bond_amount ≤ 0 then
19: return ⊥ (invalid bond amount)
20: end
21: ▷ Bond protects sponsor from griefing attacks
22:
23: ▷ Step 3: Create offer identifier
24: id𝑜 ← ℋ︀(signer ‖ file_id ‖ entrant_id ‖ block_height)
25:
26: ▷ Step 4: Create offer structure
27: 𝑜 ← {id : id𝑜, file_id : file_id, sponsor : signer, entrant :

entrant_id, rate : 𝛾rate, duration : 𝛾duration, bond : bond_amount, creation_block :
block_height, expiration_block : block_height + 𝑊offer}

28: ▷ Offer expires after 𝑊offer blocks if not accepted
29:
30: ▷ Step 5: Store offer in active offer set
31: state.offers.add(𝑜)
32: return id𝑜
33: end

2.7.3 Join Agreement

Storage nodes join existing file agreements by invoking the Join-Agreement procedure via

a contract call broadcast to the Bitcoin blockchain. Before broadcasting this call, nodes

must obtain the file data and verify its integrity by independently running the file prepa

ration algorithm and confirming the computed Merkle root matches the on-chain agreement

metadata. While the protocol does not enforce this pre-verification (nodes can join without

possessing valid data), without the data the node will fail challenges and be slashed, making

pre-verification economically rational.

Nodes can join through two mechanisms:

• Unsponsored join: The node acquires file data through off-chain channels (from the

user, public portals, or other sources) and joins directly. The node must have sufficient

stake to cover the projected file set after joining.

23

• Sponsored join: The node accepts an existing sponsorship offer by providing the offer

identifier. The procedure validates that the offer exists, is not expired, and targets this

specific entrant, then converts the offer into an active sponsorship agreement while

adding the node to the file agreement.

The procedure validates stake sufficiency, processes sponsorship offers if provided, adds the

node to the file agreement, and activates the agreement when 𝑛min nodes is reached.

Algorithm 7: Join Agreement

1: procedure Join-Agreement(state, signer, agreement_id, offer_id, block_height)
2: ▷ Entrant joins file agreement, optionally accepting sponsorship offer
3: ▷ Should verify file data off-chain to avoid failing challenges
4: ▷ Step 1: Retrieve file agreement
5: 𝒜︀ ← state.agreements.get(agreement_id)
6: if 𝒜︀ = ⊥ then
7: return ⊥ (file agreement not found)
8: end
9:
10: ▷ Step 2: Check if node already in agreement
11: if signer ∈ 𝒜︀.nodes then
12: return ⊥ (already joined)
13: end
14:
15: ▷ Step 3: Process sponsorship offer if provided
16: if offer_id ≠ ⊥ then
17: ▷ Retrieve and validate offer
18: 𝑜 ← state.offers.get(offer_id)
19: if 𝑜 = ⊥ then
20: return ⊥ (offer not found)
21: end
22:
23: ▷ Validate offer is for this entrant and file
24: if 𝑜.entrant ≠ signer ∨ 𝑜.file_id ≠ 𝒜︀.file_id then
25: return ⊥ (offer mismatch)
26: end
27:
28: ▷ Validate offer not expired
29: if block_height ≥ 𝑜.expiration_block then
30: return ⊥ (offer expired)
31: end
32:
33: ▷ Validate sponsor still in agreement
34: if 𝑜.sponsor ¬ ∈ 𝒜︀.nodes then
35: return ⊥ (sponsor no longer in agreement)
36: end
37: end
38:
39: ▷ Step 4: Verify stake requirement
40: ℱ︀𝑛 (node file agreements) ← state.get_files_for_node(signer)
41: ℱ︀′

𝑛 (projected file agreements) ← ℱ︀𝑛 ∪ {𝒜︀.file_id}
42: 𝑘𝑛 (node stake) ← state.get_stake(signer)
43: ▷ Calculate required stake with projected file set
44: stake_sum ← ∑𝑓∈ℱ︀′

𝑛
state.get_agreement(𝑓).base_stake

45: 𝜆stake ← 1 + 𝜆slash
ln(2+ |ℱ︀′

𝑛 |)
46: 𝑘required ← stake_sum ⋅ 𝜆stake
47: ▷ Total required stake from economic model
48: if 𝑘𝑛 < 𝑘required then
49: return ⊥ (insufficient stake)
50: end
51: ▷ Predictive check: stake validated using PROJECTED file set ℱ︀′

𝑛
52: ▷ Node must have sufficient stake assuming join succeeds
53:

24

54: ▷ Step 5: Lock bond and create sponsorship if accepting offer
55: if offer_id ≠ ⊥ then
56: ▷ Validate entrant has sufficient balance for bond
57: 𝑏𝑛 (entrant balance) ← state.get_balance(signer)
58: if 𝑏𝑛 < 𝑜.bond then
59: return ⊥ (insufficient balance for bond)
60: end
61:
62: ▷ Lock bond in escrow
63: state.reduce_balance(signer, 𝑜.bond)
64: state.set_bond_escrow((signer, 𝒜︀.file_id), 𝑜.bond)
65: ▷ Bond held until first challenge resolution for this file
66:
67: ▷ Create sponsorship agreement from accepted offer
68: 𝑚 ←

{file_id : 𝒜︀.file_id, entrant : signer, sponsor : 𝑜.sponsor, rate : 𝑜.rate, duration :
𝑜.duration, bond : 𝑜.bond, start : block_height, first_proof_complete : false}

69: state.sponsorships.add(𝑚)
70:
71: ▷ Remove accepted offer from active offers
72: state.offers.remove(𝑜)
73: end
74:
75: ▷ Step 6: Add node to file agreement
76: 𝒜︀.nodes.add(signer)
77:
78: ▷ Step 7: Update membership sets
79: 𝒩︀𝑓 (nodes for file agreement) ← state.get_nodes_for_file(𝒜︀.file_id)
80: 𝒩︀𝑓 .add(signer)
81: state.set_nodes_for_file(𝒜︀.file_id, 𝒩︀𝑓)
82: ℱ︀𝑛 (file agreements for node) ← state.get_files_for_node(signer)
83: ℱ︀𝑛.add(𝒜︀.file_id)
84: state.set_files_for_node(signer, ℱ︀𝑛)
85:
86: ▷ Step 8: Activate file agreement if threshold reached
87: if |𝒜︀.nodes| ≥ 𝑛min ∧ 𝒜︀.active = false then
88: 𝒜︀.active ← true
89: ℱ︀.add(𝒜︀.file_id)
90: ▷ File agreement added to ℱ︀, begins receiving emissions
91:
92: ▷ Update global emission weight
93: 𝜔𝑓 ← 𝒜︀.emission_weight
94: Ω ← state.get_omega()
95: Ω ← Ω + 𝜔𝑓
96: state.set_omega(Ω)
97: ▷ Increment global Ω when file agreement activates
98: end
99: return success
100: end

2.7.4 Leave Agreement

Storage nodes may voluntarily exit file agreements by invoking the Leave-Agreement proce

dure via a contract call. Voluntary departure is only permitted when the file agreement has

more than the minimum required nodes (|𝒩︀𝑓 | > 𝑛min) and the node has sufficient spendable

balance to pay the leave fee.

The procedure validates the departure conditions, collects the leave fee 𝜑leave = 𝑘𝑓 ⋅ (𝑛min
|𝒩︀𝑓|)

2

from the node’s spendable balance and burns it, removes the node from the file agreement,

updates membership tracking, and voids any sponsorship agreements where the departing

node was either an entrant or a sponsor.

25

Algorithm 8: Leave Agreement

1: procedure Leave-Agreement(state, signer, agreement_id, block_height)
2: ▷ Step 1: Retrieve file agreement
3: 𝒜︀ ← state.agreements.get(agreement_id)
4: if 𝒜︀ = ⊥ ∨ signer ¬ ∈ 𝒜︀.nodes then
5: return ⊥ (invalid request)
6: end
7:
8: ▷ Step 2: Check minimum nodes constraint
9: 𝒩︀𝑓 (nodes for file agreement) ← state.get_nodes_for_file(𝒜︀.file_id)
10: if |𝒩︀𝑓 | ≤ 𝑛min then
11: return ⊥ (cannot leave: would violate minimum)
12: end
13:
14: ▷ Step 3: Calculate and verify leave fee from spendable balance
15: 𝑘𝑓 ← 𝒜︀.base_stake
16: 𝜑leave ← 𝑘𝑓 ⋅ (𝑛min

|𝒩︀𝑓|)
2

17: ▷ Leave fee from economic model
18: 𝑏𝑛 (spendable balance) ← state.get_balance(signer)
19: if 𝑏𝑛 < 𝜑leave then
20: return ⊥ (insufficient balance for leave fee)
21: end
22:
23: ▷ Step 4: Burn leave fee from spendable balance
24: state.reduce_balance(signer, 𝜑leave)
25: state.burn(𝜑leave)
26:
27: ▷ Step 5: Remove node from file agreement
28: 𝒜︀.nodes.remove(signer)
29:
30: ▷ Step 6: Update membership sets
31: 𝒩︀𝑓 .remove(signer)
32: state.set_nodes_for_file(𝒜︀.file_id, 𝒩︀𝑓)
33: ℱ︀𝑛 (file agreements for node) ← state.get_files_for_node(signer)
34: ℱ︀𝑛.remove(𝒜︀.file_id)
35: state.set_files_for_node(signer, ℱ︀𝑛)
36:
37: ▷ Step 7: Void sponsorships involving departing node
38: for 𝑚 ∈ state.sponsorships do
39: if 𝑚.entrant = signer ∨ 𝑚.sponsor = signer then
40: state.sponsorships.remove(𝑚)
41: ▷ Voided: node was sponsor or entrant
42: end
43: end
44: return success
45: end

2.7.5 Verify Storage Proof

Storage nodes respond to challenges by invoking the Verify-Storage-Proof procedure via

a contract call that includes the cryptographic proof and one or more challenge identifiers.

Proofs may aggregate multiple challenges across multiple files and block heights into a single

constant-size SNARK.[3] The verifier reconstructs the expected public inputs deterministi

cally from protocol state (challenges, file ledger roots, indices) and verifies the compressed

SNARK.

If the proof is valid, each covered challenge is marked as verified and removed from the

active challenge queue. If the proof is invalid or malformed, the proof is rejected and each

referenced challenge is immediately marked as failed, triggering slashing during block-end

processing.

26

Algorithm 9: Verify Storage Proof

1: procedure Verify-Storage-Proof(state, signer, proof, block_height)
2: ▷ Step 1: Validate challenge IDs and retrieve challenges
3: ids ← proof.challenge_ids
4: if |ids| = 0 then
5: return ⊥ (empty proof)
6: end
7: ▷ Reject duplicate IDs to prevent accidental double-counting
8: if |ids| ≠ |Set(ids)| then
9: return ⊥ (duplicate challenge IDs)
10: end
11: challenges ← empty list
12: for id ∈ ids do
13: 𝒞︀ ← state.get_challenge(id)
14: if 𝒞︀ = ⊥ then
15: return ⊥ (challenge not found)
16: end
17: if signer ≠ 𝒞︀.node_id then
18: return ⊥ (unauthorized - wrong node)
19: end
20: if 𝒞︀ ∉ state.active_challenges then
21: return ⊥ (challenge not active)
22: end
23: challenges.append(𝒞︀)
24: end
25:
26: ▷ Step 2: Validate ledger root (multi-file only)
27: 𝜌ℒ︀ ← proof.ledger_root
28: 𝑑agg ← proof.aggregated_tree_depth
29: if 𝑑agg > 0 ∧ 𝜌ℒ︀ ∉ state.accepted_historical_roots() then
30: return ⊥ (invalid ledger root)
31: end
32: ▷ Ledger root validation is skipped for single-file proofs (𝑑agg = 0):
33: ▷ the circuit directly enforces computed_root == z0[0], so a mismatched
34: ▷ proof.ledger_root causes SNARK verification to fail. Early rejection is optional.
35:
36: ▷ Step 3: Determine circuit shape from challenges
37: 𝑘 ← next_power_of_two(|challenges|)
38: 𝑑max ← max𝒞︀∈ challenges depth(𝒞︀)
39: ▷ Use 𝑑agg from proof to select parameters
40:
41: ▷ Step 4: Reconstruct expected public inputs using proof indices
42: 𝑰 ← proof.ledger_indices
43: if |𝑰| ≠ 𝑘 then
44: return ⊥ (ledger index vector has wrong length)
45: end
46: ▷ Sort challenges deterministically by (file_id, challenge_id) before building per-

file arrays
47:

sorted ←

Sort(challenges, (𝑐1, 𝑐2) ⇒ 𝑐1.file_id < 𝑐2.file_id
∨ (𝑐1.file_id = 𝑐2.file_id ∧ 𝑐1.id < 𝑐2.id))

48: 𝑫, 𝚺 ← arrays from sorted, padded to length 𝑘
49: 𝒛expected

0 ← [𝜌ℒ︀, 0, 𝑰, 𝑫, 𝚺, 𝟎]
50:
51: ▷ Step 5: Generate verification parameters
52: pp ← 𝒢︀(𝑘, 𝑑max, 𝑑agg)
53:
54: ▷ Step 6: Verify compressed SNARK
55: 𝜋compressed ← proof.compressed_snark
56: 𝑁 ← challenges[0].num_challenges
57: if ∃𝒞︀ ∈ challenges : 𝒞︀.num_challenges ≠ 𝑁 then
58: return ⊥ (mismatched iteration count)
59: end

27

60: valid ← Spartan.Verify(pp, 𝜋compressed, 𝒛
expected
0 , 𝑁)

61: if ¬ valid then
62: ▷ Invalid proof: mark referenced challenges as failed (slashable immediately)
63: for 𝒞︀ ∈ challenges do
64: state.failed_challenges.add(𝒞︀.id)
65: state.active_challenges.remove(𝒞︀)
66: end
67: return ⊥ (proof verification failed)
68: end
69:
70: ▷ Step 7: Mark challenges as verified and remove from active list
71: for 𝒞︀ ∈ challenges do
72: state.verified_challenges.add(𝒞︀.id)
73: state.active_challenges.remove(𝒞︀)
74: end
75:
76: ▷ Step 8: Release bond(s) for first successful proof(s)
77: seen_files ← empty set
78: for 𝒞︀ ∈ challenges do
79: file_id ← 𝒞︀.file_id
80: if file_id ∉ seen_files then
81: seen_files.add(file_id)
82: for 𝑚 ∈ state.sponsorships do
83: if 𝑚.file_id = file_id ∧ 𝑚.entrant = signer ∧ 𝑚.first_proof_complete = false

then
84: ▷ This is entrant’s first successful proof for sponsored file
85:
86: ▷ Return bond to entrant
87: bond ← state.get_bond_escrow((signer, file_id))
88: state.add_balance(signer, bond)
89: state.clear_bond_escrow((signer, file_id))
90: ▷ Bond returned: entrant proved possession of valid data
91:
92: ▷ Mark first proof complete
93: 𝑚.first_proof_complete ← true
94: ▷ Sponsorship now unconditional
95: end
96: end
97: end
98: end
99: return success
100: end

2.7.6 Stake Tokens

Storage nodes invoke the Stake-Tokens procedure to move KOR from their spendable balance

to their staked balance. This increases the node’s stake capacity, enabling it to join additional

file agreements. The procedure validates the amount and balance, then transfers the specified

amount from spendable to staked balance.

Algorithm 10: Stake Tokens

1: procedure Stake-Tokens(state, signer, amount, block_height)
2: ▷ Validate amount
3: 𝑏𝑛 (spendable balance) ← state.get_balance(signer)
4: if amount ≤ 0 ∨ amount > 𝑏𝑛 then
5: return ⊥ (invalid amount)
6: end
7:
8: ▷ Move spendable KOR to staked balance
9: state.reduce_balance(signer, amount)
10: state.add_stake(signer, amount)

28

11: return success
12: end

2.7.7 Unstake Tokens

Storage nodes invoke the Unstake-Tokens procedure to move KOR from their staked balance

back to their spendable balance. Withdrawals are programmatically blocked if they would

cause the node’s stake to fall below the required amount for its current file commitments.

The procedure calculates the node’s required stake 𝑘req based on its file agreement set and

stake amplification factor, validates that the post-withdrawal stake would remain sufficient,

then transfers the specified amount from staked to spendable balance.

Algorithm 11: Unstake Tokens

1: procedure Unstake-Tokens(state, signer, amount, block_height)
2: ▷ Node attempts to move staked KOR to spendable balance
3: ▷ Blocked if would result in insufficient stake
4: 𝑘𝑛 (current stake) ← state.get_stake(signer)
5:
6: ▷ Check withdrawal amount validity
7: if amount ≤ 0 ∨ amount > 𝑘𝑛 then
8: return ⊥ (invalid amount)
9: end
10:
11: ▷ Calculate required stake for node’s file agreements
12: ℱ︀𝑛 (node file agreements) ← state.get_files_for_node(signer)
13: stake_sum ← ∑𝑓∈ℱ︀𝑛

state.get_agreement(𝑓).base_stake
14: 𝜆stake ← 1 + 𝜆slash

ln(2+ |ℱ︀𝑛|)
15: 𝑘required ← stake_sum ⋅ 𝜆stake
16: ▷ Total required stake from economic model
17:
18: ▷ Check if withdrawal would violate stake requirement
19: 𝑘′

𝑛 (stake after withdrawal) ← 𝑘𝑛 − amount
20: if 𝑘′

𝑛 < 𝑘required then
21: return ⊥ (insufficient stake after withdrawal)
22: end
23: ▷ Withdrawal programmatically blocked to maintain sufficiency
24:
25: ▷ Execute withdrawal
26: state.reduce_stake(signer, amount)
27: state.add_balance(signer, amount)
28: return success
29: end

2.8 Block Processing

The protocol executes deterministic state transitions at the start and end of each block,

independent of user transactions. These algorithms are called from the Block Start and

Block End procedures defined in the Protocol Flow section.

2.8.1 Challenge Generation

Kontor indexers deterministically derive a set of challenges from each Bitcoin block using

the current block hash as the entropy source. The algorithm proceeds in three steps: (1)

derive a batch seed from the block hash using HKDF, (2) select files probabilistically based

on a uniform challenge rate 𝑝𝑓 = 𝐶target
𝐵 , and (3) for each selected file, uniformly sample one

storage node to be challenged. This ensures each file receives approximately 𝐶target challenges

per year regardless of network size, while distributing challenge load evenly across nodes.

29

Algorithm 12: Create Challenge

1: procedure Create-

Challenge(node_id, file_id, metadata, block_height, batch_seed, params)
2: ▷ Step 1: Compute deterministic challenge identifier
3: 𝜎batch ← batch_seed
4: 𝜌 ← metadata.root
5: 𝑑 ← trailing_zeros(metadata.padded_len)
6: 𝑠 ← 𝑠chal
7: ℐ︀ ← ℋ︀SHA256(TAGchallenge_id ‖ block_height ‖ 𝜎batch ‖ file_id ‖ 𝜌 ‖ 𝑑 ‖ 𝑠 ‖ node_id)
8: ▷ Deterministic ID with domain separation
9: ▷ Includes all challenge parameters for uniqueness
10:
11: ▷ Step 2: Set challenge parameters and expiration
12: expiration_block ← block_height + 𝑊proof
13: ▷ Must respond within 𝑊proof blocks with 𝑠 symbol proofs
14:
15: ▷ Step 3: Package challenge structure
16: 𝒞︀ ← {id : ℐ︀, node_id : node_id, file_id : file_id, metadata : metadata, block_height :

block_height, expiration_block : expiration_block, num_challenges : 𝑠, seed : 𝜎batch}
17: return 𝒞︀
18: end

Algorithm 13: Generate Challenges for Block

1: procedure Generate-Challenges-For-Block(state, block_height, block_hash)
2: ▷ Step 1: Derive deterministic randomness for this block
3: 𝐻 ← block_hash
4: info ← KONTOR-CHAL::v1 ‖ block_height
5: 𝜎batch ← HKDFSHA256(𝐻, info)
6: ▷ Current block hash provides unpredictable entropy
7:
8: ▷ Step 2: Calculate challenge probability (constant across all files)
9: 𝑝𝑓 ←

𝐶target
𝐵

10: ▷ Challenge probability from global parameters
11:
12: ▷ Step 3: Probability-based file selection
13: ℱ︀ ← state.get_files(block_height)
14: ℱ︀selected ← empty list
15: for 𝑓 ∈ ℱ︀ do
16: ▷ Derive file-specific random value
17: 𝑢𝑓 ← ℋ︀SHA256(𝜎batch ‖ 𝑓.id) mod 232

232

18: ▷ Uniform 𝑢𝑓 ∈ [0, 1)
19: if 𝑢𝑓 < 𝑝𝑓 then
20: ℱ︀selected.append(𝑓)
21: end
22: end
23:
24: ▷ Step 4: Select one node per challenged file agreement
25: ▷ Node 𝑛 ∈ 𝒩︀𝑓 selected with probability 1

| 𝒩︀𝑓 |
26: 𝒞︀new ← empty list
27: for 𝑓 ∈ ℱ︀selected do
28: 𝒩︀𝑓 ← state.get_nodes_for_file(𝑓.id)
29: if |𝒩︀𝑓 | > 0 then
30: 𝑛 ← RandomChoice(𝒩︀𝑓 , 𝜎batch)
31: ▷ Uniform random selection: probability 1

| 𝒩︀𝑓 |
32: 𝒞︀ ← Create-Challenge(𝑛, 𝑓.id, 𝑓.metadata, block_height, 𝜎batch, params)
33: 𝒞︀new.append(𝒞︀)
34: end
35: end
36: return 𝒞︀new
37: end

30

2.8.2 Reward Emissions

Every block, the protocol mints new KOR and distributes it to storage nodes proportionally

based on their file agreements and sponsorship arrangements. Total emissions use a constant

rate:

𝜀 = KORtotal ⋅ (𝜇0
𝐵

) (10)

where KORtotal is the circulating supply at the previous block, 𝜇0 is the baseline annual

inflation rate (e.g., 0.10 for 10%), and 𝐵 is blocks per year (≈ 52, 560 with 10-minute blocks).

This constant-emission design is viable because capital costs (staking opportunity cost)

dominate physical storage costs, creating a self-referential system that requires no external

price oracles.

Each file receives a share based on its emission weight. The distribution accounts for

commission payments between sponsors and entrants.

Edge Cases:

• Network bootstrap (ℱ︀ = ∅): When no files exist, Ω = 1.0 (genesis bootstrap value)

and no emissions are distributed. This initialization prevents division-by-zero in stake

calculations for the first file.

• Abandoned files (|𝒩︀𝑓 | = 0): When all nodes have been removed from a file agree

ment (through slashing or stake insufficiency), the file remains in ℱ︀ and continues

to accrue emissions, but no nodes receive rewards. These emissions are effectively

burned (not minted). The file’s 𝜔𝑓 remains in the global Ω calculation to maintain

deterministic stake calculations for new files.

Algorithm 14: Storage Rewards Distribution

1: procedure Distribute-Storage-Rewards(state, block_height)
2: ▷ Called every block during On-Block-End
3: ▷ Mints and distributes KOR emissions to storage nodes
4:
5: ▷ Step 1: Calculate total block emissions
6: Ω ← state.get_omega()
7: KORtotal ← state.get_total_supply()
8: 𝜀 ← KORtotal ⋅ (𝜇0

𝐵)
9: ▷ Constant emissions
10:
11: ▷ Step 2: Distribute emissions per file
12: ℱ︀ ← state.get_active_files()
13: for 𝑓 ∈ ℱ︀ do
14: ▷ Calculate file-specific emissions
15: 𝒜︀ ← state.get_agreement(𝑓)
16: 𝜔𝑓 ← 𝒜︀.emission_weight
17: 𝜀𝑓 ← 𝜀(𝑡) ⋅ (𝜔𝑓

Ω)
18: ▷ File’s proportional share of total emissions
19:
20: ▷ Get nodes storing this file
21: 𝒩︀𝑓 ← state.get_nodes_for_file(𝑓)
22: if |𝒩︀𝑓 | = 0 then
23: ▷ File abandoned: emissions not minted (effectively burned)
24: ▷ Skip to next file
25:
26: ▷ Calculate base per-node reward
27: 𝑟base ←

𝜀𝑓
|𝒩︀𝑓|

28:
29: ▷ Step 3: Distribute to each node with commission adjustments
30: for 𝑛 ∈ 𝒩︀𝑓 do
31: ▷ Initialize commission terms

31

32: 𝛾paid ← 0
33: 𝛾earned ← 0
34:
35: ▷ Check if node is entrant in active sponsorship for this file
36: for 𝑚 ∈ state.sponsorships do
37: if 𝑚.file_id = 𝑓 ∧ 𝑚.entrant = 𝑛 then
38: if block_height ≥ 𝑚.𝑡start ∧ block_height < 𝑚.𝑡start + 𝑚.𝛾duration then
39: 𝛾paid ← 𝑚.𝛾rate
40: ▷ Entrant pays commission to sponsor
41: end
42: end
43: end
44:
45: ▷ Check if node is sponsor for entrants in this file
46: for 𝑚 ∈ state.sponsorships do
47: if 𝑚.file_id = 𝑓 ∧ 𝑚.sponsor = 𝑛 then
48: if block_height ≥ 𝑚.𝑡start ∧ block_height < 𝑚.𝑡start + 𝑚.𝛾duration then
49: 𝛾earned ← 𝛾earned + 𝑚.𝛾rate
50: ▷ Sponsor earns commission from entrant
51: end
52: end
53: end
54:
55: ▷ Compute final reward with commission adjustments
56: 𝑟 ← 𝑟base ⋅ (1 − 𝛾paid + 𝛾earned)
57: ▷ Entrant pays out, sponsor earns in
58:
59: ▷ Mint and add to node’s spendable balance
60: state.mint_tokens(𝑟)
61: state.add_balance(𝑛, 𝑟)
62: end
63: end
64: ▷ End of |N_f| > 0 case
65: end
66: end

2.8.3 Challenge Expiration and Slashing

If a storage node either lets an open challenge expire or submits an invalid storage proof for

it, then that storage node’s stake 𝑘𝑛 is slashed by an amount equal to 𝜆slash ⋅ 𝑘𝑓 , where 𝑘𝑓

is the base stake for the file in question and 𝜆slash is a system-wide multiplier. The node is

also immediately removed from the file agreement.

A proportion of the slashed funds, 𝛽slash, is burned. The remainder is distributed equally

among the other storage nodes that are parties to the file agreement that was broken. This

disincentivizes a form of collusion in which only one storage node in the agreement actually

stores the file and merely transfers the file data to other nodes that have committed to it

when the latter are challenged.

If a slash (or any other event) causes a node’s total stake 𝑘𝑛 to fall below its required stake

𝑘req, the protocol automatically triggers a stake-sufficiency-restoration process. The node

is gracefully removed from file agreements (with a penalty deducted from stake for each

involuntary exit) until its stake is sufficient again. If this is not possible without violating

minimum replication on its remaining file agreements, its entire remaining stake is burned,

and it is removed from all agreements.

• If 𝑘𝑛 < 𝑘req after slashing, the Stake Insufficiency Handling algorithm is automatically

triggered.

• The slashed node 𝑛 is immediately removed from 𝒩︀𝑓 and file agreement 𝑓 is removed

from ℱ︀𝑛.

32

• Any sponsorship agreements where node 𝑛 was either an entrant or a sponsor are

immediately voided and removed from ℳ︀.

Algorithm 15: Failure Detection and Slashing

1: procedure Process-Failed-Challenges(state, block_height)
2: ▷ Identify and process all failed challenges
3: ▷ Collect expired challenges (not submitted within 𝑊proof blocks)
4: 𝒞︀expired ← empty list
5: for 𝒞︀ ∈ state.active_challenges do
6: if block_height ≥ 𝒞︀.expiration_block then
7: 𝒞︀expired.append(𝒞︀)
8: end
9: end
10:
11: ▷ Move expired challenges to failed queue
12: for 𝒞︀ ∈ 𝒞︀expired do
13: state.failed_challenges.add(𝒞︀.id)
14: end
15:
16: ▷ Apply penalties to all failed challenges
17: for challenge_id ∈ state.failed_challenges do
18: 𝒞︀failed ← state.challenges.get(challenge_id)
19: ▷ Find file agreement for challenged file
20: 𝒜︀id ← state.get_agreement_for_file(𝒞︀failed.file_id)
21: if 𝒜︀id ≠ ⊥ then
22: 𝒜︀ ← state.get_agreement(𝒜︀id)
23: node_id ← 𝒞︀failed.node_id
24:
25: ▷ Calculate slash penalty: 𝑘𝑓 × 𝜆slash
26: 𝑘𝑓 ← 𝒜︀.base_stake
27: penalty ← 𝑘𝑓 × 𝜆slash
28:
29: ▷ Burn and distribute penalty
30: burn_amount ← penalty × 𝛽slash
31: distribute_amount ← penalty × (1 − 𝛽slash)
32: state.reduce_stake(node_id, penalty)
33: state.burn(burn_amount)
34:
35: ▷ Distribute to remaining nodes in file agreement
36: 𝒩︀𝑓 (other nodes) ← 𝒜︀.nodes ∖ node_id
37: if |𝒩︀𝑓 | > 0 then
38: share ← distribute_amount

| 𝒩︀𝑓 |
39: for 𝑛𝑖 ∈ 𝒩︀𝑓 do
40: state.add_stake(𝑛𝑖, share)
41: end
42: ▷ No remaining nodes: burn entire distribution
43: state.burn(distribute_amount)
44: end
45:
46: ▷ Handle bond transfer if first challenge failure for sponsored join
47: file_id ← 𝒜︀.file_id
48: for 𝑚 ∈ state.sponsorships do
49: if 𝑚.file_id = file_id ∧ 𝑚.entrant = node_id ∧ 𝑚.first_proof_complete =

false then
50: ▷ Entrant failed first challenge: void sponsorship retroactively
51:
52: ▷ Transfer bond to sponsor as compensation
53: bond ← state.get_bond_escrow((node_id, file_id))
54: state.add_balance(𝑚.sponsor, bond)
55: state.clear_bond_escrow((node_id, file_id))
56: ▷ Sponsor compensated for Bitcoin miner fees and bandwidth costs
57:

33

58: ▷ Void sponsorship - no commission ever paid
59: state.sponsorships.remove(𝑚)
60: ▷ Retroactive void: sponsor earned no commission
61: end
62: end
63:
64: ▷ Remove node from file agreement
65: 𝒩︀𝑓 ← state.get_nodes_for_file(𝒜︀.file_id)
66: 𝒩︀𝑓 .remove(node_id)
67: state.set_nodes_for_file(𝒜︀.file_id, 𝒩︀𝑓)
68: ℱ︀𝑛 ← state.get_files_for_node(node_id)
69: ℱ︀𝑛.remove(𝒜︀.file_id)
70: state.set_files_for_node(node_id, ℱ︀𝑛)
71: 𝒜︀.nodes.remove(node_id)
72:
73: ▷ Void other sponsorships involving slashed node
74: for 𝑚 ∈ state.sponsorships do
75: if (𝑚.entrant = node_id ∨ 𝑚.sponsor = node_id) ∧ 𝑚.file_id ≠ file_id then
76: state.sponsorships.remove(𝑚)
77: ▷ Other sponsorships voided, bonds handled separately
78: end
79: end
80:
81: ▷ Check if stake insufficiency triggered
82: 𝑘𝑛 (node stake) ← state.get_stake(node_id)
83: ℱ︀𝑛 ← state.get_files_for_node(node_id)
84: stake_sum ← ∑𝑓∈ℱ︀𝑛

state.get_agreement(𝑓).base_stake
85: 𝜆stake ← 1 + 𝜆slash

ln(2+ |ℱ︀𝑛|)
86: 𝑘required ← stake_sum ⋅ 𝜆stake
87: ▷ Total required stake from economic model
88: if 𝑘𝑛 < 𝑘required then
89: ▷ Trigger stake insufficiency handling
90: Handle-Stake-Insufficiency(node_id, state)
91: end
92: end
93: end
94:
95: ▷ Clear processed failures
96: state.failed_challenges.clear()
97: end

2.8.4 Stake Insufficiency Handling

• Stake Insufficiency Handling: If a node’s stake falls below its requirement (e.g.,

after being slashed), this automated process restores sufficiency by removing it from

file agreements in a pseudo-random order. This operation takes precedence over

withdrawal.

‣ Pass 1 (Graceful Exit): The node is removed from file agreements where its

departure is non-critical (|𝒩︀𝑓 | > 𝑛min). This continues until sufficiency is met.

For each involuntary exit from file agreement 𝑓 , the protocol deducts a penalty

from the node’s staked balance 𝑘𝑛:

– Of this penalty 𝑘𝑓 ⋅ 𝜆slash, an amount 𝛽slash ⋅ 𝑘𝑓 ⋅ 𝜆slash is burned.

– The remainder (1 − 𝛽slash) ⋅ 𝑘𝑓 ⋅ 𝜆slash is distributed equally among the other

storers in 𝒩︀𝑓 .

‣ Pass 2 (Total Forfeiture): If Pass 1 is insufficient, the node’s entire remaining

stake 𝑘𝑛 is burned, and the node is removed from all remaining file agreements.

This ensures the node pays the maximum possible penalty and cannot game the

insufficiency mechanism.

34

Algorithm 16: Stake Insufficiency Handling

1: procedure Handle-Stake-Insufficiency(node_id, state)
2: ▷ Automatic restoration when 𝑘𝑛 < 𝑘req after slashing
3: ▷ Takes precedence over withdrawal operations
4: 𝑘𝑛 (node stake) ← state.get_stake(node_id)
5: ℱ︀𝑛 (node file agreements) ← state.get_files_for_node(node_id)
6: stake_sum ← ∑𝑓∈ℱ︀𝑛

state.get_agreement(𝑓).base_stake
7: 𝜆stake ← 1 + 𝜆slash

ln(2+ |ℱ︀𝑛|)
8: 𝑘required ← stake_sum ⋅ 𝜆stake
9: ▷ Total required stake from economic model
10: ▷ Check if insufficiency exists
11: if 𝑘𝑛 ≥ 𝑘required then
12: return success (no action needed)
13: end
14:
15:
16: ▷ PASS 1: Graceful Exit from Non-Critical File Agreements
17: ▷ Remove from file agreements where |𝒩︀𝑓 | > 𝑛min
18: files_to_remove ← empty list
19: for 𝑓 ∈ ℱ︀𝑛 do
20: ▷ Check if node can be removed without violating minimum
21: 𝒩︀𝑓 ← state.get_nodes_for_file(𝑓)
22: if |𝒩︀𝑓 | > 𝑛min then
23: files_to_remove.append(𝑓)
24: end
25: end
26:
27: ▷ Shuffle for pseudo-random order
28: seed ← ℋ︀SHA256(node_id ‖ block_height)
29: Shuffle(files_to_remove, seed)
30: ▷ Prevents node from predicting removal order to game penalties
31:
32: ▷ Remove from file agreements until sufficiency restored
33: for 𝑓 ∈ files_to_remove do
34: ▷ Get file agreement and calculate penalty
35: 𝒜︀id ← state.get_agreement_for_file(𝑓)
36: 𝒜︀ ← state.get_agreement(𝒜︀id)
37: 𝑘𝑓 ← 𝒜︀.base_stake
38: penalty ← 𝑘𝑓 × 𝜆slash
39: ▷ Same penalty as failed challenge: 𝑘𝑓 × 𝜆slash
40:
41: ▷ Apply penalty for involuntary exit
42: burn_amount ← penalty × 𝛽slash
43: distribute_amount ← penalty × (1 − 𝛽slash)
44: state.reduce_stake(node_id, penalty)
45: 𝑘𝑛 ← 𝑘𝑛 − penalty
46: ▷ Update local stake tracker
47: state.burn(burn_amount)
48:
49: ▷ Distribute to remaining honest storers
50: 𝒩︀𝑓 ← state.get_nodes_for_file(𝑓)
51: 𝒩︀′

𝑓 ← empty set
52: for 𝑛 ∈ 𝒩︀𝑓 do
53: if 𝑛 ≠ node_id then
54: 𝒩︀′

𝑓 .add(𝑛)
55: end
56: end
57: if |𝒩︀′

𝑓 | > 0 then
58: share ← distribute_amount

| 𝒩︀′
𝑓 |

59: for 𝑛𝑖 ∈ 𝒩︀′
𝑓 do

60: state.add_stake(𝑛𝑖, share)
61: end

35

62: ▷ No other storers: burn entire distribution
63: state.burn(distribute_amount)
64: end
65:
66: ▷ Remove node from file agreement
67: 𝒩︀𝑓 .remove(node_id)
68: state.set_nodes_for_file(𝑓, 𝒩︀𝑓)
69: ℱ︀𝑛.remove(𝑓)
70: state.set_files_for_node(node_id, ℱ︀𝑛)
71: 𝒜︀.nodes.remove(node_id)
72: ▷ Node forcibly removed from file agreement
73:
74: ▷ Void sponsorships involving removed node for this file
75: for 𝑚 ∈ state.sponsorships do
76: if (𝑚.file_id = 𝑓) ∧ (𝑚.entrant = node_id ∨ 𝑚.sponsor = node_id) then
77: state.sponsorships.remove(𝑚)
78: end
79: end
80:
81: ▷ Check if sufficiency restored after this removal
82: stake_sum ← ∑𝑓∈ℱ︀𝑛

state.get_agreement(𝑓).base_stake
83: 𝜆stake ← 1 + 𝜆slash

ln(2+ |ℱ︀𝑛|)
84: 𝑘required ← stake_sum ⋅ 𝜆stake
85: ▷ Recompute required stake with updated file agreement set
86: if 𝑘𝑛 ≥ 𝑘required then
87: return success (sufficiency restored)
88: end
89: ▷ If sufficient, exit early; otherwise continue removing file agreements
90: end
91:
92:
93: ▷ PASS 2: Total Forfeiture
94: ▷ If Pass 1 insufficient, burn all remaining stake and remove from all file agree

ments
95: if 𝑘𝑛 < 𝑘required then
96: ▷ Node still insufficient after graceful exits
97: ▷ Apply maximum penalty: burn entire remaining stake
98: stake_remaining ← state.get_stake(node_id)
99: if stake_remaining > 0 then
100: state.reduce_stake(node_id, stake_remaining)
101: state.burn(stake_remaining)
102: end
103: ▷ All stake forfeited to prevent gaming insufficiency mechanism
104:
105: ▷ Remove from all remaining file agreements
106: ℱ︀𝑛 ← state.get_files_for_node(node_id)
107: ▷ May include file agreements where |𝒩︀𝑓 | ≤ 𝑛min (critical agreements)
108: for 𝑓 ∈ ℱ︀𝑛 do
109: ▷ Update node membership for this file agreement
110: 𝒩︀𝑓 ← state.get_nodes_for_file(𝑓)
111: 𝒩︀𝑓 .remove(node_id)
112: state.set_nodes_for_file(𝑓, 𝒩︀𝑓)
113:
114: ▷ Remove from file agreement structure
115: 𝒜︀id ← state.get_agreement_for_file(𝑓)
116: 𝒜︀ ← state.get_agreement(𝒜︀id)
117: 𝒜︀.nodes.remove(node_id)
118: ▷ File agreement may now be under-replicated if |𝒩︀𝑓 | < 𝑛min, but remains in

ℱ︀ and active - never deactivates
119: end
120:
121: ▷ Clear node’s entire file agreement set

36

122: state.set_files_for_node(node_id, ∅)
123:
124: ▷ Void all sponsorships involving this node
125: for 𝑚 ∈ state.sponsorships do
126: if 𝑚.entrant = node_id ∨ 𝑚.sponsor = node_id then
127: state.sponsorships.remove(𝑚)
128: end
129: end
130:
131: ▷ Node ejected from protocol with total forfeiture
132: return total_forfeiture
133: end
134:
135: ▷ Should not reach here: either Pass 1 succeeded or Pass 2 executed
136: return ⊥ (unexpected state)
137: end

3 Economic Analysis

This section analyzes the economic incentives and decision-making framework for storage

nodes. The analysis provides formal models for node profitability, optimal behavior, and

detection guarantees.

3.1 Storage Node Economics

3.1.1 Modeling Parameters

These parameters are used for economic analysis and node decision-making, and may vary

based on market conditions or individual node strategies.

• 𝑝fail: Probability of an honest storage node failing a challenge (due to operational

issues).

• 𝛿: Opportunity cost rate (discount rate) in USD terms per block (per-block fractional

interest rate). Annualized rate: 𝑟annual ≈ (1 + 𝛿)𝐵 − 1. Conversely 𝛿 ≈ (1 + 𝑟annual)
1
𝐵 −

1. For example, a 20% annual rate corresponds to 𝛿 = (1.20) 1
52560 − 1 ≈ 0.0000034

per block.

• ℎ: Number of future blocks considered by nodes for profit evaluation (NPV calcu

lation). Typical values range from 2,016 blocks (two weeks) to 26,280 blocks (six

months), depending on the node operator’s planning horizon and risk tolerance.

• 𝜋min: Minimum net expected profit per block in USD that a node requires to stay in

an agreement.

• 𝜉KOR/USD: Exchange rate from KOR to USD.

• 𝜉BTC/USD: Exchange rate from BTC to USD.

• 𝜑rate
BTC(𝑡): Bitcoin transaction fee rate in BTC per vByte at block 𝑡. This is a market-

determined value that fluctuates based on Bitcoin network congestion.

3.1.2 Economic Functions

• Net Present Value calculation for time-varying cashflows:

NPV({𝑐𝑖}, 𝛿, ℎ) ≝ ∑
ℎ

𝑖=1
(𝑐𝑖

(1 + 𝛿)𝑖) (11)

where {𝑐𝑖} represents the sequence of expected cashflows in USD for blocks 𝑖 =
1, 2, …, ℎ.

3.1.3 Cost Functions

• Expected Costs for node 𝑛 for file 𝑓 at time 𝑡 (all in USD):

37

This model focuses on the primary on-chain economic costs. It does not formally

include secondary operational costs such as hardware amortization, bandwidth for

data repair and propagation, or manual labor, which must also be considered by node

operators.

‣ Expected proving cost: With aggregated proofs, a node pays once per block if

challenged on any files: Let 𝑃any(𝑛, 𝑡) be the probability that node 𝑛 is challenged

on at least one file. Let 𝑐BTC
proof(𝑡) ≝ 𝑠proof ⋅ 𝜑rate

BTC(𝑡) be the cost of submitting an

aggregated proof in BTC.

𝐸[𝑐USD
prove(𝑛, 𝑡)] ≝ 𝑃any(𝑛, 𝑡) ⋅ 𝑐BTC

proof(𝑡) ⋅ 𝜉BTC/USD (12)

where 𝑃any(𝑛, 𝑡) ≝ 1 − Π𝑓∈ℱ︀𝑛
(1 − (𝑝𝑓

|𝒩︀𝑓|)). Note that this assumes independent

challenge selection across files, which is pseudo-random. Assuming equal repli

cation |𝒩︀𝑓 | = 𝑛 for all 𝑓 , this simplifies to 1 − (1 − 𝑝𝑓
𝑛)

|ℱ︀𝑛|
.

‣ Expected slashing cost:

𝐸[𝑐USD
slash(𝑓, 𝑡)] ≝ 𝑃chal(|𝒩︀𝑓 |, 𝑡) ⋅ 𝑝fail ⋅ 𝑘𝑓 ⋅ 𝜆slash ⋅ 𝜉KOR/USD (13)

Note: Slashing occurs when a node is challenged but chooses not to respond with

a proof, or when the proof is invalid, or when the proof is not included on-chain

within the 𝑊proof block window.

‣ Physical storage cost:

𝑐USD
storage(𝑓, 𝑡) ≝ 𝑠bytes

𝑓 ⋅ 𝑐USD
byte-block (14)

where 𝑐USD
byte-block is the marginal cost of storing one byte for one block. While typi

cally small, this cost scales linearly with file size, in contrast to the logarithmic

scaling of rewards.

3.1.4 Profit Functions

• Net Expected Profit for node 𝑛 at time 𝑡 (USD): The total profit for a node is

the sum of profits from all files minus the aggregated proving cost and the opportunity

cost on the total required stake:

𝐸[𝜋(𝑛, 𝑡)] ≝ ∑
𝑓∈ℱ︀𝑛

[(𝐸[𝑟storage(𝑛, 𝑓, 𝑡)] + 𝐸[𝑟slash(𝑛, 𝑓, 𝑡)]) ⋅ 𝜉KOR/USD

−𝐸[𝑐USD
slash(𝑓, 𝑡)] − 𝑐USD

storage(𝑓, 𝑡)] − 𝐸[𝑐USD
prove(𝑛, 𝑡)] − 𝑘req(𝑛) ⋅ 𝜉KOR/USD ⋅ 𝛿

(15)

The per-file profit (excluding the shared proving cost and total stake opportunity

cost) is:

𝐸[𝜋(𝑛, 𝑓, 𝑡)] ≝ (𝐸[𝑟storage(𝑛, 𝑓, 𝑡)] + 𝐸[𝑟slash(𝑛, 𝑓, 𝑡)]) ⋅ 𝜉KOR/USD

−𝐸[𝑐USD
slash(𝑓, 𝑡)] − 𝑐USD

storage(𝑓, 𝑡)
(16)

This represents the direct profit from a single file agreement before accounting for

costs shared across the node’s entire portfolio (aggregated proving and total stake

opportunity cost).

3.2 Node Decision Framework

Storage nodes make decisions to maximize their expected utility (measured in USD profit).

• Decision to Join File 𝑓: A node 𝑛 not currently storing 𝑓 considers joining if the

marginal impact on its total profit is positive. Let 𝐸[𝜋(𝑛, 𝑡 | 𝐹𝑛)] denote the node’s

total expected profit given its current file set ℱ︀𝑛. The node joins if:

38

NPV({𝐸[𝜋(𝑛, 𝑡 + 𝑖 | 𝐹𝑛 ∪ {𝑓})] − 𝐸[𝜋(𝑛, 𝑡 + 𝑖 | 𝐹𝑛)]}, 𝛿, ℎ) > 0 (17)

This marginal profit calculation captures:

‣ The additional storage rewards from file 𝑓
‣ The change in total stake opportunity cost due to increased 𝑘req(𝑛) and potential

change in 𝜆stake(𝑛)
‣ The change in expected proving costs due to increased 𝑃any(𝑛, 𝑡)
‣ The physical storage cost for file 𝑓

For this decision, the node must forecast future values of:

‣ Exchange rates (𝜉KOR/USD, 𝜉BTC/USD)

‣ Network replication levels (|𝒩︀𝑓 |)
‣ Bitcoin fee rates (𝜑rate

BTC)

‣ Network size and emission parameters

The analysis assumes nodes make rational forecasts based on current trends and

market conditions. The participant count is assumed to be |𝒩︀𝑓 | + 1 (including the

joining node).

• Decision to Sponsor Node for File 𝑓: An existing node 𝑛 in 𝒩︀𝑓 decides whether

to sponsor an Entrant by posting a sponsorship offer on-chain. The sponsor specifies

commission rate 𝛾rate, duration 𝛾duration, and required bond 𝛽bond. The sponsor’s costs

are: (1) Bitcoin transaction fees to post the offer, and (2) bandwidth to transfer file

data after acceptance. The benefit is the NPV of the commission stream. The sponsor

is protected by the bond: if the entrant fails the first challenge, the bond compensates

the sponsor’s costs and the sponsorship voids.

Assuming the entrant receives valid data and proves successfully (the expected case),

the sponsor’s payoff is:

NPV({𝛾rate ⋅ (𝜀𝑓
𝑡 + 𝑖

|𝒩︀𝑓 | + 1
)}, 𝛿, 𝛾duration) − 𝑐offer

BTC ⋅ 𝜉BTC/USD − 𝑐USD
transfer (18)

If the entrant fails the first challenge (invalid data or operational failure), the sponsor

receives the bond: 𝛽bond ⋅ 𝜉KOR/USD − 𝑐offer
BTC ⋅ 𝜉BTC/USD − 𝑐USD

transfer. The sponsor sets 𝛽bond

to cover costs: 𝛽bond ⋅ 𝜉KOR/USD ≥ 𝑐offer
BTC ⋅ 𝜉BTC/USD + 𝑐USD

transfer.

This creates a competitive market for sponsorship. A cartel of existing nodes attempt

ing to block entry (gatekeep) will be broken by the incentive for any single member

to defect and capture the commission. The bond-escrow mechanism prevents griefing

while maintaining trustless operation.

• Decision to Leave File 𝑓: A node 𝑛 currently storing 𝑓 evaluates whether its total

profit would improve by leaving. The node compares:

‣ The immediate cost: leave fee 𝜑leave(𝑓, 𝑡) ⋅ 𝜉KOR/USD
‣ The benefit: NPV of the improvement in total profit from leaving

The node leaves if:

NPV({𝐸[𝜋(𝑛, 𝑡 + 𝑖 | 𝐹𝑛 \ {𝑓})] − 𝐸[𝜋(𝑛, 𝑡 + 𝑖 | 𝐹𝑛)]}, 𝛿, ℎ) > −𝜑leave(𝑓, 𝑡) ⋅ 𝜉KOR/USD(19)

Note that the left side is typically negative (leaving reduces profit), so this condition

checks if the profit reduction is less than the leave fee. The node may also be subject

to a minimum profitability constraint 𝜋min, leaving if its total profit falls below this

threshold and the above condition is met. Equivalently, with an explicit per-block

profit floor 𝜋min (USD/block), a node leaves when 𝐸[𝜋(𝑛, 𝑡)] < 𝜋min (or 𝐸[𝜋(𝑛, 𝑡)] < 0

if 𝜋min = 0) and the NPV condition above holds.

When |𝒩︀𝑓 | ≤ 𝑛min, leaving is not permitted regardless of profitability.

39

• Decision to Respond to Challenge: When node 𝑛 is challenged for file 𝑓 , it chooses

to generate a proof if the cost of proving is less than the total loss from being slashed.

Analysis: The true decision must account for the loss of all future revenue streams.

Being slashed removes the node from the agreement permanently, forfeiting future

rewards. Using a finite analysis horizon ℎ and assuming parameters are roughly

constant over that horizon, a simplified estimate of this loss is given by 20:

NPVfuture ≈ ∑
ℎ

𝑖=1
(

𝜀𝑓(𝑡 + 𝑖) ⋅ 𝜉KOR/USD

|𝒩︀𝑓 | ⋅ (1 + 𝛿)𝑖)

≈ (
𝜀𝑓(𝑡) ⋅ 𝜉KOR/USD

|
𝒩︀𝑓 |) ⋅ 1 − (1 + 𝛿)−ℎ

𝛿

(20)

In reality, |𝒩︀𝑓 |, 𝜀𝑓(𝑡), and 𝜉KOR/USD will vary over time. The node must forecast these

changes when making its decision.

All terms in the inequalities below are expressed in USD (NPV); KOR flows are

converted at 𝜉KOR/USD and BTC costs at 𝜉BTC/USD.

The decision criterion is then given by 21:

𝑐BTC
proof(𝑡) ⋅ 𝜉BTC/USD < 𝑘𝑓 ⋅ 𝜆slash ⋅ 𝜉KOR/USD + NPVfuture (21)

3.3 Macroeconomic Stability

The protocol’s long-term stability relies on intrinsic market dynamics. With constant

emissions, stability emerges from the natural equilibrium-seeking behavior of rational nodes

responding to market signals.

−

+

+

+

Replication
Per-Node KOR Rewards

𝑟storage

Fiat Profit

𝐸[𝜋]
KOR/USD Price

𝜉KOR/USD

Figure 5: Intrinsic market equilibrium. The green loop is stabilizing: as replication

falls, per-node rewards increase hyperbolically (fixed emissions split among fewer nodes),

improving profitability and attracting new nodes. This equilibrium-seeking process operates

without protocol intervention.

The stabilizing negative feedback loop operates through market forces:

1. When replication falls (nodes exit), the fixed emissions are split among fewer remaining

nodes.

2. Per-node rewards increase, improving profitability for remaining nodes.

3. Higher profitability attracts new nodes, restoring replication toward equilibrium.

4. Conversely, when replication is high, per-node rewards are diluted, naturally discour

aging over-replication.

External KOR price movements affect fiat profitability but do not trigger protocol-level

inflation responses that could cause death spirals. If KOR price falls:

• Fiat profitability decreases, causing marginal nodes to exit

• Replication may decline as acceptable graceful degradation

40

• The protocol continues to function as long as 𝑛min replication is maintained

• No inflation response amplifies the price decline

This design accepts variable replication in exchange for monetary stability.

3.4 Capital Cost Dominance

The protocol’s security model fundamentally relies on capital costs (staking and proving)

dominating physical storage costs. This economic asymmetry prevents various attacks where

nodes might attempt to collect rewards without actually storing data.

3.4.1 Stake Requirements

The per-node base stake for a file is determined by the emission weight and network scale.

This formula ensures that:

• Stake requirements scale proportionally with the file’s share of network emissions

• The logarithmic scaling in network size provides reasonable growth while preventing

excessive barriers

• Earlier files (lower rank) require higher stakes, reflecting their greater emission value

With typical parameters, the capital cost of staking significantly exceeds storage costs. For

example, at |ℱ︀(𝑡)| = 109 files, the annual opportunity cost of staking (~$0.05) exceeds the

physical storage cost (~$0.01 for 100MB) by 5x, ensuring that honest storage remains more

profitable than attempting to fake it.

3.4.2 Proving Costs and Aggregation

The protocol’s proof aggregation mechanism creates economies of scale that benefit legit

imate operators while maintaining security. Nodes have a 𝑊proof window (approximately

2 weeks) to submit proofs after being challenged, allowing them to aggregate multiple

challenges into a single Bitcoin transaction.

With a per-file challenge probability of 𝑝𝑓 = 𝐶target
𝐵 = 12

52560 ≈ 0.000228 per block, a node

storing |ℱ︀𝑛| files expects approximately (∑𝑓∈ℱ︀𝑛

𝑝𝑓
|𝒩︀𝑓|) × 2016 challenges over the 2-week

window. Under equal replication |𝒩︀𝑓 | = 𝑟 for all 𝑓 , this becomes |ℱ︀𝑛| × (𝑝𝑓
𝑟) × 2016 ≈ |ℱ︀𝑛| ×

(0.46
𝑟). By aggregating these into a single proof transaction, nodes pay Bitcoin fees only once

regardless of the number of challenges.

This aggregation opportunity:

• Makes proving costs negligible even for small operators

• Allows nodes to optimize fee payment timing based on Bitcoin network conditions

• Creates no disadvantage for honest nodes while maintaining security guarantees

• Reduces the risk of network congestion and high BTC proving fees

3.5 Failure Detection

The protocol’s challenge mechanism provides strong probabilistic guarantees for detecting

data loss, regardless of file size. By sampling a fixed number of sectors (𝑠chal = 100) from

each challenged file, the protocol ensures uniform security properties across all stored data.

3.5.1 Detection Probability Analysis

The key insight is that detection probability depends only on the fraction of missing data,

not the absolute file size. For a file missing fraction 𝜈 of its sectors:

• Exact (hypergeometric, without replacement):

𝑃(detection | challenged) = 1 − Π𝑠chal−1
𝑖=0 (

(1 − 𝜈) ⋅ 𝑠𝑓 − 𝑖
𝑠𝑓 − 𝑖

) (22)

• Binomial approximation (valid when 𝑠𝑓 is large and 𝑠chal ≪ 𝑠𝑓):

41

𝑃(detection | challenged) ≈ 1 − (1 − 𝜈)𝑠chal (23)

For example, if a node deletes half of a file’s data (𝜈 = 0.5) and the protocol challenges just

two sectors (𝑠chal = 2), the approximate probability of detection is 1 − (1 − 0.5)2 = 75%.

Each file expects 𝐶target = 12 challenges per year, regardless of network size. This constant

challenge rate ensures predictable security properties as the network scales.

Complete Loss Detection: For a completely missing file (100% data loss), the annual

detection probability follows a Poisson process:

𝑃annual detection = 1 − 𝑒−𝐶target = 1 − 𝑒−12 ≈ 99.9994% (24)

Partial Loss Detection: For partial data loss, we combine the per-challenge detection

probability with the expected number of annual challenges. With 𝜈 = 0.1 (10% data loss)

and 𝑠chal = 100, we first calculate the per-challenge detection probability:

𝑃(detection | challenged) = 1 − (1 − 0.1)100 = 1 − 0.9100 ≈ 0.99997 (25)

The annual detection probability is:

𝑃annual detection = 1 − 𝑒−𝐶target⋅𝑃 (detection | challenged) ≈ 1 − 𝑒−12×0.99997 ≈ 99.9994% (26)

With a high number of challenged sectors, the detection probability for even 10% data loss

is so high that the annual detection rate is difficult to distinguish from that of complete

data loss. The protocol assumes files are erasure-coded such that all data can be recovered

from this level of degradation.

Beyond this threshold, data loss is detected with near-certain probability. With 𝑠chal = 100,

storing only 90% of the data (at the erasure coding threshold) results in 99.997% detection

probability per challenge, implying an expected time before detection of approximately

10.0 months:

𝐸[blocks to detection] = 1
𝑃chal(|𝒩︀𝑓 |, 𝑡) ⋅ [1 − (1 − 𝜈)𝑠chal]

(27)

For typical values with |𝒩︀𝑓 | = 10, 𝑝𝑓 = 0.000228, and 𝜈 = 0.1:

𝐸[blocks to detection] ≈ 1
0.0000228 ⋅ 0.99997

≈ 43, 860 blocks ≈ (43, 860
52

, 560) × 12 ≈ 10.0 months(28)

4 Security Analysis

4.1 Protocol Security

4.1.1 System Invariants

The protocol maintains the following invariants that must hold at all times:

1. Conservation of KOR: The total KOR in the system changes according to emissions

and burns. At any block 𝑡:

∑
𝑛∈𝒩︀

(𝑏𝑛 + 𝑘𝑛) + KORother(𝑡) = KORtotal(𝑡) (29)

where:

• ∑𝑛∈𝒩︀(𝑏𝑛 + 𝑘𝑛) represents all KOR held by storage nodes (balances + stakes)

• KORother(𝑡) represents KOR held by users, protocol treasury, exchanges, and

other entities outside the storage node ecosystem

• KORtotal(𝑡) represents the net circulating supply at block 𝑡, which evolves

according to:

42

KORtotal(𝑡) = KORinitial + ∑
𝑡

𝑖=1
(𝜀(𝑖) − Φburned(𝑖)) (30)

Let:

• 𝐹created(𝑡) be the set of files created in block 𝑡
• 𝑆(𝑡) be the set of slashing events (failed challenges) in block 𝑡, where each event

𝑠 ∈ 𝑆(𝑡) involves a node storing file 𝑓𝑠
• 𝐿(𝑡) be the set of leave events in block 𝑡, where each event 𝑙 ∈ 𝐿(𝑡) involves a

node leaving file 𝑓𝑙

The burns in block 𝑡 are:

Φburned(𝑡) = ∑
𝑓∈𝐹created(𝑡)

𝜐𝑓 + ∑
𝑠∈𝑆(𝑡)

𝛽slash ⋅ 𝑘𝑓𝑠
⋅ 𝜆slash + ∑

𝑙∈𝐿(𝑡)
𝜑leave(𝑓𝑙, 𝑡) (31)

The cumulative burns through block 𝑡 are:

Φtotal
burned(𝑡) = ∑

𝑡

𝑖=0
Φburned(𝑖) (32)

where Φburned(0) = 0 at genesis.

2. Non-negative Balances: For all nodes 𝑛 ∈ 𝑁 :

𝑏𝑛 ≥ 0 (33)

If any operation would result in 𝑏𝑛 < 0, the operation fails.

3. Bidirectional Consistency: For all nodes 𝑛 ∈ 𝑁 and files 𝑓 ∈ 𝐹 :

𝑓 ∈ ℱ︀𝑛 ⇔ 𝑛 ∈ 𝒩︀𝑓 (34)

4. Positive Parameters: All protocol parameters must be positive where specified:

𝜇0 > 0 (35)

𝑐stake > 0 (36)

0 ≤ 𝛿 (37)

0 ≤ 𝑝fail < 1 (38)

𝑛min ≥ 1 (39)

𝜆slash > 0 (40)

5. Stake Sufficiency: All nodes must maintain a total stake greater than or equal to

their total required stake.

∀𝑛 ∈ 𝒩︀ : 𝑘𝑛 ≥ 𝑘req(𝑛) (41)

The protocol programmatically prevents withdrawals that would violate this invariant.

If a node’s stake becomes insufficient (e.g., after the node is slashed), the automated

removal algorithm is triggered to restore sufficiency.

6. Staked KOR Bound: The total staked KOR across all nodes is always less than or

equal to the total KOR supply:

∑
𝑛∈𝒩︀

𝑘𝑛 ≤ KORtotal(𝑡) (42)

This invariant ensures that stake requirements cannot exceed the available KOR

supply.

43

4.2 Economic Security

This section analyzes potential attack vectors against the protocol’s economic mechanisms,

their profitability, and mitigation strategies.

4.2.1 Attacks on Storage Provision

These attacks involve storage nodes failing to meet their obligations, either to increase profit

or to save costs.

4.2.1.1 Selective Storage Attack

A malicious node attempts to maximize profit by storing only a fraction of the file data,

gambling that the randomly selected challenge sectors will be among those it has retained.

Risk-Reward Analysis: The attacker must weigh the marginal storage cost savings against

the risk of detection and total loss. For a node storing fraction (1 − 𝜈) of file 𝑓 :

Savings per block: 𝜈 ⋅ 𝑐USD
storage(𝑓, 𝑡) (only the marginal storage cost)

Risk per block: 𝑃chal(|𝒩︀𝑓 |, 𝑡) ⋅ [1 − (1 − 𝜈)𝑠chal] ⋅ [𝑘𝑓 ⋅ 𝜆slash ⋅ 𝜉KOR/USD + NPVfuture]

where:

• 𝑃chal(|𝒩︀𝑓 |, 𝑡) = 𝑝𝑓
|𝒩︀𝑓| is the probability of being challenged

• [1 − (1 − 𝜈)𝑠chal] is the probability of detection if challenged

• The loss includes both the slashed stake and all future rewards (NPV), as defined

in Eq. 20.

Files are assumed to be erasure-coded to tolerate up to 10% data loss. However, nodes that

allow data to degrade to this threshold face near-certain detection. With 𝑠chal = 100, storing

only 90% of the data results in 99.997% detection probability per challenge. The expected

time to detection is approximately 10.0 months for typical values.

The attacker loses all future rewards upon detection, making the NPV of the attack negative

even with high discount rates.

4.2.1.2 Collusion Attack

Multiple nodes (𝑘 of 𝑛 total) storing a file coordinate to have one member fail a challenge,

aiming to profit from the redistributed stake.

Analysis: Let 𝑛 = |𝒩︀𝑓 | and let the colluding subset have size 𝑘. One colluder 𝑛𝑠 intentionally

fails a challenge.

• Slashed amount: 𝑆 = 𝑘𝑓 ⋅ 𝜆slash is deducted from 𝑛𝑠.

• Burn: 𝑆burned = 𝛽slash ⋅ 𝑆 is burned.

• Redistribution: 𝑆redist = (1 − 𝛽slash) ⋅ 𝑆 is split equally among the (𝑛 − 1) remaining

nodes.

The colluding group’s net change is: ΔKORcolluders = −𝑆 + (𝑘−1
𝑛−1) ⋅ 𝑆redist = −𝑆 + (𝑘−1

𝑛−1) ⋅
(1 − 𝛽slash) ⋅ 𝑆

Profitability would require (𝑘−1
𝑛−1) ⋅ (1 − 𝛽slash) > 1, which is impossible since each factor is

≤ 1. Hence, this collusion is strictly unprofitable.

4.2.1.3 Disk-Sharing Attack

An attacker creates multiple Sybil node identities but stores only a single physical copy of

the data, aiming to collect multiple rewards for a single storage cost while undermining the

protocol’s data replication guarantees.

Analysis: Consider an attacker creating 𝑛sybil identities to store the same file 𝑓 . The

attacker’s costs are:

• Physical storage: 𝑐USD
storage(𝑓, 𝑡) (only one copy needed)

44

• Stake opportunity cost: 𝑛sybil ⋅ 𝑘𝑓 ⋅ 𝜉KOR/USD ⋅ 𝛿 (full stake per identity)

• Expected proving costs: 𝑛sybil ⋅ 𝑃chal(|𝒩︀𝑓 |, 𝑡) ⋅ 𝑐BTC
proof(𝑡) ⋅ 𝜉BTC/USD (each identity may be

challenged)

The attacker’s revenue is 𝑛sybil ⋅ 𝑟storage(𝑛, 𝑓, 𝑡) ⋅ 𝜉KOR/USD. At the margin (adding one more

identity), the change is approximately:

Δ𝜋 ≈
𝜀𝑓(𝑡) ⋅ 𝜉KOR/USD ⋅ |𝒩︀𝑓 |

(|𝒩︀𝑓 | + 𝑛sybil)
2 − 𝑘𝑓 ⋅ 𝛿 ⋅ 𝜉KOR/USD (43)

As |𝒩︀𝑓 | or 𝑛sybil grow, the first term shrinks as 1
(|𝒩︀𝑓| +𝑛sybil)

2 while the second term is constant,

so beyond a small scale the attack is unprofitable even when saving on 𝑐storage.

Mitigation: Capital costs dominate storage costs, making the attack unprofitable.

4.2.2 Attacks on Market Mechanics

These attacks exploit the protocol’s economic rules to manipulate outcomes or gain an unfair

advantage.

4.2.2.1 Sybil Attack (Risk Compartmentalization)

An attacker creates multiple node identities to limit their downside risk from correlated

failures.

Analysis: The protocol defends against this by making portfolio splitting more capital-

intensive. The dynamic stake factor, 𝜆stake = 1 + 𝜆slash
ln(2+ |ℱ︀𝑛|) , imposes a capital premium on

nodes with fewer files.

Example with 𝜆slash = 30.0 and an operator with a 100,000-file portfolio:

Node Profile Files |ℱ︀𝑛| Stake Factor (𝜆stake) Required Stake (𝑘req)

Sybil Node 1 28.30x 28.30 KOR

Small Node 10 13.56x 135.6 KOR

Large Consolidated Node 100,000 3.60x 360,000 KOR

To run the portfolio as 100,000 individual Sybil nodes would require 2,830,000 KOR vs

360,000 KOR for a single entity—a ~7.9x capital increase, rendering large-scale compart

mentalization attacks economically irrational.

4.2.2.2 Sybil-Based Reward Amplification

An attacker introduces a Sybil identity to collect an additional share of a file’s rewards.

Analysis: Let |𝒩︀𝑓 | be nodes before the Sybil joins, and 𝜆𝑆 = 1 + 𝜆slash
ln(3) be the stake factor

for a single-file Sybil node.

The marginal gain in KOR rewards is: Δ𝑟 = 𝜀𝑓(𝑡) ⋅ (|𝒩︀𝑓| −1
(|𝒩︀𝑓|)(|𝒩︀𝑓| +1))

The marginal cost (opportunity cost) is: 𝐶sybil,KOR = 𝑘𝑓 ⋅ 𝜆𝑆 ⋅ 𝛿

The attack is unprofitable when Δ𝑟 ≤ 𝐶sybil,KOR, which requires:

𝜆slash ≥ ln(3) ⋅ ((𝑟𝑘 ⋅ 𝐺𝑁
𝛿

) − 1) (44)

where 𝑟𝑘 = 𝜀𝑓
𝑡

𝑘𝑓
 is the emission-to-stake ratio and 𝐺𝑁 = |𝒩︀𝑓| −1

(|𝒩︀𝑓|)(|𝒩︀𝑓| +1) is the geometry factor.

Numerical Example: With 𝜆slash = 30 and typical parameters (𝛿 ≈ 0.0000034, |𝒩︀𝑓 | = 10),

the marginal gain (~155.7 KOR/block) is less than the marginal cost (~210.4 KOR/block),

demonstrating sufficient security margin.

45

4.2.2.3 Crowding-Out Attack

An attacker creates Sybil nodes to dilute honest nodes’ rewards and force them to exit.

Analysis: Each Sybil node requires stake 𝑘𝑓 ⋅ 𝜆stake where 𝜆stake ≈ 28.30 for single-file nodes.

As the number of Sybil nodes 𝑘 increases, per-node reward 𝜀𝑓
𝑡

𝑛+𝑘 approaches zero while costs

remain constant. The attack becomes increasingly unprofitable with scale. Honest nodes can

simply wait—as the attacker bleeds capital, they will eventually exit.

4.2.2.4 Coordinated Departure Attack

Multiple colluding nodes coordinate to leave simultaneously, attempting to drive replication

below 𝑛min.

Analysis: The leave fee increases quadratically as replication approaches 𝑛min:

𝜑leave(𝑓, 𝑡) = 𝑘𝑓 ⋅ (𝑛min
|𝒩︀𝑓 |

)
2

(45)

For 𝑛 = 5, 𝑛min = 3, 𝑘𝑓 = 100 KOR, sequential departures cost 36, 56.25, and 100 KOR

(total: 192.25 KOR). The rapidly escalating costs and the hyperbolically increasing rewards

for remaining nodes create strong disincentives.

4.2.2.5 Wash-Trading Attack

An attacker stores their own data through nodes they control to farm rewards.

Analysis: To store a file, the attacker pays a one-time fee 𝜐𝑓 which is entirely burned.

The attack is profitable only if the NPV of future rewards exceeds this upfront cost. The

profitability condition:

(𝜀(𝑡create) ⋅ 1 − (1 + 𝛿)−ℎ

𝛿
) > 𝜒fee ⋅ 𝑐stake ⋅ ln(1 + |ℱ︀(𝑡create)|

𝐹scale
) (46)

Setting 𝜒fee appropriately ensures wash-trading remains unprofitable.

4.2.2.6 File Size Manipulation Attacks

Small File Attack (Spam): Creating many tiny files to dilute rewards. The cost-to-

influence ratio is constant regardless of file size (both cost and emissions scale with ln(size)),
providing no leverage. A minimum file size 𝑠min further mitigates spam.

Large File Attack: Creating massive files to capture disproportionate emissions. Both cost

and emissions scale identically with ln(size), eliminating size-based leverage.

4.2.2.7 Data Gatekeeping Attack

A cartel of existing nodes refuses to share file data with newcomers to maintain a monopoly.

Mitigation: The protocol’s sponsorship mechanism creates a competitive market that

breaks cartels. Any cartel member has strong incentive to defect and capture sponsorship

commissions. In equilibrium:

𝛾eq(𝐷) ≈
𝑐USD
transfer ⋅ 𝛿 ⋅ (|𝒩︀𝑓 | + 1)

𝜀𝑓(𝑡) ⋅ 𝜉KOR/USD ⋅ (1 − (1 + 𝛿)−𝐷)
(47)

For typical parameters, equilibrium commission rates are approximately 15%, making

defection profitable.

4.2.3 Systemic Risks

4.2.3.1 Replication Collapse

If KOR price falls sufficiently, nodes may exit en masse, leaving files under-replicated.

46

Analysis: This is an accepted risk, not a bug. The protocol tolerates reduced redundancy

when profitability falls. Files remain available as long as at least 𝑛min nodes store them. The

quadratic leave fee (𝜑leave = 𝑘𝑓 ⋅ (𝑛min
|𝑁𝑓|)

2
) makes exits increasingly expensive as replication

approaches the minimum, creating a natural floor.

Residual risk: If KOR becomes worthless, the system fails. This is inherent to all cryptoe

conomic systems—there is no protocol-level mitigation for complete token collapse.

5 Appendix

5.1 Parameter Selection

This section specifies the consensus-critical parameters that all conforming implementations

must use to ensure network-wide consistency. The Kontor-Crypto reference implementation

accepts many of these as configurable parameters for testing purposes, but production

deployments must use the values specified here.

5.1.1 File Preparation Parameters

Symbol and Erasure Coding Parameters:

• Symbol size: 31 bytes (Pallas field element constraint)

• Data symbols per codeword: 231

• Parity symbols per codeword: 24 (10% overhead)

• Total symbols per codeword: 255 (GF(2^8) maximum)

Derived formulas:

• 𝑛symbols = ⌈𝑠bytes
𝑓
31 ⌉ - data symbols from file

• 𝑛codewords = ⌈𝑛symbols
231 ⌉ - RS codewords needed

• 𝑛total = 𝑛codewords × 255 - total symbols including parity

Rationale: The 31-byte symbol size enables direct encoding to Pallas field elements (255

bits) with no hashing, ensuring proof-of-retrievability. Multi-codeword structure handles

arbitrary file sizes within the GF(2^8) symbol limit. Each codeword provides independent

fault tolerance with graceful degradation for large files.

Representative configurations for various file sizes:

File Size 𝑛symbols Codewords 𝑛total 𝑑 𝐶IVC

10 KB 323 2 510 9 900

100 KB 3,226 14 3,570 12 1,200

1 MB 33,826 147 37,485 16 1,600

10 MB 338,251 1,465 373,815 19 1,900

100 MB 3,382,504 14,643 3,733,965 22 2,200

Table 1: Representative configurations with 31-byte symbols and multi-codeword Reed-

Solomon over GF(2^8). Each codeword encodes 231 data symbols with 24 parity symbols

(255 total). IVC cost is 𝐶IVC = 100 × 𝑑. Tree depth scales logarithmically with total symbols

(including parity from all codewords).

Field Element Encoding:

• 𝜏 = 31 - Symbol size in bytes (equals field element size)

Rationale: Maximum safe encoding size for the 255-bit Pallas scalar field, ensuring all 31-

byte symbols map to valid field elements without overflow.

47

5.1.2 Challenge Parameters

Challenge Frequency:

• 𝐶target = 12 - Target annual challenges per file

• 𝐵 = 52, 560 - Expected Bitcoin blocks per year

• Derived: 𝑝𝑓 = 𝐶target
𝐵 ≈ 0.000228 per block

Rationale: 12 annual challenges provide strong security guarantees (>99.99% annual

detection of complete data loss) while keeping proving costs manageable. See the Failure

Detection section for detection probability analysis.

Challenge Sampling:

• 𝑠chal = 100 - Symbols sampled per challenge

• Actual: 𝑠′
chal = min(𝑠chal, 𝑛total) for small files

Rationale: 100 symbols provides >99.99% detection probability for 10% data loss while

capping proving costs. Files smaller than 100 symbols are fully challenged.

Proof Window:

• 𝑊proof = 2016 - Blocks to respond to challenge (approximately 2 weeks)

Rationale: Two-week window allows nodes to aggregate multiple challenges into single

proofs, minimizing Bitcoin transaction fees. Also provides operational buffer for node main

tenance and network issues.

5.1.3 Sponsorship Parameters

Offer Expiration:

• 𝑊offer - Blocks before sponsorship offer expires (recommended: 144 blocks ≈ 1 day)

Rationale: Short expiration limits entrant waiting time if sponsor ghosts while giving

reasonable time for data transfer completion.

Bond Amount:

• Recommended: 𝛽bond ⋅ 𝜉KOR/USD ≥ 𝑐offer
BTC ⋅ 𝜉BTC/USD + 𝑐USD

transfer
• Typical: 𝛽bond ≈ 3 KOR (covers ~$0.60 in sponsor costs)

Rationale: Bond must fully compensate sponsor for Bitcoin fees and bandwidth costs to

prevent profitable griefing attacks. See Security Analysis for attack cost analysis.

5.1.4 File Size Constraints

Limits:

• 𝑠min = 10 KB - Minimum file size

• 𝑠max = 100 MB - Maximum file size

Rationale: Minimum prevents spam and ensures reasonable proving costs relative to storage

value. Maximum is determined by practical constraints (tree depth, memory requirements,

proving time) rather than fundamental protocol limitations. With 31-byte sectors, a 100 MB

file requires depth 22, which remains practical for proof generation and verification.

5.1.5 Domain Separation

Tag Strings: All domain tags must use these exact context strings:

• “KONTOR::CHALLENGE_ID::v1” - for challenge ID computation

• “KONTOR::CHALLENGE::v1” - for challenge index derivation

• “KONTOR::CHALLENGE_PER_FILE::v1” - for multi-file mixing

• “KONTOR::NODE::v1” - for internal Merkle nodes

• “KONTOR::LEAF::v1” - for leaf hashing

• “KONTOR::RC::v1” - for root commitments

48

Rationale: Domain separation prevents cross-context hash collisions and makes protocol

upgrades explicit through version suffixes. All implementations must use identical tag strings

to ensure consensus.

For cryptographic primitive definitions and related work, see the Kontor Proof-of-Retriev

ability.[3]

6. Bibliography

[1] Abhiram Kothapalli and Srinath Setty, “Nova: Recursive Zero-Knowledge Arguments

from Folding Schemes,” 2021. [Online]. Available: https://eprint.iacr.org/2021/370

[2] Microsoft, Arecibo. (2024). GitHub. [Online]. Available: https://github.com/microsoft/

arecibo

[3] Adam Krellenstein and Alexey Gribov, “Kontor Proof-of-Retrievability,” 2025. [Online].

Available: https://docs.kontor.network/docs/resources/crypto

[4] Adam Krellenstein, Wilfred Denton, and Ouziel Slama, “Kontor: A New Bitcoin

Metaprotocol for Smart Contracts and File Persistence,” 2025. [Online]. Available:

https://docs.kontor.network/docs/resources/whitepaper

[5] Henning Pagnia and Felix C Gärtner, “On the Impossibility of Fair Exchange Without

a Trusted Third Party,,” Darmstadt University of Technology Technical Report,.

49

https://eprint.iacr.org/2021/370
https://github.com/microsoft/arecibo
https://github.com/microsoft/arecibo
https://docs.kontor.network/docs/resources/crypto
https://docs.kontor.network/docs/resources/whitepaper

	1 Introduction
	2 Protocol
	2.1 Summary
	2.2 State-Machine Replication
	2.3 Actors
	2.4 Protocol Objects and State Variables
	2.4.1 Global Protocol State
	2.4.2 Global Emission State
	2.4.3 Account Balances
	2.4.4 Files
	2.4.5 File Agreements
	2.4.6 Sponsorship Offers
	2.4.7 Sponsorship Agreements
	2.4.8 Challenges
	2.4.9 Storage Proofs
	2.4.10 Storage Node Operations
	2.4.11 Transactions and Procedures

	2.5 Protocol Flow
	2.5.1 File Agreement Creation Flow
	2.5.2 Challenge-Response Flow
	2.5.3 File Retrieval Flow
	2.5.4 Block Start Processing
	2.5.5 Transaction Processing
	2.5.6 Block End Processing

	2.6 Off-Chain Flows
	2.6.1 File Upload
	2.6.1.1 File Preparation
	2.6.1.2 File Distribution

	2.6.2 File Retrieval
	2.6.3 Sponsored Join Negotiation

	2.7 Transaction Processing
	2.7.1 Create Storage Agreement
	2.7.2 Create Sponsorship Offer
	2.7.3 Join Agreement
	2.7.4 Leave Agreement
	2.7.5 Verify Storage Proof
	2.7.6 Stake Tokens
	2.7.7 Unstake Tokens

	2.8 Block Processing
	2.8.1 Challenge Generation
	2.8.2 Reward Emissions
	2.8.3 Challenge Expiration and Slashing
	2.8.4 Stake Insufficiency Handling

	3 Economic Analysis
	3.1 Storage Node Economics
	3.1.1 Modeling Parameters
	3.1.2 Economic Functions
	3.1.3 Cost Functions
	3.1.4 Profit Functions

	3.2 Node Decision Framework
	3.3 Macroeconomic Stability
	3.4 Capital Cost Dominance
	3.4.1 Stake Requirements
	3.4.2 Proving Costs and Aggregation

	3.5 Failure Detection
	3.5.1 Detection Probability Analysis

	4 Security Analysis
	4.1 Protocol Security
	4.1.1 System Invariants

	4.2 Economic Security
	4.2.1 Attacks on Storage Provision
	4.2.1.1 Selective Storage Attack
	4.2.1.2 Collusion Attack
	4.2.1.3 Disk-Sharing Attack

	4.2.2 Attacks on Market Mechanics
	4.2.2.1 Sybil Attack (Risk Compartmentalization)
	4.2.2.2 Sybil-Based Reward Amplification
	4.2.2.3 Crowding-Out Attack
	4.2.2.4 Coordinated Departure Attack
	4.2.2.5 Wash-Trading Attack
	4.2.2.6 File Size Manipulation Attacks
	4.2.2.7 Data Gatekeeping Attack

	4.2.3 Systemic Risks
	4.2.3.1 Replication Collapse

	5 Appendix
	5.1 Parameter Selection
	5.1.1 File Preparation Parameters
	5.1.2 Challenge Parameters
	5.1.3 Sponsorship Parameters
	5.1.4 File Size Constraints
	5.1.5 Domain Separation

	6. Bibliography

