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1 Introduction

The Kontor Storage Protocol is a system for ensuring that a set of untrusted actors are
continuously and correctly storing data that they have publicly committed to preserving.
This protocol implements a proof-of-retrievability (PoR) scheme on a blockchain coupled
with crypto-economic incentives to provide scalable, perpetual storage that complements
the state-machine replication architecture of the blockchain network within which the file
storage system runs as a smart contract.

This protocol is a core feature of the Kontor Bitcoin metaprotocol. Kontor Indexers imple-
ment the greater Kontor protocol and execute the contracts that define the rules of the
storage system. Each Indexer acts as a Verifier, independently verifying the integrity and
validity of cryptographic proofs—published to the Bitcoin blockchain by a Storage Node
(the Prover)—that claim to demonstrate that the node in question possesses a copy of
certain data when it generates the proof in question.

Storage nodes are challenged pseudo-randomly by the Indexers using a shared source of
entropy (in Kontor, the Bitcoin block hash). With each block, the Indexers use this shared
entropy as a seed for the pseudo-random selection of file-node pairs, and the chosen Storage
Nodes must respond to each of these Challenges by publishing a proof that they possess a
copy of a pseudo-random subset of the file data that they have previously agreed to store.
If a Storage Node fails to produce a valid proof within the allotted timeframe, the node is
subject to a slashing of their escrowed balance of the KOR cryptocurrency as recorded by
each Indexer.

The cryptographic proof system, implemented in the Kontor-Crypto Rust library, uses the
Noval[l] recursive SNARKSs via the arecibo[2] library. The compressed SNARK is constant-
size (~12 kB) regardless of the number of challenged symbols; the full proof includes per-file
metadata adding ~40 bytes per file. These proofs are efficient to verify (approximately 50ms),
making it feasible for the Kontor system to provide strong guarantees for decentralized data
storage at scale. For the cryptographic proof generation and verification algorithms, see the
Kontor Proof-of-Retrievability. [3]

Perpetual storage is funded by constant emissions: new KOR tokens are minted at a fixed
annual rate (pg, relative to total supply) and distributed to storage nodes as rewards.
This design is viable because Kontor’s cost structure is fundamentally intrinsic. Traditional
decentralized storage systems cannot directly observe real-world storage costs or token
exchange rates; any mechanism depending on external price feeds introduces centralization
risks and manipulation vectors. Kontor solves this by ensuring the dominant cost of storage
provision is the opportunity cost of staking KOR, not physical infrastructure. When capital
costs dwarf physical storage costs, the system becomes a closed loop: storage providers earn
KOR for staking KOR. Node operators compare KOR rewards against KOR staking costs
—both intrinsic to the protocol—so no oracle is needed. Market forces naturally balance
supply and demand: when profitability falls, nodes exit and rewards concentrate among
remaining nodes; when rewards rise, new nodes join and dilute rewards. This equilibrium-
finding process maintains adequate replication through natural market dynamics without
protocol intervention.

For a high-level overview of the Kontor system as a whole, see the Kontor Whitepaper.[4]
For protocol parameters, see the Appendix of the Whitepaper.



2 Protocol

2.1 Summary

In the Kontor data storage protocol, users upload their data to storage nodes, which
commit to storing their data forever. A user pays a one-time fee per file, which is calculated
based on the file’s size and the network’s current state. This entire fee is burned.

An initial set of storage nodes are party to a file agreement upon its creation. These nodes are
not paid from the user’s fee; instead, they (and any nodes that join later) are compensated
through ongoing emissions of the Kontor native token, KOR. The protocol uses a pooled
stake model: to participate, a node must maintain a single, total KOR stake balance that
is sufficient to cover all of its file storage commitments. This stake is part of Kontor’s
unified staking system, where the same KOR can simultaneously back storage commitments,
consensus participation, and bridge operations.

With the mining of each Bitcoin block, every Kontor indexer deterministically derives from
the block hash a challenge that pseudo-randomly identifies a set of previously uploaded
files to be audited. For each challenged file, one of its storage nodes is selected to publish
a proof to the Bitcoin blockchain that it is indeed storing the data. This proof must be
submitted within a fixed window of blocks.

If a storage node fails to produce a valid proof in time, a portion of its staked KOR is
slashed. A part of the slashed funds is burned, and the remainder is distributed to the other
nodes storing that same file. Conversely, nodes in a file agreement are rewarded each block
a share of that file’s KOR emissions.

After an agreement is created, nodes may join or leave it based on their operational costs and
expected profits, as long as the file’s replication level remains above a minimum threshold.
Nodes pay a fee to leave based on (1) the quantity of KOR they escrowed to join the
agreement and (2) the number of nodes in the agreement. Storage nodes are thus strongly
incentivized to store all files that they have committed to.

2.2 State-Machine Replication

A blockchain operates by state-machine replication in which a Byzantine fault—tolerant
consensus protocol is used by untrusted entities to agree on a log of events which are then
executed deterministically to arrive at a shared state. A metaprotocol extends the model
with the addition of a second state machine.

Each Kontor Indexer is deterministic and operates on an identical stream of input data
(the Bitcoin blockchain); thus all correct Indexers act as a single effective Indexer that
implements the protocol itself.

2.3 Actors

o Users U = {uy,...,u, }: A user is any account that stores data on the network. Users
submit transactions to create file agreements and pay storage fees. They may also
retrieve from storage nodes data uploaded by them or by other users.

o Storage Nodes N = {ng,...,n,,}: A storage node is any account that commits to
store files. Storage nodes submit transactions to join/leave file agreements and submit
storage proofs.
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2.4 Protocol Objects and State Variables

All state is maintained by Kontor indexers and updated deterministically as Bitcoin blocks
are processed.

Time Semantics: Throughout this document, ¢t denotes the current state of the protocol
state machine. The value t increments with each state transition: transaction processing,
block start, and block end. State variables like Q(t) and |F (t)| represent current values at
step t.

2.4.1 Global Protocol State

o F: Set of active file agreements

e Pending agreements: File agreements awaiting activation

e : Set of active sponsorship offers

e M: Set of active sponsorship agreements

o Sponsorship bond escrow: Mapping from (ng,ane, f) to escrowed bond amount (in
KOR)

» Total files ever created (counter for assigning rank )

o For each file agreement f € F: Ny - the set of storage nodes storing file f

o For each node n: 7, - the set of active file agreements stored by node n

e Active challenges awaiting proofs

Activation Permanence: Once a file agreement enters F (by reaching n,; nodes), it

n
NEVER leaves F. The agreement remains active forever, even if all nodes are removed
through slashing or stake insufficiency. In such cases, the agreement becomes under-repli-
cated (|Ng| < My

(though emissions are not minted when |N¢| =0, see Section 2.8.2). This ensures  is

or even |[N;| =0) but stays in F and continues to accrue emissions

monotonically increasing and k; calculations for new files remain deterministic.

All algorithm references to “files” or & mean ACTIVE files only. Pending agreements are
tracked separately until activation.

2.4.2 Global Emission State

Indexers maintain a single global emission weight value:

e ) - Total network emission weight, defined as:

Qg{m ifF =0 W

> rer Wi otherwise

Initialized at genesis as 2 = 1.0 to prevent division-by-zero. This is a single mutable
global variable.

State Update Rule: When a file agreement f activates (reaches m;, nodes in Join-

min

Agreement):

Q<+ Q+ &Jf (2)

Files never deactivate, so €2 is monotonically increasing. This value determines each file’s
share of network emissions and is used to calculate per-node base stakes for new files. When
creating a new file agreement, use the current value of Q (which reflects the state before this
new file is added).

Edge Cases: The genesis value 2 = 1.0 enables deterministic stake calculations when the
first file is created. If all nodes leave a file agreement (|NV;| = 0), the file remains in F with
its wy counted in Q, but emissions for that file are not minted (see Section 2.8.2). This
maintains determinism in fee and stake calculations for new files.



2.4.3 Account Balances
Each account (user or storage node) has an address id and KOR balance in one of two states:

« Spendable KOR (b): Can be transferred, used to pay fees (storage fees, leave fees),
or deposited into stake.

o Staked KOR (k,, storage nodes only): Locked as security deposit to cover file
agreements. Cannot be transferred and is subject to slashing. The protocol uses a
pooled stake model where each node maintains a single stake balance k,, that covers
all their file agreements. There is no per-agreement stake.

2.4.4 Files
A file F consists of raw data that has been prepared for storage using erasure coding and
Merkle tree commitment:
F= (id #» unique identifier
data, raw file bytes
size, |data| in bytes
p, Merkle root commitment

Tymbols> NUmber of data symbols (31-byte units)

Neodewords: BMber of RS codewords

Nyorals tOtal symbols including parity

T Merkle tree over all symbols)

The file preparation function transforms raw data into a prepared file with metadata:

Prepare-File : {0,1}* — ., x M (4)

rep

where J,. contains the Merkle tree and M is metadata stored on-chain.

2.4.5 File Agreements

A file agreement A represents the protocol’s commitment to store a specific file. An

agreement is created when a user pays the storage fee and becomes active when n; storage

min
nodes join:

A= (ida, agreement identifier
file_id, file being stored
M, file metadata (root, size, etc.)
N, C N,set of storing nodes
creation_block, block height when created (5)
rank, € N* file creation order (immutable)
ws € R, file emission weight (immutable)

k; € R*, per-node base stake for this file (in KOR, immutable)

active true when |V, | > n;,)

The values stored in the agreement structure (rankf, wy, k f) are computed at creation time:

. File rank: rank; = total number of files ever created + 1 (sequential counter)

1

2 ln(sl}y Les)

3. Network emission weight: Retrieve current (2 from global state
4

. Per-node base stake: k; = (%) < Copake ~ln(1 +|F

- File emission weight: w; =

E,

scale

Note: These calculations use the current network state (before this file is added to F or Q).
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For each agreement, the protocol tracks:
« rank; - immutable creation order (1 for first file, 2 for second, etc.)
» wy - file emission weight (determines share of network emissions)

byt Lo
o 577 - file size in_bytes
bytes
® Mgymbols,f = %;1 - number of data symbols

* Neodewords,f = {%] - number of RS codewords

* Myotal, f = Peodewords,f X 255 - total symbols including parity

e k; - per-node base stake for this file (in KOR)

o N - set of storage nodes storing this file agreement
2.4.6 Sponsorship Offers
A sponsorship offer o € O is a public, on-chain commitment by an existing storage node to
sponsor a specific entrant for a file agreement:

o = (id,,, offer identifier

f, file agreement

Nponsor> Offering node
Nentrant> tATget entrant node
Veate € 10, 1], commission rate (6)

Yduration, duration in blocks
Byonas bond amount in KOR,
creation_block, when offer created

expiration_block creation_block + W;ffer)

Offers are created via the Create-Sponsorship-0ffer procedure and remain valid until either
accepted by the entrant (converted to a sponsorship agreement) or expired. Expired offers
are removed during block-end processing.

2.4.7 Sponsorship Agreements

A sponsorship agreement m € M is an active arrangement where a node (entrant) receives
emissions commission from a sponsor for a file agreement. Sponsorship agreements are
created when an entrant accepts a sponsorship offer as part of the Join-Agreement procedure:

m = (f7 Mentrant s sponsor? VYrate: Yduration s IBbond7 tstart7 ﬁrst_proof_complete) (7)

where:
e f - the file agreement being sponsored
- the node joining via sponsorship

® TMentrant

* Mgponsor - the existing node providing the file data
* Yate € [0, 1] - fractional commission rate paid to sponsor

* Yguration - duration in blocks

¢ Bpona - bond amount in KOR (held in escrow until first proof)
* tstart -
o first_proof complete - boolean flag, set to true after entrant successfully proves first

activation block height

challenge for this file

The sponsorship is active from block ¢, through ¢, + Yauation — 1, €Xpiring when ¢ >
tstart + Yduration -
Creation Mechanism: Sponsorship agreements are created through a trustless bond-
€SCrOw process:
1. Sponsor posts a public sponsorship offer on-chain via Create-Sponsorship-0ffer,
specifying commission terms and required bond amount



2. Entrant accepts via Join-Agreement, which atomically: (a) locks the bond in escrow,
(b) creates the sponsorship agreement, (c) adds the entrant to the file agreement
3. Sponsor transfers file data off-chain after offer acceptance
4. Resolution occurs when the entrant is first challenged for this file:
o If entrant proves successfully: bond is returned to entrant, sponsorship continues
normally
o If entrant fails first challenge: bond is transferred to sponsor (compensating
Bitcoin miner fees and bandwidth costs), sponsorship voids retroactively (no
commission ever paid), entrant is slashed normally

This bond mechanism makes the protocol fully trustless: the sponsor cannot extort (terms
fixed on-chain first), the entrant cannot grief (bond at risk), and both parties have symmetric
incentives to perform honestly.

Commission Scope: The commission rate applies exclusively to emissions from the spon-
sored file f. For each block during the sponsorship period:
o Entrant receives: (1 — y40) X 5“]\%‘ from file f

e Sponsor receives: (Yo X € fﬁ additional from file f, plus full rewards from other
files

The commission does not affect rewards from other files stored by the entrant, and slashing
penalties are borne entirely by the slashed node without commission sharing.

2.4.8 Challenges

A challenge C is a deterministically generated event that requires a storage node to prove
possession of specific file data within a window of blocks:

C= (idc, unique challenge identifier
node_id, challenged storage node
file_id, file to prove possession of
M, file metadata
block_height, creation block height (8)
expiration_block, block_height + W, ¢
s,number of symbols to prove

o random seed for symbol selection)

The challenged symbols are sampled pseudo-randomly using the Bitcoin block hash as seed.
If a file has fewer symbols than the protocol’s sample size (41 ¢ < Scpar), all symbols are
challenged.

Challenge Timing: A challenge created at block height h has expiration block h + W,
The challenged node must submit a valid proof transaction that is included in the blockchain
by the END of block h + W,
during On-Block-End.

roof *

roof — 1. Expiration is checked in Process-Failed-Challenges

Challenge Frequency: Each file is selected for challenge with constant probability p, =
% per block. For each selected file, one of its storing nodes is chosen uniformly at random.

This ensures each file receives approximately C,

target Challenges per year regardless of network

size.
For parameter values, see Parameter Selection in the Appendix.

2.4.9 Storage Proofs

A storage proof m demonstrates that a node possesses file data at challenge time. A valid
proof for challenge € is a Nova IVC proof demonstrating:



Possession of s randomly selected symbols from the committed file agreement data
Correct Merkle path verification for each challenged symbol
Consistency with the public Merkle root p

L

All files exist at their claimed ledger indices in the proof’s ledger root p,

Cross-Block Aggregation: The proof includes the ledger root p, used for proof gener-
ation. Provers typically use the current ledger root, which contains all files they’re being
challenged on. The verifier checks that this root is in its set of accepted historical roots
(covering at least W,,,.¢ blocks of file activations). This enables aggregation across challenges
from different blocks: even if new files activate during the proof window, proofs generated
against an earlier (but still valid) ledger state remain acceptable.

Nodes can aggregate multiple challenges into a single proof transaction to minimize Bitcoin
fees. For the cryptographic construction, see the Kontor Proof-of-Retrievability.[3] For
economic analysis of proving costs, see Section 3.4.2.

2.4.10 Storage Node Operations

Indexer Requirements: Storage nodes must run Kontor indexers to participate in the
protocol. The indexer maintains the complete protocol state by processing Bitcoin blocks
deterministically, enabling nodes to:

e Track which file agreements they have joined

e Monitor incoming challenges directed at their node ID

o Maintain the current file ledger state (for proof generation)

e Determine optimal proof batching strategies

e Submit proof transactions at appropriate times

Without an indexer, a storage node cannot know when it has been challenged or what the
current protocol state is. The indexer provides the authoritative view of all active challenges,
file metadata, and expiration deadlines.

Proof Batching Autonomy: Storage nodes have complete autonomy in deciding which
challenges to batch together and when to submit proof transactions. Within the expiration
window (W,,,.¢ blocks), nodes can:

e Batch any subset of their pending challenges into a single proof

e Time their submissions strategically to optimize Bitcoin miner fees

o Aggregate challenges from multiple files and multiple block heights

o Choose to respond to high-value challenges immediately while batching others

This autonomy enables nodes to optimize their operational costs. A node might batch
many challenges into a single proof transaction (typically 12-50 kB depending on batch
size), amortizing the Bitcoin transaction fee across all challenges. The protocol imposes no
requirements on batching strategy beyond the expiration deadline.

Multi-Batch Aggregation: The cryptographic proof system supports aggregating chal-
lenges with different parameters:

o Different seeds: Each challenge has its own seed o derived from the block hash at
challenge creation. Proofs can aggregate challenges with distinct seeds, enabling cross-
batch aggregation.

« Different block heights: Challenges created at blocks hq, h, ..., h;, can be proven
together, even if they span multiple blocks.

o Different files: Multi-file proofs naturally aggregate challenges across the node’s
entire storage portfolio.



2.4.11 Transactions and Procedures

Transactions are submitted to Bitcoin and processed deterministically by all indexers. Each
transaction invokes one or more procedures with the authority of a signer. The storage
protocol defines the following procedures:

e Create-Storage-Agreement - User creates file agreement

e Join-Agreement - Storage node joins file agreement (optionally accepting sponsorship
offer)

e Leave-Agreement - Storage node voluntarily exits file agreement

e Create-Sponsorship-0ffer - Storage node posts public offer to sponsor an entrant

e Verify-Storage-Proof - Storage node submits proof for challenge verification

e Stake-Tokens - Move spendable KOR to staked balance

e Unstake-Tokens - Move staked KOR to spendable balance

All procedures follow the signature: Procedure(state, signer, ..., block height) where
the middle parameters are procedure-specific.

2.5 Protocol Flow

The protocol operates in a cycle for each Bitcoin block:
1. Block Start: Generate challenges deterministically from block hash
2. Transaction Processing: Process user and storage node transactions
3. Block End: Process failed challenges, handle stake insufficiency, distribute emissions

2.5.1 File Agreement Creation Flow

The following sequence diagram shows the complete flow for creating a file agreement, from
file preparation through activation.
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[Storage Nodes] [Bitcoin Blockchain] [Indexer]

I
' Prepare File (Erasure + Merkle)
I

| Distribute File Data

»

I
' Create Agreement Tx

I I
I I
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»' !
Ll I
I I
I

' Mine Block

| Create Inactive Agreement

Join Agreement Tx

' Mine Block

1 Add Node to Agreement

P

I
i Activate (when n_ min reached)

Storage Nodes] [Bitcoin B‘lockchain] [Indexer]

Figure 2: File Agreement Creation Flow. Users prepare files locally with erasure coding

and Merkle tree commitment, distribute data to storage nodes off-chain, and broadcast the

Create Agreement transaction. The agreement remains inactive until n;, storage nodes

n
join, after which it activates and begins receiving emissions.

2.5.2 Challenge-Response Flow

The following sequence diagram shows the continuous challenge-response cycle that ensures
storage nodes maintain possession of committed data.
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Bitcoin Blockchain ] Storage Node

' Mine Block (height h)

| Generate Challenges

| Generate Nova IVC Proof

Submit Proof Tk

<
«

. Mine Block (height h-+k)

Process Expired (h+W __proof)

Bitcoin Blockchain

Figure 3: Challenge-Response Flow. Each block, indexers deterministically generate chal-

lenges from the block hash. Storage nodes fetch their challenges, generate Nova IVC proofs,

and submit them within W, blocks or face slashing. At block end, the indexer processes

expired challenges, slashes failed nodes, distributes penalties, and mints emissions to honest
storers.

2.5.3 File Retrieval Flow

The following sequence diagram shows how users retrieve files from storage nodes through
off-chain payment channels.
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Submit Proposal

I
I
:4 ______________________________
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Send Symbol + Merkle Path

<
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Verify Against Root
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»

< Repeat Until n_ data + k

Close Channel

Co-sign Close

\4
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Figure 4: File Retrieval Flow. Users query indexer state for storage nodes (NVy), negotiate

pricing off-chain, establish Bitcoin payment channels, and perform atomic symbol-for-pay-

ment exchanges. Each symbol is verified against the on-chain Merkle root before payment.

The erasure coding structure (each codeword requires 231 symbols minimum) solves the final-

symbol problem: users request extra symbols beyond the reconstruction threshold, ensuring
file recovery even if the provider withholds final symbols.

2.5.4 Block Start Processing

Algorithm 1: Block Start Processing

1:  procedure ON-BLOCK-START(state, block _height, block hash)

2 > Called at the start of each block before processing transactions

3 > Block has been mined; its hash is known

4: > Step 1: Generate challenges for this block

5: Cpew < Generate-Challenges-For-Block(state, block _height, block hash)
6: > Deterministically select files and nodes to challenge

7

8

> Step 2: Log challenge events
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9: if |Chey| > 0 then

10: for €4 € €y, do

11: C < state.challenges.get(C,y)

12: if € # L then

13: > Publish challenge created event for monitoring
14: STATE.active_challenges.add(C)

15: end

16: end

17: end

18: return success

19: end

2.5.5 Transaction Processing

Between block start and block end, the protocol processes a sequence of transactions
previously submitted to the mempool by users and storage nodes (indexers do not produce
transactions) and included within the block by Bitcoin miners. Each transaction contains
one or more procedure calls executed with the authority of a specific signer.

Algorithm 2: Transaction Processing

1:  procedure PROCESS-TRANSACTIONS(state, block_height, transactions)
2: > Called after On-Block-Start, before On-Block-End

3: > Executes all transactions in block order

4: for T € transactions do

5: > Each transaction contains one or more procedure calls
6: for P € T .calls do

7 > Extract call parameters

8: signer < P .signer

9: procedure « P.procedure

10: params < P.params

11:

12: > Dispatch to procedure with signature-specific parameters
13: result < procedure(state, signer, params, block_height)
14:

15: > Validate result

16: if result = L then

17: > Procedure call failed, transaction aborted

18: return | (transaction failed)

19: end

20: end

21: end

22: return success

23: end

Each procedure call is validated for permissions (signer must match the actor), state validity,
and economic constraints during execution.

2.5.6 Block End Processing

Algorithm 3: Block End Processing

procedure ON-BLOCK-END(state, block_height)
> Called at the end of each block after processing transactions
> Executes state transitions and economic updates
> Step 1: Process failed challenges (expired and invalid proofs)
Process-Failed-Challenges(state, block_height)
> Identify expired challenges, slash nodes, distribute penalties

> Step 2: Handle stake insufficiency for all nodes
for n € state.all nodes do

14



10: k,, + state.get_stake(n)

11: , « state.get files for node(n)

12: stake_sum « cF state.get_agreement( f).base_stake
13: Mtake 1+ poiie

14: Krequired < stake_sum - Ay

15: > Total required stake from economic model
16: if k,, < kioquired then

17: Handle—gtake—lnsufficiency(n, state)

18: > Graceful exit or total forfeiture

19: end

20: end

21:

22: > Step 3: Distribute emissions

23:  total emitted < Distribute-Storage-Rewards(state, block height)
24: > Mint and distribute KOR to storing nodes

26: > Step 4: Expire sponsorship offers that were not accepted
27: for o € state.offers do

28: if block_height > o.expiration_block then
29: state.offers.remove(o)

30: > Offer expired without acceptance

31: end

32: end

33:

34: > Step 5: Expire sponsorships that reached their duration
35: for m € state.sponsorships do

36: if block_height > m.ty,. + M Yiuation then
37 state.sponsorships.remove(m)

38: > Sponsorship commission period ended
39: end

40: end

41: return success

42: end

2.6 Off-Chain Flows

These flows represent voluntary actions taken by users and storage nodes. Transaction
creation is voluntary and economically motivated. See Section 3.2 for the economic incentives
that drive these behaviors.

2.6.1 File Upload

Before creating a file agreement on-chain, users perform off-chain preparation and distrib-
ution of file data to potential storage nodes. This preparation phase transforms raw data into
a fault-tolerant, self-authenticating structure that storage nodes can independently verify
and use to generate proofs when challenged.

The upload process has three stages: (1) encode the file with erasure coding and build a
Merkle commitment, (2) distribute the original file and metadata to storage nodes off-chain,
and (3) broadcast a contract procedure call to create the on-chain agreement. Storage nodes
independently prepare the file using the protocol’s deterministic algorithm, ensuring all
nodes storing a file compute identical Merkle trees without trusting the user’s computation.

2.6.1.1 File Preparation

The file preparation algorithm transforms raw data into a structure optimized for challenge-
based proof-of-retrievability.

Merkle Tree Commitment:

15



The protocol requires a cryptographic commitment enabling verification of individual data
units without requiring the entire file. Merkle trees provide: constant-size commitment,
logarithmic proof size, no trusted setup, and efficient verification in SNARK circuits.

e Succinct commitment: A single root hash (32 bytes) commits to arbitrary amounts
of data

o Selective opening: Proving possession of one unit requires only a Merkle path (d
sibling hashes), where d = O(logn)

o Binding: Cryptographic collision-resistance ensures nodes cannot equivocate about
file contents

Design decisions:

o Hash function: Poseidon is optimized for arithmetic circuits, requiring hundreds of
constraints per invocation versus thousands for SHA-256 or Blake2, reducing IVC
proving cost by orders of magnitude.

e Symbol-leaf correspondence: Each 31-byte symbol (data or parity) encodes to
exactly one Merkle leaf, ensuring 1:1 alignment between symbols and tree leaves.

e Binary structure: Two children per node. Higher-arity trees (quaternary, octal)
reduce depth but increase proof size (more siblings per level) and circuit complexity
(multiple hash inputs per verification step).

¢ Odd-node handling: When a tree level has an odd number of nodes, the final node
is duplicated (hashed with itself) to maintain uniform circuit structure. This ensures
all internal nodes result from hashing two children.

o Domain separation: Distinct tags separate leaf encoding from internal node hashing,
preventing cross-layer collision attacks.

Symbols and Field Element Encoding:

Files are partitioned into fixed 31-byte symbols. This size is the maximum that fits within a
Pallas scalar field element (255 bits), enabling symbols to encode directly as Merkle leaves
via little-endian byte representation with no intermediate hashing.

This direct encoding is critical for proof-of-retrievability. Challenges specify random symbol
indices derived from the block hash. To prove symbol at index ¢, a node must possess the
actual 31 bytes at that position, encode them as a field element, and provide the Merkle path.
The field element encoding is reversible - the original 31 bytes can be extracted via inverse
decoding. An attacker storing only the Merkle tree (field elements) without underlying bytes
cannot answer challenges, because the SNARK circuit verification requires demonstrating
knowledge of the bytes that encode to each challenged leaf.

Reed-Solomon Encoding:

Symbols are encoded using Reed-Solomon over GF(278) in a multi-codeword structure.
Each codeword contains 231 data symbols and generates 24 parity symbols (10% overhead),
totaling 255 symbols. The GF(278) field imposes a 255-symbol maximum per codeword. Files
larger than 231 symbols (7,161 bytes) use multiple independent codewords. The GF(278)
field is chosen for encoding speed; larger fields would reduce codeword count but slow
encoding, an acceptable trade-off for one-time file preparation.

Erasure coding ensures that files passing challenges remain fully retrievable. Random
sampling provides probabilistic detection: a node missing fraction v of symbols has detection
probability 1 — (1 — v)® per challenge. This creates a gap where small losses may go unde-
tected yet render files unrecoverable. Reed-Solomon encoding closes this gap - each codeword
tolerates loss of up to 10% of its symbols while remaining reconstructible. Nodes can answer
challenges for missing symbols by Reed-Solomon decoding from other symbols in the same
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codeword. The 10% parity overhead provides a safety margin: files remain retrievable when
nodes retain sufficient symbols to avoid detection.

Reed-Solomon codes provide three properties: Maximum Distance Separable (any 231 of 255
symbols suffice for reconstruction), per-codeword independence (graceful degradation for
multi-codeword files), and systematic encoding (data symbols preserved unchanged, parity
appended).

Encoding Procedure:
For file of size s?ytesz

bytes
L Partition: ng,. = [sg—l-‘ data symbols (final symbol zero-padded to 31 bytes)

2. Group: n [%-‘ codewords (=231 data symbols each)

codewords —

3. Reed-Solomon encode (GF(278)): Each codeword generates 24 parity symbols —
% 255 total symbols

Total = Meodewords

4. Merkle tree: Pad ton’ = 21982l encode symbols as field elements, build Poseidon
binary tree with depth d = log, n’

Example: 1 MB file — 33,826 data symbols — 147 codewords — 37,485 total symbols —
65,536 padded — depth 16.

Reconstruction:

Given available symbols (some possibly missing), the decoder groups symbols into codewords
(every 255 consecutive symbols). For each codeword with =231 available symbols, Reed-
Solomon decoding recovers missing symbols and extracts the 231 data symbols. Codewords
with fewer than 231 symbols cannot be reconstructed. The file is reassembled by concate-
nating data symbols from successfully reconstructed codewords and truncating to original
size. This enables partial file recovery when data loss is concentrated in specific codewords.

Outputs:
File identifier: id ; = gy a056(data)
Off-chain (storage nodes): All n,; symbols (31 bytes each) + Merkle tree T°

On-chain (blockchain): Merkle root p, file identifier, padded leaf count n’, original size sl}yteg,

filename

Constraints: s,,;, = 10 KB < stf’ytes < Spmax = 100 MB

Algorithm 4: File Preparation

1: procedure PREPARE-FILE(data, filename)
2: > Step 1: Compute file identifier
3: 1d; — Hgpaoss(data)
4: “ « |data|
5:
6: > Step 2: Partition into 31-byte symbols
. s
& Tsymbols — [;&T
8: D + P(data Msymbolss 31)
9: > Partition into symbols, zero-pad final symbol to 31 bytes
10:
11: > Step 3: Ap Ly multi-codeword Reed-Solomon encoding
12: Neodewords E 3!511)015
13: > Group symbols i 1n o codewords of 231 data symbols each

14: S < empty list
15: > Will hold all symbols: data + parity from all codewords
16: | for cw € [1,n ] do

codewords
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17: D,,, < symbols for this codeword (231 or remainder)

18: P, <+ RS-Encodegy9s) (D)

19: > Generate 24 parity symbols for this codeword
20: S.extend(D,,,)

21: S .extend(P,,)

22: end

23: Ntotal <~ Meodewords X 255
24: > Each codeword contributes 255 symbols (231 data + 24 parity)

26: > Step 4: Pad to power-of-two count
27 n’ «— 2!—10g2 Tgotal |
28:  while |S| < n’ do

20: S.append(03!)
30:  end
31:

32: > Step 5: Encode each symbol as Merkle leaf
33: L < empty list
34: for se S do

35: £ + encodey,

36: > Direct little-endian encoding to field element
37: L.append(?)

38: end

39:

40: > Step 6: Build Merkle tree
41: (77 p) — MPoseidon(L)

43: > Step 7: Return prepared file and metadata
R {tree : T fileid : idg, root : p} .
45: M — {root : p,file_id : id 1 padded_len : n’, original_size : s fytes, filename :

filename} -
46: o Derived values: ng,unkss Meodewords: Motal COmputed from s 7"
47: | return (F;Drep,
48: end

2.6.1.2 File Distribution

After preparing the file locally, the user distributes data to potential storage nodes off-chain.
This distribution is independent of the on-chain agreement creation and may occur before,
during, or after the agreement transaction is broadcast.

Data Transmitted: The user shares the original file bytes and the public metadata with
each storage node. Nodes do not receive the user’s prepared Merkle tree; instead, each node
independently prepares the file using the protocol’s deterministic preparation algorithm.
This ensures nodes can verify data integrity without trusting the user’s computation.

Verification by Recipients: When a storage node receives a file from a user, it performs
the following verification:

. Compute file identifier: id} = Fgypo56(received data)
. Verify identifier matches metadata: id}; = id
. Run Prepare-File on received data with metadata’s erasure configuration

= W N

. Verify computed Merkle root matches metadata: p’ = p

If verification succeeds, the node stores the prepared file structure (Merkle tree and all
symbols). If verification fails, the node rejects the data. This independent preparation ensures
all nodes storing a file compute identical Merkle trees and can generate consistent proofs.

User Incentives for Wide Distribution: Users benefit from sharing files with as many
storage nodes as possible before creating the on-chain agreement:

o Faster activation: More nodes with the file data means the agreement can reach n g,
nodes and activate more quickly, beginning to accrue anti-decay emissions sooner.
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¢ Reduced gatekeeping risk: If only one or two nodes possess the file initially, they
can extract monopoly rents through sponsorship agreements. Wide initial distribution
creates a competitive market and prevents data monopolization.

e Lower future sponsorship costs: New nodes joining later can obtain the file
from any existing storer. More initial nodes means more potential sponsors, driving
sponsorship commission rates down through competition.

The user typically distributes files through direct peer-to-peer transfer, public portals, or
other off-chain channels. The protocol does not enforce or verify off-chain distribution; it
merely incentivizes it through economic mechanisms.

2.6.2 File Retrieval

File retrieval occurs entirely off-chain using Bitcoin payment channels with atomic symbol-
for-payment exchanges. The protocol leverages the erasure coding structure to solve the
sequential exchange problem where one party must accept risk on the final transfer.

Discovery and Negotiation: The user identifies storage nodes holding the target file by
querying the protocol state for V;. The user contacts providers off-chain to request price
quotes. Providers respond with pricing (typically in satoshis per symbol or per full file) and
payment channel coordinates. The user selects one or more providers based on price, latency,
and redundancy preferences.

Payment Channel Establishment: The user and selected provider(s) establish bidirec-
tional Bitcoin payment channels using standard payment-channel protocols. The user
commits the agreed payment amount to the channel. This channel setup occurs entirely on
the Bitcoin layer and does not involve the Kontor protocol state.

Atomic Symbol Exchange: The file preparation yields n data symbols. With erasure

symbols

coding across n, codewords, each codeword requires 231 symbols minimum (90%) for

codewords
reconstruction. The retrieval proceeds via atomic exchanges:

For each symbol i € {1, ..., Tgymbols T k} where k > 1:

Provider sends symbol s; (31 bytes) and its Merkle path 7; to user

User verifies Merkle path against on-chain root p: Verify-Merkle-Path(p, s;, ;)
If valid: User signs payment channel update transferring pyg,,, to provider

If invalid: User aborts retrieval, closes channel with current state

ANl ol e

Both parties sign the updated channel state

Final-Symbol Problem Resolution: In sequential exchanges without a trusted third
party[5], one party must accept risk on the final transfer. The erasure coding structure

eliminates this asymmetry: the user requests n + k symbols where k > 1 represents

symbols
redundancy beyond the reconstruction thrcsholyd. After receiving sufficient symbols per
codeword (2231 per codeword), the user can reconstruct the complete file. If the provider
withholds the final k& symbols:

o User loses: Payment for k symbols (minimal overhead)

o Provider loses: Payment for withheld symbols

o User obtains reconstructible file data regardless

The economic incentive is symmetric: withholding final symbols costs the provider more in
lost payment than the user loses in redundancy overhead. In practice, providers deliver all
symbols to maximize payment.

Channel Settlement: After complete file transfer and verification, both parties coopera-
tively close the payment channel, settling the final state on the Bitcoin blockchain. The
channel can also remain open for future retrievals between the same parties, amortizing the
channel open/close costs across multiple file transfers.
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Trust Model: This retrieval mechanism is effectively trustless: cryptographic verification
(Merkle paths) ensures data validity, and economic incentives (redundancy overhead) ensure
completion. The protocol does not track or enforce retrieval agreements on-chain; file
retrieval is a bilateral contract between user and provider settled through Bitcoin payment
channels.

2.6.3 Sponsored Join Negotiation

When a node wishes to join a file agreement but cannot obtain the file data through public
channels, it can request sponsorship from existing storers. The trustless two-step sponsorship
mechanism ensures neither party can exploit the other.

Discovery Phase: The entrant identifies a target file agreement and queries the existing
storers (N f) for sponsorship availability. This discovery happens off-chain through direct
communication, public registries, or gossip protocols.

Offer Creation (On-Chain): A willing sponsor posts a public sponsorship offer by
invoking Create-Sponsorship-0ffer. The offer specifies:

o Target entrant (specific node identifier)

o Commission rate (7,,,,) and duration (Yquation)

o Required bond amount (8,4 in KOR)

» Expiration deadline (W,

" tter DlOCks from creation)

The sponsor pays Bitcoin transaction fees to broadcast this offer, creating a credible
commitment with fixed terms visible to all indexers. The bond requirement protects the
sponsor from griefing attacks.

Data Transfer (Off-Chain): After the offer is confirmed on-chain, the sponsor transfers
the file data to the entrant off-chain. Transfer methods are implementation-specific (direct
peer-to-peer, encrypted channels, etc.). The protocol does not observe or enforce this
transfer.

Acceptance and Bond Escrow (On-Chain): If the entrant successfully receives and
verifies the file data (runs Prepare-File and confirms root matches), it invokes Join-
Agreement with the offer identifier. The procedure atomically:

o Validates the offer exists, targets this entrant, and has not expired

o Locks the bond (B,,4) in escrow from entrant’s spendable balance

e Creates the sponsorship agreement with the offer’s terms

e Adds the entrant to the file agreement

e Removes the accepted offer from state

The bond remains in escrow until the entrant’s first challenge for this file is resolved.

Bond Resolution: When the entrant is first challenged for the sponsored file:

e Success: If the entrant submits a valid proof, the bond is returned to the entrant’s
balance and the sponsorship continues normally for its full duration.

o Failure: If the entrant fails the challenge (expires or invalid proof), the bond is
transferred to the sponsor (compensating Bitcoin miner fees and bandwidth costs),
the sponsorship is voided retroactively (no commission ever paid), and the entrant is
slashed and removed normally.

This bond-escrow mechanism makes sponsorship fully trustless: the sponsor cannot extort
(terms fixed on-chain first), the entrant cannot grief (bond at risk equals sponsor’s costs),
and both parties have symmetric incentives to perform honestly. If the sponsor posts an
offer but never sends data, they lose Bitcoin fees while the entrant loses nothing (can reject
or let offer expire).

Edge Cases:
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e Sponsor leaves before acceptance: If the sponsor leaves the file agreement
(voluntarily or via slashing) after posting an offer but before the entrant accepts,
the Join-Agreement procedure rejects the acceptance (lines 1199-1203 validate that
the sponsor is still in the agreement). The entrant loses nothing—they simply cannot
accept that particular offer. The entrant should query alternative sponsors or wait for
new offers.

e Sponsor leaves after acceptance: If the sponsor leaves the file agreement after
the entrant has already accepted (sponsorship agreement is active), the sponsorship is
voided immediately (see Leave-Agreement and slashing procedures). The entrant keeps
the file data they already received, retains their position in the file agreement, and the
sponsorship commission simply ends early. No commission is paid after the sponsor
departs.

e Multiple offers for same entrant: An entrant may receive offers from multiple
sponsors for the same file. The entrant should compare terms (commission rate,
duration, bond requirement) and accept the most favorable. Once one offer is accepted,
the entrant joins the agreement; subsequent offers for that entrant/file pair become
invalid (the entrant is already a member).

Market Dynamics: Multiple sponsors may compete by posting offers with lower 7,
for the same or different entrants. This competitive market prevents gatekeeping cartels:
any existing member has incentive to defect and capture the commission. The equilibrium
commission rate balances the sponsor’s bandwidth cost against the NPV of commission
payments:

Cgesu?sfer 0 (|Nf‘ + 1)
e¢(t) - €koryusp - (1 — (1 +6)7P)

Ve (D) = 9)

2.7 Transaction Processing

The protocol deterministically processes transactions that have been included in Bitcoin
blocks. Each transaction contains one or more procedure calls that modify the protocol state.
The following procedures can be invoked by users and storage nodes:

2.7.1 Create Storage Agreement

The user invokes the Create-Storage-Agreement procedure by broadcasting a contract call
to the Bitcoin blockchain. This procedure call includes the file metadata (Merkle root, file
identifier, erasure configuration, and size parameters) and is processed deterministically by
all indexers when the containing Bitcoin transaction is included in a block.

File distribution (see Section 2.6.1.2) is an independent off-chain process that may occur
before, during, or after agreement creation. Users typically distribute files to potential
storage nodes before or concurrently with the on-chain agreement to enable faster activation,
though the protocol does not enforce this ordering.

The procedure performs the following operations: (1) validates the metadata and file size
constraints, (2) calculates the file’s immutable economic parameters (rank, emission weight,
per-node base stake) based on current network state, (3) collects the storage fee from the
user and burns it, (4) creates the file agreement in an inactive state, and (5) initializes the

membership tracking structures. The agreement remains inactive until n,;, storage nodes

n
join, at which point it activates and begins receiving emissions.

The storage fee v is calculated deterministically from current network state: vy = Xy - £y
where k; = (%) * Ctake * ln(l +|F ﬁ) The values of Q and || are read from the protocol

state at the block immediately before this agreement is created, ensuring deterministic and
predictable fee calculation for all indexers.
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Algorithm 5: Create Storage Agreement

1: procedure CREATE-STORAGE-
AGREEMENT (state, signer, file_id, metadata, block_height)

2: > Invoked via contract procedure call in Bitcoin transaction
3: > User has distributed file data off-chain before broadcasting
4: M < metadata
5: > Metadata includes: root hash, erasure config, sizes, filename
6:
7 > Step 1: Compute agreement identifier
8: id, « F(file_id || block_height)
9:
10: | > Step 2: Calculate file rank and emission weight
11: | rank;, < state.total files ever created + 1
12: > Sequential creation counter
ytes

%i sf <_ln sl}.ﬁ“ﬁ

wf — ln(1+rankf>
15: > File emission weight from size and rank
16:
17: > Step 3: Retrieve current network state
18:  Q < state.get_omega()
19: | |F| + |state.active_files|
20: > Current global emission weight and file agreement count
21:

22: > Step %} Calculate per-node base stake
230 kp ¢ () Coare (14 [F 5

24: > Per-node base stake from ecz)czrdfomic model
25: 'Uf <_Xfee.kf

26: > Storage fee from economic model

27:

28: > Step 5: User pays storage fee (burned)
29:  if state.balance(signer) < v, then

30: return | (insufficient balance)

31: end

32:  state.burn_tokens(signer, vy)

33: > Storage fee is burned to create agreement

34:

35: > Step 6: Increment file creation counter

36: state.increment_total files_created ()

37:

38: | » Step 7: Create agreement structure

39: A — {id :id,, user_id : signer, file id : file id, metadata : M, nodes :

(), creation_block : block_height, rank : rank f, emission_weight : w, base_stake :

kg, active : false}
40: | » File agreement starts inactive until n;, nodes join

42: > Step 8: Store agreement
43:  state.agreements.set(id,, A)

44:

45: > Step 9: Initialize membership sets for this file agreement
46: state.set_nodes_for_file(file_id, )

47: | returnid,

48: end

2.7.2 Create Sponsorship Offer

Existing storage nodes can post public sponsorship offers to facilitate new nodes joining file
agreements. The sponsor invokes the Create-Sponsorship-0ffer procedure via a contract
call, committing to provide file data to a specific entrant in exchange for commission
payments.
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The procedure validates that the sponsor stores the target file, creates the offer with specified
terms (commission rate and duration), and stores it in the active offer set with an expiration
deadline. The sponsor incurs Bitcoin transaction fees to post the offer, creating a credible
commitment before any data transfer occurs. This trustless design prevents sponsor extortion
(terms are fixed on-chain) and entrant fraud (entrant only accepts after verifying data).

Algorithm 6: Create Sponsorship Offer

1: procedure CREATE-SPONSORSHIP-OFFER(state, signer, file id, entrant_id, gamma rate, gamma_duration, bond_am
2 > Sponsor posts public offer to sponsor specific entrant

3 > Pays Bitcoin tx fee as credible commitment

4: > Specifies bond amount to protect against griefing

5: > Step 1: Validate sponsor stores the file

6: 4., (sponsor’s files) < state.get_files_for node(signer)
7 if file id — € 7, then

8 return L (sponsor does not store file)

©.. .

: end
10:
11: > Step 2: Validate commission parameters
120 if v SO0V Y > 1 then
13: return L (invalid commission rate)
14: end
15: if Yduration S 0 then
16: return | (invalid duration)
17:  end
18: if bond_amount < 0 then
19: return | (invalid bond amount)
20:  end
21: > Bond protects sponsor from griefing attacks
22:

23: > Step 3: Create offer identifier
24:  id, « F (signer | file id | entrant id | block height)

25:
26: > Step 4: Create offer structure
27: o — {id : id,, file_id : file_id, sponsor : signer, entrant :

entrant_id, rate : 7,,.,, duration : 4, ation, PO : bond _amount, creation_block :

block_height, expiration_block : block_height + W_g. .}
28: > Offer expires after W g, blocks if not accepted

29:

30: > Step 5: Store offer in active offer set
31:  state.offers.add(o)

32:  returnid,

33: end

2.7.3 Join Agreement

Storage nodes join existing file agreements by invoking the Join-Agreement procedure via
a contract call broadcast to the Bitcoin blockchain. Before broadcasting this call, nodes
must obtain the file data and verify its integrity by independently running the file prepa-
ration algorithm and confirming the computed Merkle root matches the on-chain agreement
metadata. While the protocol does not enforce this pre-verification (nodes can join without
possessing valid data), without the data the node will fail challenges and be slashed, making
pre-verification economically rational.

Nodes can join through two mechanisms:

o Unsponsored join: The node acquires file data through off-chain channels (from the
user, public portals, or other sources) and joins directly. The node must have sufficient
stake to cover the projected file set after joining.
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e Sponsored join: The node accepts an existing sponsorship offer by providing the offer
identifier. The procedure validates that the offer exists, is not expired, and targets this
specific entrant, then converts the offer into an active sponsorship agreement while
adding the node to the file agreement.

The procedure validates stake sufficiency, processes sponsorship offers if provided, adds the
node to the file agreement, and activates the agreement when n,;, nodes is reached.

Algorithm 7: Join Agreement

1: procedure JOIN-AGREEMENT (state, signer, agreement_id, offer_id, block_height)
2 > Entrant joins file agreement, optionally accepting sponsorship offer

3 > Should verify file data off-chain to avoid failing challenges

4: > Step 1: Retrieve file agreement

5: A + state.agreements.get(agreement_id)

6: if A = 1 then

7 return | (file agreement not found)

8 end

9

10: > Step 2: Check if node already in agreement
11: if signer € A.nodes then

12: return | (already joined)
13:  end
14:

15: > Step 3: Process sponsorship offer if provided
16:  if offer id # L then

17: > Retrieve and validate offer

18: o0 <+ state.offers.get(offer_id)

19: if o= 1 then

20: return L (offer not found)

21: end

22:

23: > Validate offer is for this entrant and file
24: if o.entrant # signer V o.file_id # A.file_id then
25: return L (offer mismatch)

26: end

27:

28: > Validate offer not expired

29: if block_height > o.expiration_block then
30: return L (offer expired)

31: end

32:

33: > Validate sponsor still in agreement

34: if o.sponsor — € A.nodes then

35: return | (sponsor no longer in agreement)
36: end

37:  end

38:

39: > Step 4: Verify stake requirement
40: 4, (node file agreements) « state.get_files_for_node(signer)
41:  F/ (projected file agreements) < %, U {A. file id}

42:  k, (node stake) <+ state.get_stake(signer)

43: > Calculate required stake with projected file set

44:  stakesum « ) ., state.get_agreement(f).base_stake

X
15 A 1+ g

slash "

46: | Kiequireq < Stake sum - Ay i,

47: > ’fotal required stake from economic model

48:  if k, < kequirea then

49: return | (insufficient stake)

50: end

51:  » Predictive check: stake validated using PROJECTED file set &,/
52: > Node must have sufficient stake assuming join succeeds

53:
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54: > Step 5: Lock bond and create sponsorship if accepting offer
55:  if offer id # L then

56: > Validate entrant has sufficient balance for bond

57: b,, (entrant balance) < state.get_balance(signer)

58: if b,, < o0.bond then

59: return | (insufficient balance for bond)

60: end

61:

62: > Lock bond in escrow

63: state.reduce_balance(signer, o.bond)

64: state.set_bond_escrow((signer, A file id), 0.bond)

65: > Bond held until first challenge resolution for this file
66:

67: > Create sponsorship agreement from accepted offer
68: m —

{file_id : A .file_id, entrant : signer, sponsor : o.sponsor, rate : o.rate, duration :
o.duration, bond : 0.bond, start : block_height, first_proof_complete : false}

69: state.sponsorships.add(m)

70:

71: > Remove accepted offer from active offers
72: state.offers.remove(o)

73: end

74:

75: > Step 6: Add node to file agreement
76:  A.nodes.add(signer)

78: > Step 7: Update membership sets

79: N, (nodes for file agreement) <« state.get_nodes_for_file(A.file_id)
N;.add(signer)

81: state.set_nodes_for_file(A.file_id, V. f)

82: 4, (file agreements for node) « state.get_files for node(signer)
83:  7,.add(A file id)

84: state.set_files_for_node(signer, 7,)

86: > Step 8: Activate file agreement if threshold reached
87:  if |A.nodes| > n,;, A A.active = false then

min
88: A.active + true
89: F .add(A file_id)
90: > File agreement added to &, begins receiving emissions
91:
92: > Update global emission weight
93: wy < A.emission weight
94: ) < state.get_omegal()
95: Q<+ Q+wp
96: state.set_omega(§)
97: > Increment global  when file agreement activates
98: end
99: return success
100: end

2.7.4 Leave Agreement

Storage nodes may voluntarily exit file agreements by invoking the Leave-Agreement proce-
dure via a contract call. Voluntary departure is only permitted when the file agreement has

and the node has sufficient spendable

more than the minimum required nodes (|Ng| > 1y, )

balance to pay the leave fee.

2
The procedure validates the departure conditions, collects the leave fee ¢}, = k Iz (@f‘)
from the node’s spendable balance and burns it, removes the node from the file agreement,
updates membership tracking, and voids any sponsorship agreements where the departing

node was either an entrant or a sponsor.
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Algorithm 8: Leave Agreement

1: procedure LEAVE-AGREEMENT(state, signer, agreement_id, block_height)
2: > Step 1: Retrieve file agreement

3: A + state.agreements.get(agreement_id)

4: if A = 1 Vsigner — € A.nodes then

5: return | (invalid request)

6: end

7

8: > Step 2: Check minimum nodes constraint

9: N} (nodes for file agreement) « state.get_nodes_for file(.A. file_id)
10: if|NVy| < nypy, then

11: return | (cannot leave: would violate minimum)

12:  end

13:

14: > Step 3: Calculate and verify leave fee from spendable balance

15: kf — J‘l‘base_stake2

16: Pleave kf : (‘7;::[;}“‘
17: > Leave fee from economic model
18: b, (spendable balance) < state.get_balance(signer)

19: | if b, < Qieaye then

20: return | (insufficient balance for leave fee)
21:  end

22:

23: > Step 4: Burn leave fee from spendable balance
24:  state.reduce_balance(signer, ©i.,e)

25:  state.burn(@jeye)

26:

27: > Step 5: Remove node from file agreement

28:  A.nodes.remove(signer)

29:

30: > Step 6: Update membership sets
31: | Nj.remove(signer)
32: state.set_nodes_for_file(A.file_id, V. f)

33: 4, (file agreements for node) < state.get files for node(signer)
34: 4, .remove(A.file id)

35: state.set_files_for_node(signer, 7,)

36:

37: > Step 7: Void sponsorships involving departing node
38: for m € state.sponsorships do

39: if m.entrant = signer V m.sponsor = signer then
40: state.sponsorships.remove(m)

41: > Voided: node was sponsor or entrant

42: end

43: end

44: return success

45: end

2.7.5 Verify Storage Proof

Storage nodes respond to challenges by invoking the Verify-Storage-Proof procedure via
a contract call that includes the cryptographic proof and one or more challenge identifiers.
Proofs may aggregate multiple challenges across multiple files and block heights into a single
constant-size SNARK.[3] The verifier reconstructs the expected public inputs deterministi-
cally from protocol state (challenges, file ledger roots, indices) and verifies the compressed
SNARK.

If the proof is valid, each covered challenge is marked as verified and removed from the
active challenge queue. If the proof is invalid or malformed, the proof is rejected and each
referenced challenge is immediately marked as failed, triggering slashing during block-end
processing.
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Algorithm 9: Verify Storage Proof

procedure VERIFY-STORAGE-PROOF (state, signer, proof, block_height)

> Step 1: Validate challenge IDs and retrieve challenges
ids + proof.challenge_ids
if |ids| = 0 then
return | (empty proof)
end
> Reject duplicate IDs to prevent accidental double-counting
if |ids| # |Set(ids)| then
return L (duplicate challenge IDs)
end
challenges < empty list
for id € ids do
C + state.get_challenge(id)

if ¢ = 1 then
return L (challenge not found)
end

if signer # C.node id then
return 1 (unauthorized - wrong node)

end

if C ¢ state.active_challenges then
return L (challenge not active)

end

challenges.append(C)

end

> Step 2: Validate ledger root (multi-file only)
p o < proof.ledger_root
< proof.aggregated_tree_depth
1f jagg > 0 A p, ¢ state.accepted historical roots() then
return | (invalid ledger root)

end
> Ledger root validation is skipped for single-file proofs (d,,, = 0):
> the circuit directly enforces computed_root == z0[0], so a mismatched

> proof.ledger_root causes SNARK verification to fail. Early rejection is optional.

> Step 3: Determine circuit shape from challenges
k < next_power_of_two(|challenges|)

dmax < mMaXec challenges depth(e)

> Use d,,, from proof to select parameters

> Step 4: Reconstruct expected public inputs using proof indices
I < proof.ledger_indices
if |I| # k then
return | (ledger index vector has wrong length)
end
> Sort challenges deterministically by (file_id, challenge_id) before building per-

fil S
¢ arrabeort(challenges, (c1,¢9) = ¢ fileid < ¢y file_id
sorted « V (¢ fileid = ¢y file id A ¢;.1d < ¢,.id))

D, 3 + arrays from sorted, padded to length k&
Zevected 5 0,1,D,%,0]

> Step 5: Generate verification parameters

PP < Gk, dipases Qo

> Step 6: Verify compressed SNARK
Tompressed < Proof.compressed_snark

N « challenges[0].num_challenges

if 3€ € challenges : C.num_challenges #+ N then
return | (mismatched iteration count)

end
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60: = valid + Spartan.\/erify(pp7 M compressed zgxPeCted, N )
61:  if — valid then

62: > Invalid proof: mark referenced challenges as failed (slashable immediately)
63: for € € challenges do

64: STATE.failed challenges.add(C.id)

65: STATE.active_challenges.remove(C)

66: end

67: return | (proof verification failed)

68:  end

69:

70: > Step 7: Mark challenges as verified and remove from active list
71: for € € challenges do

72: STATE.verified_challenges.add(C.id)

73: STATE.active_challenges.remove(C)

74:  end

75:

76: > Step 8: Release bond(s) for first successful proof(s)
77 seen_files < empty set
78:  for € € challenges do

79: file id « C.file id

80: if file id ¢ seen_files then

81: seen_files.add(file id)

82: for m € state.sponsorships do

83: if m.file_id = file_id A m.entrant = signer A m.first_proof complete = false
then

84: > This is entrant’s first successful proof for sponsored file

85:

86: > Return bond to entrant

87: bond < state.get_bond escrow((signer, file id))

88: state.add_balance(signer, bond)

89: state.clear_bond_escrow((signer, file_id))

90: > Bond returned: entrant proved possession of valid data

91:

92: > Mark first proof complete

93: m.first_proof_complete < true

94: > Sponsorship now unconditional

95: end

96: end

97: end

98: end

99: return success

100: end

2.7.6 Stake Tokens

Storage nodes invoke the Stake-Tokens procedure to move KOR from their spendable balance
to their staked balance. This increases the node’s stake capacity, enabling it to join additional
file agreements. The procedure validates the amount and balance, then transfers the specified
amount from spendable to staked balance.

Algorithm 10: Stake Tokens

procedure STAKE-TOKENS(state, signer, amount, block_height)
> Validate amount
b, (spendable balance) < state.get_balance(signer)
if amount < 0 V amount > b,, then
return L (invalid amount)
end

> Move spendable KOR to staked balance
state.reduce_balance(signer, amount)
0: | state.add_stake(signer, amount)
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11: return success
12: end

2.7.7 Unstake Tokens

Storage nodes invoke the Unstake-Tokens procedure to move KOR from their staked balance
back to their spendable balance. Withdrawals are programmatically blocked if they would
cause the node’s stake to fall below the required amount for its current file commitments.

The procedure calculates the node’s required stake k., based on its file agreement set and

req
stake amplification factor, validates that the post-withdrawal stake would remain sufficient,

then transfers the specified amount from staked to spendable balance.

Algorithm 11: Unstake Tokens

procedure UNSTAKE-TOKENS(state, signer, amount, block_height)
> Node attempts to move staked KOR to spendable balance
> Blocked if would result in insufficient stake
k,, (current stake) « state.get_stake(signer)

> Check withdrawal amount validity

if amount < 0 V amount > k,, then
return | (invalid amount)

end

11: | » Calculate required stake for node’s file agreements
12: 4, (node file agreements) < state.get_files for node(signer)

n

13:  stake sum < Y e state.get_agreement( f).base_stake

pY n
U A 1+ s

150 Kjequirea < stake_sum - Ay

16: > Total required stake from economic model

17:

18: > Check if withdrawal would violate stake requirement

19:  k;, (stake after withdrawal) < k,, — amount
20: | if by, < kpequinea then

21: return | (insufficient stake after withdrawal)

22: end

23: > Withdrawal programmatically blocked to maintain sufficiency
24:

25: > Execute withdrawal

26:  state.reduce_stake(signer, amount)

27:  state.add_balance(signer, amount)

28: return success

29: end

2.8 Block Processing

The protocol executes deterministic state transitions at the start and end of each block,
independent of user transactions. These algorithms are called from the Block Start and
Block End procedures defined in the Protocol Flow section.

2.8.1 Challenge Generation

Kontor indexers deterministically derive a set of challenges from each Bitcoin block using
the current block hash as the entropy source. The algorithm proceeds in three steps: (1)
derive a batch seed from the block hash using HKDF, (2) select files probabilistically based
on a uniform challenge rate p, = %, and (3) for each selected file, uniformly sample one
storage node to be challenged. This ensures each file receives approximately Ci,,,.; challenges
per year regardless of network size, while distributing challenge load evenly across nodes.

29



Algorithm 12: Create Challenge

—

17:
18:

procedure CREATE-
CHALLENGE(node_id, file_id, metadata, block_height, batch_seed, params)

> Step 1: Compute deterministic challenge identifier
Opaten < batch _seed
p < metadata.root
d + trailing zeros(metadata.padded_len)
S <= Schal
J < ‘7[SHA256(TAGCha”C“&C ia || block height | o, | fileid | p || d || s | node_id)
> Deterministic ID with domain separation
> Includes all challenge parameters for uniqueness

> Step 2: Set challenge parameters and expiration
expiration block < block_height + W, ..
> Must respond within W,,,.¢ blocks with s symbol proofs

> Step 3: Package challenge structure

C «+ {id: J,node_id : node_id, file_id : file_id, metadata : metadata, block_height :
block_height, expiration_block : expiration_block, num_challenges : s, seed : oy, }
return €

end

Algorithm 13: Generate Challenges for Block

procedure GENERATE-CHALLENGES-FOR-BLOCK (state, block_height, block_hash)

> Step 1: Derive deterministic randomness for this block
H < block hash

info +~ KONTOR-CHAL::v1 | block height

Thateh <~ HEKDFsyaos6(5 into (l

> Current block hash provides unpredictable entropy

> Step 2: Calculate challenge probability (constant across all files)
p — L&rget
> Challenge probability from global parameters

> Step 3: Probability-based file selection
F < state.get_files(block_height)
Zelected  empty list
for f € ¥ do
> Derive file-specific random value
us = FHspnzse(o, id) mod 35
DfUmform Uyp G llh l)f
if uy <py then
‘?;elected'append(f)
end
end

> Step 4: Select one node per challenged ﬁle agreement
> Node n € Ny selected with probability Nfl
Chrew — empty list
for f € 7, selected do
N; + state.get_nodes_for_file(f.id)
if |N | >0 then
n < RandomChoice(V, Iz Obatch)
> Uniform random selection: probability ‘N ]
C < Create-Challenge(n, f.id, f.metadata, block height, oy, params)
enew'append(e)
end
end

return C,.,

: end
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2.8.2 Reward Emissions

Every block, the protocol mints new KOR and distributes it to storage nodes proportionally
based on their file agreements and sponsorship arrangements. Total emissions use a constant

rate:
7
€= KORtotal ! (EO) (10)
where KOR,,,; is the circulating supply at the previous block, p, is the baseline annual

inflation rate (e.g., 0.10 for 10%), and B is blocks per year (~ 52,560 with 10-minute blocks).
This constant-emission design is viable because capital costs (staking opportunity cost)
dominate physical storage costs, creating a self-referential system that requires no external
price oracles.

Each file receives a share based on its emission weight. The distribution accounts for
commission payments between sponsors and entrants.

Edge Cases:

o Network bootstrap (F = 0)): When no files exist, = 1.0 (genesis bootstrap value)
and no emissions are distributed. This initialization prevents division-by-zero in stake
calculations for the first file.

» Abandoned files (|V;| = 0): When all nodes have been removed from a file agree-
ment (through slashing or stake insufficiency), the file remains in & and continues
to accrue emissions, but no nodes receive rewards. These emissions are effectively
burned (not minted). The file’s w; remains in the global § calculation to maintain
deterministic stake calculations for new files.

Algorithm 14: Storage Rewards Distribution

procedure DISTRIBUTE-STORAGE-REWARDS(state, block_height)
> Called every block during On-Block-End
> Mints and distributes KOR emissions to storage nodes

Q <+ state.get_omegal()

KOR,,; < state.get_total supply()
€ & KORtotal ' (LBP)
> Constant emissions

1

2

3

4:

5: > Step 1: Calculate total block emissions
6

7

8

9

11: > Step 2: Distribute emissions per file
12: & « state.get_active files()

13:  for f € F do

14: > Calculate file-specific emissions
15: A « state.get_agreement( f)
16: wy ¢ A.emission weight
w
17: gp + e(t) - (ﬁf)
18: > File’s proportional share of total emissions
19:
20: > Get nodes storing this file
21: N} « state.get_nodes_for_file( f)
22: if || = 0 then
23: > File abandoned: emissions not minted (effectively burned)
24: > Skip to next file
25:
26: > Calculaste base per-node reward
27: Thase \Tff\
28:
29: > Step 3: Distribute to each node with commission adjustments
30: for n € N; do
31: > Initialize commission terms
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32: Vpaia < 0

33: Vearned < 0

34:

35: > Check if node is entrant in active sponsorship for this file
36: for m € state.sponsorships do

37: if m.file_id = f A m.entrant = n then

38: if block_height > m.t, . A block height < m.t, .. + M. Vquration then
39: Vpaid & MYrate

40: > Entrant pays commission to sponsor

41: end

42: end

43: end

44:

45: > Check if node is sponsor for entrants in this file

46: for m € state.sponsorships do

47: if m.file_.id = f A m.sponsor = n then

48: if block height > m.tg,,. A block height < m.ty,. + ™M Y4uration then
49: Yearned €~ Yearned + M- Yrate

50: > Sponsor earns commission from entrant

51: end

52: end

53: end

54:

55: > Compute final reward with commission adjustments
56: T €~ Thase - (1 ~ Vpaid + ’yearned)

57: > Entrant pays out, sponsor earns in

58:

59: > Mint and add to node’s spendable balance

60: state.mint_tokens(r)

61: state.add_balance(n, )

62: end

63: end

64: > End of [N_f| > 0 case

65:  end

66: end

2.8.3 Challenge Expiration and Slashing

If a storage node either lets an open challenge expire or submits an invalid storage proof for
it, then that storage node’s stake k,, is slashed by an amount equal to A, - ky, where k¢
is the base stake for the file in question and Ay, is a system-wide multiplier. The node is
also immediately removed from the file agreement.

A proportion of the slashed funds, fBy,q,, is burned. The remainder is distributed equally
among the other storage nodes that are parties to the file agreement that was broken. This
disincentivizes a form of collusion in which only one storage node in the agreement actually
stores the file and merely transfers the file data to other nodes that have committed to it
when the latter are challenged.

If a slash (or any other event) causes a node’s total stake k,, to fall below its required stake
k.q> the protocol automatically triggers a stake-sufficiency-restoration process. The node
is gracefully removed from file agreements (with a penalty deducted from stake for each
involuntary exit) until its stake is sufficient again. If this is not possible without violating
minimum replication on its remaining file agreements, its entire remaining stake is burned,

and it is removed from all agreements.

o Ifk, < k., after slashing, the Stake Insufficiency Handling algorithm is automatically
triggered.

o The slashed node n is immediately removed from N; and file agreement f is removed
from 7,,.
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e Any sponsorship agreements where node n was either an entrant or a sponsor are
immediately voided and removed from M.

Algorithm 15: Failure Detection and Slashing

1: procedure PROCESS-FAILED-CHALLENGES(state, block_height)
2: > Identify and process all failed challenges
3: > Collect expired challenges (not submitted within W, .. blocks)
4: Coxpired < empty list
5: for € € state.active_challenges do
6: if block_height > C.expiration_block then
T: eexpired .append(@)
8: end
9: end
10:
11: > Move expired challenges to failed queue
12: for € € Cypireq do
13: STATE.failed_challenges.add(C.id)
14: end
15:
16: | > Apply penalties to all failed challenges
17:  for challenge id € state.failed_challenges do
18: Chiled < state.challenges.get(challenge id)
19: > Find file agreement for challenged file
20: A,y + state.get_agreement for file(Cly;0q-file_id)
21: if A4 # L then
22: A + state.get_agreement(A,y)
23: node_id < Cpq-node_id
24:
25: > Calculate slash penalty: ky X Ag,q,
26: k:f < A.base _stake
27: penalty < ky X Ag,q
28:
29: > Burn and distribute penalty
30: burn_amount <— penalty X Sy,
31: distribute_amount < penalty X (1 — B.q)
32: STATE.reduce_stake(node_id, penalty)
33: STATE.burn(burn_amount)
34:
35: > Distribute to remaining nodes in file agreement
36: N (other nodes) < A.nodes \ node_id
37: if |V > 0 then
distribute_amount
38: share < ffﬁ\/ﬂ
39: for n; € N; do
40: STATE.add_stake(n;, share)
41: end
42: > No remaining nodes: burn entire distribution
43: STATE.burn(distribute_amount)
44: end
45:
46: > Handle bond transfer if first challenge failure for sponsored join
47: file id + A.file id
48: for m € state.sponsorships do
49: if m.file_id = file_id A m.entrant = node_id A m.first_proof complete =
false then
50: > Entrant failed first challenge: void sponsorship retroactively
51:
52: > Transfer bond to sponsor as compensation
53: bond < state.get_bond_escrow((node_id, file_id))
54: state.add_balance(m.sponsor, bond)
55: state.clear_bond_escrow((node_id, file id))
56: > Sponsor compensated for Bitcoin miner fees and bandwidth costs
LYS
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58: > Void sponsorship - no commission ever paid

509: state.sponsorships.remove(m)

60: > Retroactive void: sponsor earned no commission
61: end

62: end

63:

64: > Remove node from file agreement

65: N, « state.get_nodes_for_file(A . file_id)

66: ]\/}fc.remove(node_id)

67: state.set_nodes_for file(.A. file_id, N)

68: F,, <+ state.get_files_for_node(node_id)

69: F,.remove(A file_id)

70: state.set_files for node(node id, %)

71: A.nodes.remove(node_id)

72:

73: > Void other sponsorships involving slashed node

74: for m € state.sponsorships do

75: if (m.entrant = node_id V m.sponsor = node_id) A m.file id # file id then
76: state.sponsorships.remove(m)

77 > Other sponsorships voided, bonds handled separately
78: end

79: end

80:

81: > Check if stake insufficiency triggered

82: k, (node stake) « state.get_stake(node id)

83: 4, « state.get_files_for node(node_id)

84: stake_sum Z}\ e, state.get_agreement( f).base_stake
85: Astake — 1+ BEEED j*“s‘g'm

86: Krequirea ¢ stake sum - Ay

87: > Total required stake from economic model

88: if k,, < kequirea then

89: > Trigger stake insufficiency handling

90: Handle-Stake-Insufficiency(node id, state)

91: end

92 end

93: end

94:

95: > Clear processed failures

96: = STATE.failed challenges.clear()

97: end

2.8.4 Stake Insufficiency Handling

o Stake Insufficiency Handling: If a node’s stake falls below its requirement (e.g.,

after being slashed), this automated process restores sufficiency by removing it from

file agreements in a pseudo-random order. This operation takes precedence over

withdrawal.

>

Pass 1 (Graceful Exit): The node is removed from file agreements where its

departure is non-critical (|Ng| > ny;,). This continues until sufficiency is met.

min)
For each involuntary exit from file agreement f, the protocol deducts a penalty
from the node’s staked balance k,,:

— Of this penalty k; - Ag,q,, an amount By, - kg - Agaen is burned.

— The remainder (1 — By,q,) - kg - A

storers in NV, -

1 is distributed equally among the other

slash slas

Pass 2 (Total Forfeiture): If Pass 1 is insufficient, the node’s entire remaining
stake k,, is burned, and the node is removed from all remaining file agreements.
This ensures the node pays the maximum possible penalty and cannot game the
insufficiency mechanism.
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Algorithm 16: Stake Insufficiency Handling

1: procedure HANDLE-STAKE-INSUFFICIENCY (node id, state)
2: > Automatic restoration when k,, < k., after slashing
3: > Takes precedence over withdrawal operations

4: k, (node stake) < state.get_stake(node_id)

5: 4, (node file agreements) « state.get_files_for node(node_id)
6: stake_sum < 2;\ e, state.get_agreement( f).base_stake
7 Astake < 1+ ﬁ

8: Kroquirea € stake sum - Ay

9: > Total required stake from economic model

10: > Check if insufficiency exists

11 if k,, > Kyequirea then

12: return success (no action needed)

13: end

14:

15:

16: > PASS 1: Graceful Exit from Non-Critical File Agreements
17: > Remove from file agreements where [Ng| > n;,

18: files_to_remove < empty list

19:  for fe 7, do

20: > Check if node can be removed without violating minimum
21: Ny state.get_nodes_for file(f)

22: if | V¢ > nyy, then

23: files_to_remove.append( f)

24: end

25: end

26:

27: > Shuffle for pseudo-random order

28: seed < Hsynrs6(node id | block height)

29: Shuffle(files_to_remove, see

30: > Prevents node from predicting removal order to game penalties
31:

32: > Remove from file agreements until sufficiency restored
33: for f € files_to_remove do

34: > Get file agreement and calculate penalty

35: A, < state.get_agreement for file( f)

36: A + state.get_agreement(Ay,)

37: kf < A.base stake

38: penalty < k¢ X Agoen

39: > Same penalty as failed challenge: ky x Ag,q,

40:

41: > Apply penalty for involuntary exit

42: burn_amount < penalty X Sy,

43: distribute_amount < penalty X (1 — B.q)

44: STATE.reduce_stake(node_id, penalty)

45: k, < k, — penalty

46: > Update local stake tracker

47: STATE.burn(burn_amount)

48:

49: > Distribute to remaining honest storers

50: N, « state.get_nodes_for_file(f)

51: ,7\/;’ < empty set

52: for n € Ny do

53: if n # node id then

54: Nj.add(n)

55: end

56: end

57: if [Vf] >0 ghekr)l

58: share + wﬂfﬂ

59: for n, € N7 do

60: STATE.add_stake(n,, share)

61: end
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62: > No other storers: burn entire distribution

63: STATE.burn(distribute amount)

64: end

65:

66: > Remove node from file agreement

67: N;.remove(node_id)

68: state.set_nodes_for file(f, NV, f)

69: 4, .remove(f)

70: state.set_files_for node(node_id, 7,)

71: A.nodes.remove(node_id)

72: > Node forcibly removed from file agreement

73:

74: > Void sponsorships involving removed node for this file

75: for m € state.sponsorships do

76: if (m.file_id = f) A (m.entrant = node_id V m.sponsor = node_id) then

T state.sponsorships.remove(m)

78: end

79: end

80:

81: > Check if sufficiency restored after this removal

82: stake sum <+ 2; e state.get_agreement( f).base_stake

83: Astake < 1+ nerED

84: Krequirea ¢ stake sum - Ao

85: > Recompute required stake with updated file agreement set

86: if k,, > krequirea then

87: return success (sufficiency restored)

88: end

89: > If sufficient, exit early; otherwise continue removing file agreements

90: end

91:

92:

93: > PASS 2: Total Forfeiture

94: > If Pass 1 insufficient, burn all remaining stake and remove from all file agree-
ments

95:  if k,, < krequirea then

96: > Node still insufficient after graceful exits

97: > Apply maximum penalty: burn entire remaining stake

98: stake_remaining <+ state.get_stake(node_id)

99: if stake_remaining > 0 then

100: STATE.reduce_stake(node_id, stake remaining)

101: STATE.burn(stake remaining)

102: end

103: > All stake forfeited to prevent gaming insufficiency mechanism

104:

105: > Remove from all remaining file agreements

106: 4, <+ state.get_files_for node(node_id)

107: > May include file agreements where [Ny < ny, (critical agreements)

108: for fe J, do

109: > Update node membership for this file agreement

110: N, <« state.get_nodes_for file(f)

111: +.remove(node id)

112: state.set_nodes_for_file(f, V. f)

113:

114: > Remove from file agreement structure

115: Ayq « state.get_agreement_for_file(f)

116: A «+ state.get_agreement(A;,)

117: A .nodes.remove(node_id)

118: > File agreement may now be under-replicated if |[Ny| < n;,, but remains in

F and active - never deactivates

119: end

120:

121: > Clear node’s entire file agreement set
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122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:

state.set_files_for_node(node_id, 0))

> Void all sponsorships involving this node
for m € state.sponsorships do
if m.entrant = node_id V m.sponsor = node_id then
state.sponsorships.remove(m)
end
end

> Node ejected from protocol with total forfeiture
return total forfeiture
end

> Should not reach here: either Pass 1 succeeded or Pass 2 executed
return L (unexpected state)
end

3 Economic Analysis

This section analyzes the economic incentives and decision-making framework for storage

nodes. The analysis provides formal models for node profitability, optimal behavior, and

detection guarantees.

3.1 Storage Node Economics

3.1.1

Modeling Parameters

These parameters are used for economic analysis and node decision-making, and may vary

based on market conditions or individual node strategies.

3.1.2

3.1.3

Ppa: Probability of an honest storage node failing a challenge (due to operational
issues).

d: Opportunity cost rate (discount rate) in USD terms per block (per-block fractional
interest rate). Annualized rate: 7. &~ (14 6)Z — 1. Conversely § ~ (1 +r,

1
) B
annual

1. For example, a 20% annual rate corresponds to & = (1.20)5z560 — 1 ~ 0.0000034
per block.

h: Number of future blocks considered by nodes for profit evaluation (NPV calcu-
lation). Typical values range from 2,016 blocks (two weeks) to 26,280 blocks (six
months), depending on the node operator’s planning horizon and risk tolerance.

Toin: Minimum net expected profit per block in USD that a node requires to stay in
an agreement.

€koryusp: Exchange rate from KOR to USD.

&€prcyusp: Exchange rate from BTC to USD.

©iate, (¢): Bitcoin transaction fee rate in BTC per vByte at block ¢. This is a market-

determined value that fluctuates based on Bitcoin network congestion.

Economic Functions

Net Present Value calculation for time-varying cashflows:

h
NPV({c;},d,h) & Z((l fa)i) (11)

i=1

where {c;} represents the sequence of expected cashflows in USD for blocks i =
1,2, .., h.

Cost Functions
Expected Costs for node n for file f at time ¢ (all in USD):
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This model focuses on the primary on-chain economic costs. It does not formally
include secondary operational costs such as hardware amortization, bandwidth for
data repair and propagation, or manual labor, which must also be considered by node
operators.

» Expected proving cost: With aggregated proofs, a node pays once per block if
challenged on any files: Let B, (n, t) be the probability that node n is challenged

BT?}n(yt) rate

on at least one file. Let ¢ o Sproof * PBTC(t) De the cost of submitting an

aggregated proof in BTC.

E[cgri?e(m t)] = ‘Pany(n t) - p;gg}f( ) §BTC/USD (12)
where B, (n,t) £ 1~ 15 ( — (‘;\,—f‘)) Note that this assumes independent

challenge selection across files, which is pseudo-random. Assumlng equal repli-
cation |N¢| = n for all f, this simplifies to 1 — (1 — pf)‘ "

n

» Expected slashing cost:
[ S (£ )] = Pchal(|Nf|7t) “Prail * kg Adtash - Ekor/USD (13)

Note: Slashing occurs when a node is challenged but chooses not to respond with
a proof, or when the proof is invalid, or when the proof is not included on-chain
within the W, ¢ block window.

» Physical storage cost:

o b t
stordge(fv ) = y “ cl?}i? block (14)

where cgyi‘;’_block is the marginal cost of storing one byte for one block. While typi-
cally small, this cost scales linearly with file size, in contrast to the logarithmic
scaling of rewards.

3.1.4 Profit Functions

o Net Expected Profit for node n at time ¢ (USD): The total profit for a node is
the sum of profits from all files minus the aggregated proving cost and the opportunity
cost on the total required stake:

E[?T n, t “ Z [ storage n, f7 )] + E[Tslash(n’ f:t)}) ) gKOR/USD
fe%n (15)

—F [C;{SSI})A f t)] gg?age(f? t)] ) [cg%?e(nv t)] - kreq(n) : gKOR/USD xJ

The per-file profit (excluding the shared proving cost and total stake opportunity
cost) is

E[ﬂ—(na f? t)] & (E [rstorage(n7 f7 t)] + E[Tslash(na f7 t)]) : gKOR/USD

—E [ (£,1)] — P30 (f,1)

This represents the direct profit from a single file agreement before accounting for

(16)

costs shared across the node’s entire portfolio (aggregated proving and total stake
opportunity cost).

3.2 Node Decision Framework

Storage nodes make decisions to maximize their expected utility (measured in USD profit).

e Decision to Join File f: A node n not currently storing f considers joining if the
marginal impact on its total profit is positive. Let E[r(n,t | F,)] denote the node’s
total expected profit given its current file set F,. The node joins if:
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NPV({E[r(n,t+1i | F,J{f})] — E[r(n,t+1i | F,)]},d,h) >0 (17)

This marginal profit calculation captures:
» The additional storage rewards from file f
» The change in total stake opportunity cost due to increased k.., (n) and potential
change in Ay, (1)
» The change in expected proving costs due to increased Pany(n7 t)

» The physical storage cost for file f

For this decision, the node must forecast future values of:

» Exchange rates (§kor/usp» §grc/usp)
» Network replication levels (|Ny])

» Bitcoin fee rates (@)

» Network size and emission parameters

The analysis assumes nodes make rational forecasts based on current trends and
market conditions. The participant count is assumed to be |[N;| +1 (including the
joining node).

Decision to Sponsor Node for File f: An existing node n in N} decides whether
to sponsor an Entrant by posting a sponsorship offer on-chain. The sponsor specifies
commission rate v,,., duration Yguation, atd required bond f,.,4. The sponsor’s costs
are: (1) Bitcoin transaction fees to post the offer, and (2) bandwidth to transfer file
data after acceptance. The benefit is the NPV of the commission stream. The sponsor
is protected by the bond: if the entrant fails the first challenge, the bond compensates
the sponsor’s costs and the sponsorship voids.

Assuming the entrant receives valid data and proves successfully (the expected case),
the sponsor’s payoft is:

t+i )
NPV ({’Ymte : (EfW) }7 6’ 'Yduration) - Cl%f%c : §BTC/USD - ngr]?sfer (18)

If the entrant fails the first challenge (invalid data or operational failure), the sponsor
receives the bond: B4 - €xor JUSD — c%ﬁTeé -€p1C /USD — cggr?sfer. The sponsor sets Bynq

- offer USD
o cover costs: Byond - Ekor/usD = CBTC " €BTC/USD T Coranster-

This creates a competitive market for sponsorship. A cartel of existing nodes attempt-
ing to block entry (gatekeep) will be broken by the incentive for any single member
to defect and capture the commission. The bond-escrow mechanism prevents griefing
while maintaining trustless operation.

Decision to Leave File f: A node n currently storing f evaluates whether its total
profit would improve by leaving. The node compares:

» The immediate cost: leave fee @iey(f,t) - Ekor/usp

» The benefit: NPV of the improvement in total profit from leaving

The node leaves if:
NPV({E[r(n,t+i | F,\{f})] — Elr(n,t +i | F)]},0,h) > —Qieave(f, 1) - Ekor/ldd)

Note that the left side is typically negative (leaving reduces profit), so this condition
checks if the profit reduction is less than the leave fee. The node may also be subject

to a minimum profitability constraint leaving if its total profit falls below this

threshold and the above condition is met. Equivalently, with an explicit per-block
profit floor 7, (USD/block), a node leaves when E[n(n,t)] < . (or E[n(n,t)] <0

if m ., = 0) and the NPV condition above holds.

min

When |Ny| < nyp,, leaving is not permitted regardless of profitability.

min>’
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e Decision to Respond to Challenge: When node n is challenged for file f, it chooses
to generate a proof if the cost of proving is less than the total loss from being slashed.

Analysis: The true decision must account for the loss of all future revenue streams.
Being slashed removes the node from the agreement permanently, forfeiting future
rewards. Using a finite analysis horizon h and assuming parameters are roughly
constant over that horizon, a simplified estimate of this loss is given by 20:

NPV - h (et +1) - Ekoryusp
future =~ " |Nf‘ K (1 + 5)1

<5f(t) ~€‘KOR/USD Nf> 1 (15+ §)h

In reality, [Ny, £4(t), and €xor usp Will vary over time. The node must forecast these

(20)

~
~

changes when making its decision.

All terms in the inequalities below are expressed in USD (NPV); KOR flows are
converted at xor usp and BTC costs at {gre/usn-

The decision criterion is then given by 21:

cprct(t) - Eareyusp < Kg - Agash - Exoryusp + NP Ve (21)

3.3 Macroeconomic Stability

The protocol’s long-term stability relies on intrinsic market dynamics. With constant
emissions, stability emerges from the natural equilibrium-seeking behavior of rational nodes
responding to market signals.

o . - Per-Node KOR Rewards
Replication
A 7"stmrage

+

Fiat Profit + [ KOR/USD Price
Eln] | fKOR/USD

Figure 5: Intrinsic market equilibrium. The green loop is stabilizing: as replication

falls, per-node rewards increase hyperbolically (fixed emissions split among fewer nodes),

improving profitability and attracting new nodes. This equilibrium-seeking process operates
without protocol intervention.

The stabilizing negative feedback loop operates through market forces:
1. When replication falls (nodes exit), the fixed emissions are split among fewer remaining
nodes.
2. Per-node rewards increase, improving profitability for remaining nodes.

w

Higher profitability attracts new nodes, restoring replication toward equilibrium.
4. Conversely, when replication is high, per-node rewards are diluted, naturally discour-
aging over-replication.

External KOR price movements affect fiat profitability but do not trigger protocol-level
inflation responses that could cause death spirals. If KOR price falls:

o Fiat profitability decreases, causing marginal nodes to exit

e Replication may decline as acceptable graceful degradation
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e The protocol continues to function as long as n;, replication is maintained

min

¢ No inflation response amplifies the price decline

This design accepts variable replication in exchange for monetary stability.

3.4 Capital Cost Dominance

The protocol’s security model fundamentally relies on capital costs (staking and proving)
dominating physical storage costs. This economic asymmetry prevents various attacks where
nodes might attempt to collect rewards without actually storing data.

3.4.1 Stake Requirements

The per-node base stake for a file is determined by the emission weight and network scale.
This formula ensures that:
e Stake requirements scale proportionally with the file’s share of network emissions
e The logarithmic scaling in network size provides reasonable growth while preventing
excessive barriers
o Earlier files (lower rank) require higher stakes, reflecting their greater emission value

With typical parameters, the capital cost of staking significantly exceeds storage costs. For
example, at |F (t)| = 10° files, the annual opportunity cost of staking (~$0.05) exceeds the
physical storage cost (~$0.01 for 100MB) by 5x, ensuring that honest storage remains more
profitable than attempting to fake it.

3.4.2 Proving Costs and Aggregation

The protocol’s proof aggregation mechanism creates economies of scale that benefit legit-
imate operators while maintaining security. Nodes have a W, window (approximately
2 weeks) to submit proofs after being challenged, allowing them to aggregate multiple

challenges into a single Bitcoin transaction.

With a per-file challenge probability of p; = Ctgg'e‘ = % ~ 0.000228 per block, a node
storing |Z,| files expects approximately (E te ‘f\,—ff‘ x 2016 challenges over the 2-week

window. Under equal replication | NV;| = r for all f, this becomes |7, | x (pr) x 2016 ~ |7, | x
(%). By aggregating these into a single proof transaction, nodes pay Bitcoin fees only once
regardless of the number of challenges.
This aggregation opportunity:

e Makes proving costs negligible even for small operators

e Allows nodes to optimize fee payment timing based on Bitcoin network conditions

o Creates no disadvantage for honest nodes while maintaining security guarantees

e Reduces the risk of network congestion and high BTC proving fees

3.5 Failure Detection

The protocol’s challenge mechanism provides strong probabilistic guarantees for detecting
data loss, regardless of file size. By sampling a fixed number of sectors (s, = 100) from
each challenged file, the protocol ensures uniform security properties across all stored data.

3.5.1 Detection Probability Analysis

The key insight is that detection probability depends only on the fraction of missing data,
not the absolute file size. For a file missing fraction v of its sectors:

o Exact (hypergeometric, without replacement):
. Scha—1 (1 B l/) ! sf —i
P(detection | challenged) = 1 — II, — (22)
'Sf —

« Binomial approximation (valid when s; is large and s, < s):

41



P(detection | challenged) ~ 1 — (1 — v/)Sem (23)

For example, if a node deletes half of a file’s data (v = 0.5) and the protocol challenges just
two sectors (8. = 2), the approximate probability of detection is 1 — (1 — 0.5)2 = 75%.

Each file expects C,

targe
challenge rate ensures predictable security properties as the network scales.

. = 12 challenges per year, regardless of network size. This constant

Complete Loss Detection: For a completely missing file (100% data loss), the annual
detection probability follows a Poisson process:

Ijannual detection — 1- eic’mga =1- 6712 ~ 99.9994% (24)

Partial Loss Detection: For partial data loss, we combine the per-challenge detection
probability with the expected number of annual challenges. With v = 0.1 (10% data loss)
and sy, = 100, we first calculate the per-challenge detection probability:

P(detection | challenged) =1 — (1 —0.1)!% =1 —0.9'% ~ 0.99997 (25)
The annual detection probability is:

— —Careet - P(detection | challenged) —12x0.99997
Rannual detection — 1 — e e ( ! o) ~ 1—e ~ 99.9994% (26)

With a high number of challenged sectors, the detection probability for even 10% data loss
is so high that the annual detection rate is difficult to distinguish from that of complete
data loss. The protocol assumes files are erasure-coded such that all data can be recovered
from this level of degradation.

Beyond this threshold, data loss is detected with near-certain probability. With s, = 100,
storing only 90% of the data (at the erasure coding threshold) results in 99.997% detection
probability per challenge, implying an expected time before detection of approximately
10.0 months:

1
E[blocks to detection] = (27)
‘Pchal(|Nf|7 t) ) [1 - (1 - V)SCMI]
For typical values with |N;| = 10, p; = 0.000228, and v = 0.1:
Eblocks to detection] ~ ! ~ 43,860 blocks ~ (43 860 560) x 12 ~ 10.0(28)nths
7 0.0000228 - 0.99997 T\ 527 A

4 Security Analysis

4.1 Protocol Security

4.1.1 System Invariants

The protocol maintains the following invariants that must hold at all times:

1. Conservation of KOR: The total KOR in the system changes according to emissions
and burns. At any block ¢:

Z (bn + kn) + KORother(t) = KORtotal(t) (29)
nenN

where:
* 2, cn(bn + k) represents all KOR held by storage nodes (balances + stakes)
e KOR,, (t) represents KOR held by users, protocol treasury, exchanges, and
other entities outside the storage node ecosystem
o KOR,,(t) represents the net circulating supply at block ¢, which evolves
according to:
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13
KORtotal(t) = KORinitial + Z(E(Z) - (I)bumed(i)) (30)

=1

Let:
e F

C

ceated (£) De the set of files created in block ¢

o S(t) be the set of slashing events (failed challenges) in block ¢, where each event
s € S(t) involves a node storing file f,

o L(t) be the set of leave events in block ¢, where each event [ € L(t) involves a
node leaving file f;

The burns in block ¢ are:

éburned(t) = Z Uy + Z leash ' kfS ' )‘slash + Z Qoleave(fht) (31)

F€F eatea(t) s€S(t) leL(t)

The cumulative burns through block t are:
t
¢lg(litrarhlled(t) = Z (I)burned(i) (32)
i=0

where @, ,...4(0) = 0 at genesis.
. Non-negative Balances: For all nodes n € N:
b, >0 (33)
If any operation would result in b,, < 0, the operation fails.
. Bidirectional Consistency: For all nodes n € N and files f € F:
fed, enenN; (34)

. Positive Parameters: All protocol parameters must be positive where specified:

o >0 (35)
Cotake > 0 (36)
0<4 (37)

0 <ppy <1 (38)
Npin > 1 (39)
Astash > 0 (40)

. Stake Sufficiency: All nodes must maintain a total stake greater than or equal to
their total required stake.

V€N ik, > ke (n) (41)
The protocol programmatically prevents withdrawals that would violate this invariant.

If a node’s stake becomes insufficient (e.g., after the node is slashed), the automated
removal algorithm is triggered to restore sufficiency.

. Staked KOR Bound: The total staked KOR across all nodes is always less than or
equal to the total KOR supply:

Z kn < KORtotal(t) (42)
neN

This invariant ensures that stake requirements cannot exceed the available KOR
supply.
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4.2 Economic Security

This section analyzes potential attack vectors against the protocol’s economic mechanisms,
their profitability, and mitigation strategies.

4.2.1 Attacks on Storage Provision

These attacks involve storage nodes failing to meet their obligations, either to increase profit
or to save costs.

4.2.1.1 Selective Storage Attack

A malicious node attempts to maximize profit by storing only a fraction of the file data,
gambling that the randomly selected challenge sectors will be among those it has retained.

Risk-Reward Analysis: The attacker must weigh the marginal storage cost savings against
the risk of detection and total loss. For a node storing fraction (1 — v) of file f:
USD

Savings per block: v - cgo..(f,t) (only the marginal storage cost)

Risk per block: Pchal(‘NfL t) L= (1 —w)sam]. [kf “ Adlash * §koryusp + NPVfuture]

where:
o Pra(IVelt) = ;Tff\ is the probability of being challenged
e [1—(1—w)®%m] is the probability of detection if challenged
o The loss includes both the slashed stake and all future rewards (NPV), as defined
in Eq. 20.

Files are assumed to be erasure-coded to tolerate up to 10% data loss. However, nodes that
allow data to degrade to this threshold face near-certain detection. With s.,; = 100, storing
only 90% of the data results in 99.997% detection probability per challenge. The expected

time to detection is approximately 10.0 months for typical values.

The attacker loses all future rewards upon detection, making the NPV of the attack negative
even with high discount rates.

4.2.1.2 Collusion Attack

Multiple nodes (k of n total) storing a file coordinate to have one member fail a challenge,
aiming to profit from the redistributed stake.

Analysis: Let n = | V| and let the colluding subset have size k. One colluder n intentionally
fails a challenge.

o Slashed amount: S = kj - Ag,q, is deducted from n,.

o Burn: Sy 1ca = Baash - S is burned.

o Redistribution: S,4;st = (1 — Byaen) - S is split equally among the (n — 1) remaining
nodes.

The colluding group’s net change is: AKOR gpgers = =5 + (53 - Speqir = =S + (£2) -
(1 - leash) )
k=1

Profitability would require (£%)- (1 — By,q,) > 1, which is impossible since each factor is
< 1. Hence, this collusion is strictly unprofitable.

4.2.1.3 Disk-Sharing Attack

An attacker creates multiple Sybil node identities but stores only a single physical copy of
the data, aiming to collect multiple rewards for a single storage cost while undermining the
protocol’s data replication guarantees.

Analysis: Consider an attacker creating n,,; identities to store the same file f. The

attacker’s costs are:

US

+ Physical storage: ci{shg.(f,t) (only one copy needed)
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* Stake opportunity cost: ng.y - Ky - Exoryusp + 9 (full stake per identity)

Pt (V7] £) - cpasi() - €royusp (each identity may be

» Expected proving costs: n oroof

sybil *
challenged)
The attacker’s revenue is ng  Tsorage (70 f5 ) - €korjusp- At the margin (adding one more
identity), the change is approximately:
. Ef(t) : §KOR/USD ) ‘Nf|
~ 2
(V] + 7o)

— kg0 Ekorjusp (43)

As | Ny| or —1 ___ while the second term is constant,
(INV5] +ngyn)

so beyond a small scale the attack is unprofitable even when saving on ¢

sybil 8TOW, the first term shrinks as
storage*

Mitigation: Capital costs dominate storage costs, making the attack unprofitable.

4.2.2 Attacks on Market Mechanics

These attacks exploit the protocol’s economic rules to manipulate outcomes or gain an unfair
advantage.

4.2.2.1 Sybil Attack (Risk Compartmentalization)

An attacker creates multiple node identities to limit their downside risk from correlated
failures.

Analysis: The protocol defends against this by making portfolio splitting more capital-
intensive. The dynamic stake factor, Ay e =1+ m(zﬁ%v imposes a capital premium on
nodes with fewer files.

Example with Ay, = 30.0 and an operator with a 100,000-file portfolio:

Node Profile Files |7,| | Stake Factor (Ay,..) | Required Stake (k)
Sybil Node 1 28.30x 28.30 KOR

Small Node 10 13.56x 135.6 KOR

Large Consolidated Node 100,000 3.60x 360,000 KOR

To run the portfolio as 100,000 individual Sybil nodes would require 2,830,000 KOR vs
360,000 KOR for a single entity—a ~7.9x capital increase, rendering large-scale compart-
mentalization attacks economically irrational.

4.2.2.2 Sybil-Based Reward Amplification

An attacker introduces a Sybil identity to collect an additional share of a file’s rewards.

A
In

Analysis: Let |[V;| be nodes before the Sybil joins, and Ag =1+
for a single-file Sybil node.

E"‘g‘)‘ be the stake factor
areinal cain i ards g0 A — [Nyl 1
The marginal gain in KOR rewards is: Ar = g4(t) - (CAIEAES)
IC
The marginal cost (opportunity cost) is: Gy xor = k7 - Ag - 0

The attack is unprofitable when Ar < G xor, Which requires:

Ayaey > In(3) - ((@) - 1) (44)

. . . Nyl -1
where 7, = Efkif is the emission-to-stake ratio and G, = 0 Ny

(ERIEAED] is the geometry factor.

Numerical Example: With Ay, = 30 and typical parameters (6 ~ 0.0000034, |N;| = 10),
the marginal gain (~155.7 KOR /block) is less than the marginal cost (~210.4 KOR/block),
demonstrating sufficient security margin.
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4.2.2.3 Crowding-Out Attack

An attacker creates Sybil nodes to dilute honest nodes’ rewards and force them to exit.

stake Where Ay &~ 28.30 for single-file nodes.

Analysis: Each Sybil node requires stake kg - A
As the number of Sybil nodes k increases, per-node reward & fn%rk approaches zero while costs
remain constant. The attack becomes increasingly unprofitable with scale. Honest nodes can
simply wait—as the attacker bleeds capital, they will eventually exit.

4.2.2.4 Coordinated Departure Attack

Multiple colluding nodes coordinate to leave simultaneously, attempting to drive replication
below n,.

Analysis: The leave fee increases quadratically as replication approaches n

min *

n

2
@leave(fat) = kf : <|JI\I};H) (45)

=3, k; = 100 KOR, sequential departures cost 36, 56.25, and 100 KOR
(total: 192.25 KOR). The rapidly escalating costs and the hyperbolically increasing rewards

For n =5, ny,

for remaining nodes create strong disincentives.
4.2.2.5 Wash-Trading Attack

An attacker stores their own data through nodes they control to farm rewards.

Analysis: To store a file, the attacker pays a one-time fee vy which is entirely burned.
The attack is profitable only if the NPV of future rewards exceeds this upfront cost. The
profitability condition:

1—(1+9)~" F (teres
(g(tcreate) : (;—)) > Xfee * Cstake * hl(l + |;—~C7re&t8)|) (46)

scale
Setting X appropriately ensures wash-trading remains unprofitable.

4.2.2.6 File Size Manipulation Attacks

Small File Attack (Spam): Creating many tiny files to dilute rewards. The cost-to-
influence ratio is constant regardless of file size (both cost and emissions scale with In(size)),
providing no leverage. A minimum file size s,;, further mitigates spam.

Large File Attack: Creating massive files to capture disproportionate emissions. Both cost
and emissions scale identically with In(size), eliminating size-based leverage.

4.2.2.7 Data Gatekeeping Attack

A cartel of existing nodes refuses to share file data with newcomers to maintain a monopoly.

Mitigation: The protocol’s sponsorship mechanism creates a competitive market that
breaks cartels. Any cartel member has strong incentive to defect and capture sponsorship
commissions. In equilibrium:
USD
6 (IVe |+ 1)

,qu ( D) ~ Ctransfer

e4(t) - €koryusp - (1 — (1 +0)7P) 47

For typical parameters, equilibrium commission rates are approximately 15%, making
defection profitable.

4.2.3 Systemic Risks

4.2.3.1 Replication Collapse

If KOR price falls sufficiently, nodes may exit en masse, leaving files under-replicated.

46



Analysis: This is an accepted risk, not a bug. The protocol tolerates reduced redundancy
when profitability falls. Files remain available as long as at least n g, nodes store them. The

2
quadratic leave fee (jeye = Ky - (‘75{;}"‘) ) makes exits increasingly expensive as replication

approaches the minimum, creating a natural floor.

Residual risk: If KOR becomes worthless, the system fails. This is inherent to all cryptoe-
conomic systems—there is no protocol-level mitigation for complete token collapse.

5 Appendix

5.1 Parameter Selection

This section specifies the consensus-critical parameters that all conforming implementations
must use to ensure network-wide consistency. The Kontor-Crypto reference implementation
accepts many of these as configurable parameters for testing purposes, but production
deployments must use the values specified here.

5.1.1 File Preparation Parameters

Symbol and Erasure Coding Parameters:
o Symbol size: 31 bytes (Pallas field element constraint)
o Data symbols per codeword: 231
o Parity symbols per codeword: 24 (10% overhead)
o Total symbols per codeword: 255 (GF(278) maximum)

Derived formulas:

bytes
o
— |3
* Ngymbols = | 37 | - data symbols from file
nﬁ‘ mbols
* TNgodewords — [ Yo -‘ - RS codewords needed

* Notal = Meodewords X 200 - total symbols including parity

Rationale: The 31-byte symbol size enables direct encoding to Pallas field elements (255
bits) with no hashing, ensuring proof-of-retrievability. Multi-codeword structure handles
arbitrary file sizes within the GF(278) symbol limit. Each codeword provides independent
fault tolerance with graceful degradation for large files.

Representative configurations for various file sizes:

File Size | ny,p0s | Codewords Thotal d | Cive
10 KB 323 2 510 9 [ 900
100 KB 3,226 14 3,570 12 | 1,200
1 MB 33,826 147 37,485 | 16 [ 1,600
10 MB 338,251 1,465 373,815 | 19 | 1,900
100 MB 3,382,504 14,643 3,733,965 | 22 | 2,200

Table 1: Representative configurations with 31-byte symbols and multi-codeword Reed-

Solomon over GF(278). Each codeword encodes 231 data symbols with 24 parity symbols

(255 total). IVC cost is Gy = 100 x d. Tree depth scales logarithmically with total symbols
(including parity from all codewords).

Field Element Encoding:
o 7 =31 - Symbol size in bytes (equals field element size)

Rationale: Maximum safe encoding size for the 255-bit Pallas scalar field, ensuring all 31-
byte symbols map to valid field elements without overflow.
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5.1.2 Challenge Parameters

Challenge Frequency:
o Ciarget = 12 - Target annual challenges per file

e B =152 560 - Expected Bitcoin blocks per year

« Derived: p; = S22 ~ 0.000228 per block

Rationale: 12 annual challenges provide strong security guarantees (>99.99% annual
detection of complete data loss) while keeping proving costs manageable. See the Failure
Detection section for detection probability analysis.

Challenge Sampling:
e S = 100 - Symbols sampled per challenge
o Actual: sy, = min(Sg,;, Niotay) for small files

Rationale: 100 symbols provides >99.99% detection probability for 10% data loss while
capping proving costs. Files smaller than 100 symbols are fully challenged.

Proof Window:
o W .or = 2016 - Blocks to respond to challenge (approximately 2 weeks)

Proo
Rationale: Two-week window allows nodes to aggregate multiple challenges into single
proofs, minimizing Bitcoin transaction fees. Also provides operational buffer for node main-
tenance and network issues.

5.1.3 Sponsorship Parameters

Offer Expiration:
« W,

" tter - Blocks before sponsorship offer expires (recommended: 144 blocks = 1 day)

Rationale: Short expiration limits entrant waiting time if sponsor ghosts while giving
reasonable time for data transfer completion.

Bond Amount:

) £ USD
+ Recommended: By,,q * Ekor/usp = BTG * €BTC/USD T Coraster
o Typical: By,nq ~ 3 KOR (covers ~$0.60 in sponsor costs)

Rationale: Bond must fully compensate sponsor for Bitcoin fees and bandwidth costs to
prevent profitable griefing attacks. See Security Analysis for attack cost analysis.

5.1.4 File Size Constraints

Limits:
e Spin = 10 KB - Minimum file size
e s = 100 MB - Maximum file size

max

Rationale: Minimum prevents spam and ensures reasonable proving costs relative to storage
value. Maximum is determined by practical constraints (tree depth, memory requirements,
proving time) rather than fundamental protocol limitations. With 31-byte sectors, a 100 MB
file requires depth 22, which remains practical for proof generation and verification.

5.1.5 Domain Separation

Tag Strings: All domain tags must use these exact context strings:
e “KONTOR:CHALLENGE_ID::v1” - for challenge ID computation
e “KONTOR::CHALLENGE::v1” - for challenge index derivation
¢ “KONTOR:CHALLENGE_PER_FILE::v1” - for multi-file mixing
e “KONTOR:NODE::v1” - for internal Merkle nodes
e “KONTOR::LEAF::v1” - for leaf hashing
o “KONTOR::RC::v1” - for root commitments
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Rationale: Domain separation prevents cross-context hash collisions and makes protocol

upgrades explicit through version suffixes. All implementations must use identical tag strings

to ensure consensus.

For cryptographic primitive definitions and related work, see the Kontor Proof-of-Retriev-
ability.[3]

6.
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