LaTeX Copilot

Our Background

Graduates and students of WUT

Majoring in Computer Science

 Experience with Data Science and WebDev

Members of Golem Al Association

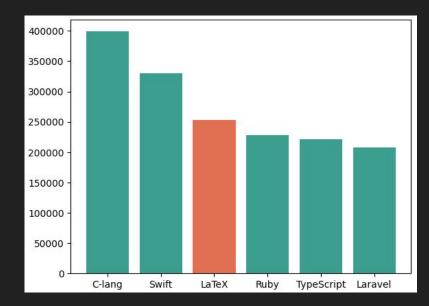
GOLEM

\Varsaw University

of Technology

Problem

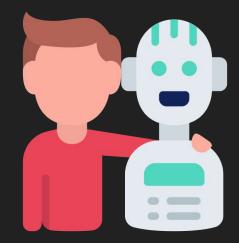
Researchers and engineers struggle with writing LaTeX documents.



Importance of LaTeX

On StackExchange, there is 252,687 questions about LaTeX.

This would make it **33rd most popular** topic on StackOverflow!


How to make writing LaTeX documents easier?

Our solution

Github-Copilot but for LaTeX documents.

What value do we bring to the users?

- 55% faster writing.
- Lower barrier of entry for writing LaTeX documents.
- Enhance the writing experience by automating tedious and boring tasks.

How many users to expect

- GitHub Copilot has 1.2 million users (4.3% of all programmers)
- 12 million users of Overleaf
- 4.3% * 12 million = 516,000

Technologies used

- StableCode-Completion Model
- Transformers library
- Gradio for demo app
- accelerate, bitsandbytes, scipy for training

LaTeX text

\section{Topological f\/ield theories and related algebras}\label{s2}

\subsection{Closed topological f\/ield theories} The simplest variant of topological f\/ield theory is closed topological f\/ield theory (\cite{At, D2}, see-\cite{K} for more references). In this case we consider oriented closed surfaces without boundary. Also we f\/ix a f\/inite-dimensional vector space \$A\$ over a f\/ield \$\mathbb{K}\$ with basis \$\alpha_1, \dots, \alpha_N\$ and associate a-number \$\clc a_1,a_2, \dots, a_n \rc_{\Omega}\$ to each system of vectors \$a_1,a_2, \dots, a_n \in A\$ situated at a set of points \$p_1,p_2, \dots, p_\$ on a surface \$\Omega\$ (Fig.-\ref{f1}).

%\epsfxsize=7truecm \begin{

Clear

Submit

output

\section{Topological f\/ield theories and related algebras}\label{s2}

\subsection{Closed topological f\/ield theories} The simplest variant of topological f\/ield theory is closed topological f\/ield theory (\cite{At, D2}, see-\cite{K} for more references). In this case we consider oriented closed surfaces without boundary. Also we f\/ix a f\/inite-dimensional vector space \$A\$ over a f\/ield \$\mathbb{K}\$ with basis \$\alpha_1, \dots, \alpha_N\$ and associate a-number \$\ca_1,a_2,\dots,a_n \rc_{\Omega}\$ to each system of vectors \$a_1,a_2,\dots,a_n \in A\$ situated at a set of points \$p_1,p_2,\dots,p_n\$ on a surface \$\Omega\$ (Fig.-\ref{f1}).

%\epsfxsize=7truecm \begin{figure}[h] \centering \includegraphics

Flag

Business Model

• Pay-as-you-go

Next steps

- Implementing our solution as a browser extension for Overleaf.
- Fine-tuning the model on custom LaTeX dataset (5.6 TB of scientific papers available on ArXiv).
- Model distillation and pruning for faster and cheaper model.
- Fasttrack for implementing users feedback.

Thanks for your attention!

