
EthiSecure.AI : Keeping AI Chats 
Secure and Ethical 

Team : F16Falcon Anannyo Dey     Debasmit Roy    Kabir Raj Singh     Aditya Ganguly



Recent events related to Generative AI



Approach
● Usage of MS Azure CosmosDB for storing user info and violations

● Implementation of multithreading in Flask for increased scalability

● Integration of LRU cache to bypass the processing overhead for similar queries, 
thereby reducing latency

● Development of LLM-powered Rule keyword extractor for creating Rule 
Knowledge graph (KG) from PDFs uploaded by admin for complex RAG.               
It can be seen as an alternative of expensive fine-tuning.

● Azure Blob storage to store Admin’s Rule PDFs and neo4j to store the KG.

● Semantic router to retrieve relevant subgraphs based on user queries/LLM 
responses, followed by a query pipeline to identify violations (if any).

● User authentication using Clerk integrated with Azure CosmosDB.

● Deployment of entire solution on Vercel (frontend) and 

Pythonanywhere (backend) and MS Azure (database and storage)



Features

● Periodically updated Rule Knowledge graph, whenever admin uploads new PDFs 

● Display of rule violations and reasons levels on admin dashboard

● Assignment of Risk score based on number of violations and its risk levels

● User behaviour pattern analysis : Category wise Rule Violation Count per 
day/week

● MS Azure integration performed utilizing Cosmos DB containers and Blob storage



Flask Backend 

Backend architecture



High Level Design AI Backend

Rule Registration Pipeline Query Processing Pipeline



Rule Registration Pipeline

1. The admin sends PDFs containing Rule to the system, which is stored on Azure 
CosmosDB then passed to the Llama Index document reader to extract the text.

2. The entire PDF text is decomposed into multiple contexts, which are then further 
broken down into more atomic components. Utilizing the Llama Index powered 
agentic reasoning pipeline, we identify and decompose relevant contexts until no 
additional rules can be extracted.

3. Similar rule phrases are grouped to form a knowledge graph, delineating the 
hierarchical relations among several rules. This will be further used to parse 
complex RAG queries. Risk levels are assigned for each terminal nodes as mentioned 
in the pdf document. Knowledge graph is stored in neo4j graph-db.

4. External knowledge source also integrated to check rules related to recent topics. 
5. The admin can also modify the AI generated tree structure from Admin dashboard if 

necessary, by adding, deleting or editing items



Detailed Rule 
Registration Pipeline



Query Processing Pipeline

1. Firstly, user query is degenerated into subqueries using Llama Index JSON Query Engine. 
2. These subqueries are then routed to the existing knowledge graph through a semantic 

router, using text-embedding-ada-002 for semantic similarity calculation. Subsequently, 
all relevant paths in the form of subgraphs are retrieved.

3. The subqueries along with the relevant subgraph are ingested into a LlamIndex Query 
Pipeline where three sequential LLM engines operates:

i. Context Validation Check Engine validates whether subqueries and  subgraph belong to a same 
contexts 

ii. Rule Violation Check Engine then check whether the subqueries violate any rule from subgraph
iii. Reasoning Engine simultaneously states the reason for violation if any for each subquery.   

4. All possible violations are listed along with calculated risk count. These are stored on MS 
Azure CosmosDB containers.

5. Queries are cached as vector embeddings in Qdrant Vector DB along with the response to 
reduce the processing overhead of very similar queries.  



Detailed Query 
Processing 
Pipeline



Risk Scoring Algorithm

Mitigating risky ChatGPT response

We assign risk scores to every violation in the form of user query and LLM response. This is 
based on risk level categorization of the EU AI act - Critical, High, Medium & Minimal, 
where each level has a defined score and based on the number and nature of violations in 
the query/response we calculate the Risk score. We show risk levels and their categories in 
the admin analytics panel. Risk thresholding is performed on the scores calculated.



Analysis and Visualization 
1. All violations for each user query are 

stored in Azure Cosmos DB 
2. These data are displayed on Admin 

Dashboard, in form of charts-
a. Line and Bar charts: No. of 

violations within custom 
time-frame for each risk level

b. Stacked Chart: Compare no. of 
Rule violations per high-level 
category between 2 dates

c. Pie chart: Compares % of 
violations and safe queries

d. User-wise violation analytics: 
Top5 violations per user       



Challenges and Solution

1. LLM Hallucination: We mitigate this by using low temperature LLMs and 
in-context RAG based search in our Rule parse tree (Knowledge Graph, KG). As we 
fragment the query into smaller phrases and then pass it through the router, we 
can avoid dependency on high-temperature language model (LLM).

2. Improving explainability: Parsing user queries and LLM responses using Rule parse 
tree KG and semantic router makes it explainable both to the admin and end user, 
as to exactly which violations have occurred and their severity levels.

3. Improving scalability: We support multiple users and LLM sessions simultaneously 
using multithreading. Admin has the privilege  to add more rule nodes to the KG 
making it more scalable.

4. Reducing latency: We have taken several measure like using LRU cache, mitigating 
the usage of high temperature LLM etc. to reduce the response time and make the 
entire process real-time, even while handling multiple clients.



Tech Stack

Models 1. LLM Model: Falcon-180b-chat (Temperature 0.0)

2. Dense Embedding Model : openai/text-embedding-ada-002

Future Scopes: 
1. Integration of GPT4 models which can analyze 

multimodal queries for potential risks. 

2. To safeguard responses based on publicly available 
code of conduct beyond the provided rulebooks.



Thank You

Link : https://ethicheck-ai-lemon.vercel.app/
Code: https://github.com/orgs/falcon-proj/repositories

https://ethicheck-ai-lemon.vercel.app/
https://github.com/orgs/falcon-proj/repositories

