Hackathon: Edge Runners 3.2

EdgeAl Vision:

Intelligent Image-Based Fault Detection and Diagnosis

Muhammad Shahid

Problem Overview

- Infrastructure damage and faults (cables, wires, switches) often go unnoticed until failure.
- Manual inspection can be inefficient, timeconsuming, and prone to human error.
- There's a need for a more automated, real-time, and precise detection mechanism, especially in edge environments.

Project Introduction

- Leverages Llama 3.2 90B Vision Instruct Turbo for real-time image analysis.
- Detects infrastructure issues (wires, switches, cables) in uploaded images.
- Provides an introduction to the issue, causes, and actionable recommendations for repair.
- Combines powerful edge AI processing with network-enhanced features for greater accuracy.

Features & Functionality

- Real-time Fault Detection: Automatically identifies problems in images.
- **Detailed Analysis:** Highlights specific components (e.g., cables, wires, switches) with issues.
- Problem Diagnosis: Provides root causes and possible impacts.
- Solution Recommendations: Suggests materials and steps to solve the problem.
- Enhanced Accuracy: Uses powerful AI models for precise fault localization.

Technology Stack

- Llama 3.2 90B Vision Instruct Turbo: For high-level analysis and problem detection in images.
- Python & Streamlit: Web interface for user interaction and image upload.
- OpenCV: For image processing and highlighting problem areas.
- **Together.Al API:** For connecting the Al models and handling real-time image inputs.

Impact & Future Scope

Impact:

- Helps improve infrastructure reliability.
- Reduces downtime and repair costs.
- Accelerates troubleshooting in underserved areas.

Future Enhancements:

- Support for larger datasets for training.
- Integration with IoT devices for live monitoring.
- Expanding model capabilities to analyze videos in real-time.

