

•Objective:

- To design a network infrastructure for schools using geospatial and meteorological data.
- To estimate costs and recommend sustainable solutions.

•Why This Matters:

- Ensures reliable connectivity for digital learning.
- Optimizes infrastructure planning based on local conditions.

METHODOLOGY

•Data Sources:

- **Geospatial Data**: Population density, elevation, and administrative boundaries.
- Meteorological Data: Cloud cover, wind speed, and precipitation.

•Tools Used:

- Google Earth Engine (for geospatial analysis).
- OpenCage Geocoder (for converting pincode to coordinates).
- LangChain (for generating recommendations using LLM).

•Workflow:

- Convert pincode to latitude and longitude.
- Analyze geospatial and meteorological data.
- Generate infrastructure recommendations using LLM.
- Estimate costs and save results in a PDF.

KEY FEATURES

•Geospatial Analysis:

- Population density to estimate school size.
- Elevation and precipitation for infrastructure planning.

•Meteorological Analysis:

- Cloud cover for solar power potential.
- Wind speed for wind power potential.

•Cost Estimation:

- Devices, tablets, and renewable energy solutions.
- Budget-friendly recommendations.

RESULT EXAMPLE

•Example Output:

• **Devices Needed**: Wi-Fi access points, network server, tablets, solar power system.

School Size: 100 students (based on population density).

Cost Breakdown:

• Wi-Fi access points: \$5,000

• Tablets: \$20,000

• Solar power system: \$10,000

• **Total Cost**: \$38,500

•Approach Explanation:

- Hybrid power solution (solar + grid) for reliability.
- One tablet per student for digital learning.

POSSIBLE COST SAVING SUGGESTIONS

•Refurbished Devices:

• Save up to 30% on tablets and other hardware.

•Open-Source Software:

Reduce licensing fees for network management.

•Energy-Efficient Devices:

Lower electricity costs with energy-efficient Wi-Fi access points.

•Bulk Purchasing:

Avail discounts by purchasing devices in bulk.

ADDITIONAL CONSIDEATIONS

•Sustainability:

- Use solar power to reduce reliance on the grid.
- Ensure scalability for future growth.

•Reliability:

• Account for high cloud cover with backup power solutions.

•Future-Proofing:

• Use cloud-based storage to reduce the need for physical servers.