24.01-26.01.2025

SYNTHAPSE

Al-Driven Tools for Optimizing Decentralized Network Performance

Organised by:

Technology Provider:

Malik Zubair

Hamna Dawood

Piotr Żak

lab lab ai

Analysis

```
# Connect provinces (example connections, modify as needed for real representation)
province_connections = [
    ("Arun", "Janakpur"),
    ("Janakpur", "Kathmandu"),
    ("Kathmandu", "Gandaki"),
    ("Gandaki", "Kapilavastu"),
    ("Kapilavastu", "Karnali"),
    ("Karnali", "Mahakali"),
    ("Mahakali", "Arun")
]
```

7 Provinces Simulation

Data Distribution Agent.

Start by 1 000 GB per province (then it be separable via 5 points inner province)

- Al Agent on global level (to manage the macro scale (province)
- Al Agent on province level (to manage the micro scale (within 5 province point)

- 1. Gather the data
- 2. Analyse the data.
 - k shivkumarganesh Visualization of Starlink-Satellites-Launched Data
 - k melissamonfared Mobile Price Prediction EDA & Classification

Internet Price:

• k carriech World Internet Price-Data Visualization

Geospatial data:

• k tumpanjawat @Internet Use : Geo
☐ Cluster ☐ Time Series ⑥

Internet Speed:

• https://www.kaggle.com/discussions/general/219630

Geo Internet Use:

- https://www.kaggle.com/code/tumpanjawat/internet-use-geo-cluster-time-series/notebook
- https://www.kaggle.com/code/aminawasiq/introduction-to-geospatial-data

Analysis

Key numbers

- 217 nodes (in 3 level hierarchy) (in network)
- **1\$** -> **137,93** NPR
- 250 Mbps -> 1 Month 1,450 NPR, 3 Month 3,600 NPR, 12 Month 12,600 NPR
- 300 Mbps -> 1 Month 1,550 NPR, 3 Month 3,600 NPR, 12 Month 13,800 NPR
- 10,000 locations throughout Nepal. Currently, there are over 14,000 of these Wi-Fi hotspots across Nepal.

Technology

Key Features:

- •Swarm Intelligence in ISP & SNP
- Automated traffic
- Predictive maintenance
- •Real time monitoring

Tools:

- NetworkX
- •GNN
- Kafka
- Prometheus + Grafana

GNN (Generational Neural Network)

For GNN there is need collecting history data per node in the **features**:

- mb_data_usage_last_quarter (1-15min)
- mb_data_usage_last_two_quarter (15-30min)
- mb_datA_usage_last_three_quarter (30-45min)

Prediction label is: Predicted Data Usage for Next Quarter (15min) (MB)

Time Series

The another approach was to predict next 24h of usage in Google Colab with Sarima.

This data was concentrated in diagram within one province (Arun)

```
# node_name,
# data_usage (MB),
# bandwidth,
# latency,
# neighbors
nodes_data = [
    ("Arun", 120, 50, 10, 7),
    ("A1", 70, 30, 7, 6),
    ("A1_Point1", 20, 20, 5, 1),
    ("A1_Point2", 20, 20, 5, 1),
    ("A1_Point3", 20, 20, 5, 1),
    ("A1_Point4", 20, 20, 5, 1),
    ("A1_Point5", 20, 20, 5, 1)
```


Monitoring (Kafka + Prometheus + Grafana)

Real time communication between Nodes

