
&

Resource Allocation Tool for
Procurement

Predictive Network
Maintenance System 



Implement systems for efficient
bandwidth allocation and usage.

Intelligent Bandwidth
Management

01 03

02 04

Optimize power consumption for
network infrastructure.

Leverage renewable energy
sources and smart load balancing.

Build an ML-powered tool for cost-
effective equipment procurement.
Ensure quality and sustainability in

recommendations.AI Monitoring &
Prediction

Energy Optimization for
Off-Grid Schools

Transparent Procurement
Optimization

Develop AI algorithms to
monitor network

performance.
Predict potential outages

and hardware failures.

Efficient Network Management
System



ARCHITECTURE
OVERVIEW

Network performance logs, bandwidth usage statistics,
hardware life cycle data, and energy metrics. Ingestion.

Data Types: APIs for real-time data streaming from
devices and external APIs for

procurement pricing. AI and ML Model
Layer.

Tools:



Predictive
Maintenance

Model:

Uses historical and real-time
performance data to predict

failures, optimize repairs, and
suggest preemptive actions. 

Utilize anomaly detection,
time-series forecasting, and

supervised learning.
Predict failures to enhance

network reliability.

Algorithims:



-Combines outputs from all ML models to
generate actionable recommendations.

-Executes priority-based actions, e.g., throttling
bandwidth or triggering maintenance alerts.

-Provides a centralized platform for monitoring
and managing recommendations and actions

-Prioritizes educational content over
non-essential services.

-Classifies network traffic using deep
learning techniques.

-Provide market data to inform
procurement decisions.

-Track network and energy
performance in real-time.

Processing and
Decision Engine

Intelligent
Bandwidth

Allocation Model
Data Collection



Data Processing
Analyze collected data to

predict outages.
Optimize purchasing

decisions.
Manage and reduce energy

consumption.

Decision-Making
-Intelligently allocates
bandwidth for efficient

usage.
-Recommends optimal

procurement strategies.
-Engine prioritizes critical

maintenance tasks.

Action Execution
Throttles non-educational

bandwidth.
Triggers maintenance tickets

when needed.
Switches to backup power for

energy management.



User Interface

-Stakeholders monitor
the system status in

real-time.
-Allow stakeholders to
take manual control if

necessary.

Programming
Languages Databases

Simulate
Data

Python for AI/ML
models.

TypeScript and ReactJS
for front-end UI.

TensorFlow and PyTorch
for machine learning and
AI model development.

Azure and AWS for cloud
infrastructure and

deployment.

PostgreSQL for
procurement and
performance data

storage.
MariaDB/InfluxDB for

additional data
management needs.

-Generate synthetic datasets for network usage,
performance, equipment availability, costs, and

solar energy generation.
Create AI models for each identified problem.

Train predictive maintenance models on
network logs.

Build a recommendation system for
procurement.



-Contains configuration settings for the system, such as
API keys, database details, and other global variables.
-Lists the required libraries and dependencies for

development and deployment environments.
-Contains system configuration settings like API keys,

database details, and other global variables.

-Provides tools for generating and simulating test data.
-Includes sample data for testing or demonstration

purposes.

-Implements algorithms to predict and prevent network
failures.

-Optimizes procurement processes and resource
allocation for cost efficiency.

-Manages energy efficiency and consumption models for
sustainable operations.

-Handles bandwidth management and allocation
algorithms for efficient usage.



-Oversees and manages
network operations and

processes.
-Provides recommendations
for procurement based on AI

model predictions.
-Manages energy-related
operations and integrates

energy models.
-Allocates and optimizes
bandwidth resources for

efficient performance.

-Contains code for establishing
database connections and

initializing tables.
-Defines database schemas and

their relationships for structured
data storage.

Tracks application
events, errors, and
aids in debugging.
Provides general

utility functions used
throughout the

system for efficiency.



ENHANCEMENTS AND
SUGGESTIONS

Add a README.md at the
root level to guide users
on setting up and using

the tool.
Ensure all scripts and

functions include
detailed docstrings.

Create a tests/
directory to house

unit and integration
tests.

Utilize a testing
framework such as
Pytest or Unittest.

Maintain a CHANGELOG.md file
to log updates and new

features.
Use an .env file to manage

sensitive configurations (e.g.,
API keys, database credentials)

and load them with libraries
like python-decouple or

dotenv.



Containerization
Add a Docker

file and
docker-

compose.yml
for seamless

containerized
deployment.

Logging
Improvements

Enhance logger.py to include
multiple log levels (e.g.,

DEBUG, INFO, WARNING,
ERROR).

Implement log rotation to
archive old logs automatically.

-Directory structure ensures
modularity, scalability, and

maintainability for the system.
-Suggested enhancements improve

usability, robustness, and deployment
readiness.


