

•Objective:

• Develop an intelligent multi-agent framework for real-time decision-making and collaboration.

Why This Matters:

- •Al-driven multi-agent system for autonomous space missions.
- •Enables seamless coordination between spacecraft, lander, and rover.
- •Enhances efficiency and adaptability in space exploration.

Problem Statement

- •Space missions require intelligent decision-making in real-time.
- •Current systems lack adaptive inter-agent communication.
- •Autonomous coordination reduces human dependency.

Key Components

- Agent managers for lander, rover, and spacecraft.
- •Inter-agent communication for seamless data exchange.
- •Hierarchical decision-making for efficient task execution.

Rover Subsystem

- Autonomous navigation and obstacle avoidance.
- •Data collection and analysis using Al models.
- Real-time adaptability to mission constraints.

Technologies Used

- LangChain for Al-driven conversational agents.
- •Python, Streamlit for simulations and visualization.
- •Reinforcement Learning for adaptive decision-making.

Al & Decision-Making

- Predictive analytics for mission-critical decisions.
- •Real-time response to environmental changes.
- Continuous learning for enhanced efficiency.

Simulation & Testing

- Interactive Streamlit-based simulation dashboard.
- •Real-world scenario testing for mission validation.
- •Iterative improvements through data-driven insights.

Future Scope

- Expansion to deep space exploration and Mars missions.
- •Integration with NASA/ISRO frameworks for real deployment.
- •Incorporation of IoT and sensor networks for real-time updates.

Conclusion

- •Al-powered multi-agent system enhances space exploration.
- •Reduces human intervention and improves mission success.
- •Paving the way for intelligent, autonomous space missions.