AI-DRIVEN NETWORK MANAGEME NTSYSTEM

lablab.ai: 2025

GROUP MEMBERS

1.Syed Qaim Raza
2.Muhammad Shahzaib Malik
3.Saqib Shabbir
4.Zohaib Ahmed

lablab.ai: 2025

lablab.ai: 2025

INTRODUCTION

AI-DRIVEN NETWORK MANAGEMENT SYSTEM

- A robust, intelligent system for real-time network monitoring, predictive maintenance, cost optimization, and energy efficiency.
- Uses advanced AI models for anomaly detection and automation

lablab.ai: 2025

KEY COMPONENTS

Anomaly
 Detection* (PyOD,
 DeepAnT)

PredictiveMaintenance*(LSTM, XGBoost)

- CostOptimization*(Stable-Baselines3 RL)
 - Agents & Tools*
 (OpenTelemetry,
 Prometheus, Kafka, MLflow,
 etc.

lablab.ai: 2025

EnergyEfficiency*(BayesianOptimization)

WORKFLOW OVERVIEW

- Collect logs from sensors
- Process logs through AI models in parallel
- Identify and resolve issues using AI-driven agents
- If unresolved, escalate to advanced agent layers
- Repeat process every 5-10 seconds

STEP 1 - INSTALL DEPENDENCIES

- Install required libraries:
bash
pip install pyod deepant tensorflow xgboost stable-baselines3
bayesian-optimization prometheus-client kafka-python mlflow

STEP 2 - LOAD PRETRAINED AI MODELS

- Load models for each AI component:
 - Anomaly Detection (DeepAnT, PyOD)
 - Predictive Maintenance (LSTM, XGBoost)
 - Reinforcement Learning (Stable-Baselines3)
 - Energy Optimization (Bayesian Optimization)

STEP 3 - NETWORK MONITORING & ANOMALY DETECTION

- Collect sensor logs and metrics
- Pass logs through anomaly detection models
- If anomaly detected, trigger resolution agents

STEP 4 - PREDICTIVE MAINTENANCE & FAILURE FORECASTING

- LSTM model predicts future failures
- XGBoost enhances prediction accuracy
- Preemptive action taken by Al agents

STEP 5 - COST OPTIMIZATION USING REINFORCEMENT LEARNING

- Stable-Baselines3 RL models optimize cost dynamically
 - Adjusts resource allocation based on network conditions

STEP 6 - ENERGY EFFICIENCY AT MODEL

- Bayesian Optimization minimizes energy consumption
- Al adapts power usage based on network traffic

STEP 7 - DEPLOY & AUTOMATE AT AGENT

- Al-driven agents handle issue resolution in layers
- First layer resolves minor issues
- Escalation to higher layers for critical problems

NETWORK RESILIENCE PROCESS FLOW

Sensors Collect Data

- → Al Models Process Data
- → Issues Detected
- → Al Agents Resolve
- → Escalation if Needed
- → Continuous Monitoring

CONCLUSION

- Efficient, Al-powered network management
- Real-time anomaly detection and costeffective operations
- Scalable, resilient, and energy-efficient solution

lablab.ai: 2025

THANKYOU