£
Security Copilot
for GitHub

Bringing real-time detection, learning, and remediation
into your pull requests.

SSSSSSSS

Our ambition

o) Summary Our team

Our project

SSSSSSSS

punitive

a productivity blocker
x a ticket generator
opaque

after the fact

x ohe-size-fits-all

e

Code security should not be

#

#

#*

“ Our ambition 3

Create not only an Al reviewer but an Al

companion that helps developers grow
their security skill in their flow, in the tool

they use every day

SSSSSSSS

Symbiotic Security at a glance

LERER HIPPEAU

1 Developer-first
@ oxeleo I%TI%IM :: Al Security Platform

#: Founded in 2024 $ 3M raised

<& Our mission . </~ In-IDE
Empower developers with Al-driven tools to instantly detect and fix Instant detection
vulnerabilities as they code - enhancing their skills in real time and i Real-time & contextual Al remediation

making secure development a natural, frictionless experience. Just-in-Time Al-based learning experience

theodo. 16.86

. MERCURY Avoided vulns per dev per month

irustpcir 43.42%

Fewer issues after 1 month of JiT learning

$3,000+

upcell @ Direct ROl per dev per month

Heartbeat

Our team

Abir KHALLADI

D Full Stack Developer

Alexis COLONNA

> Product Manager

Edouard VIOT
- CTO

Anthony BONDU

 Cybersecurity Intern

Minh Thang Marc VU

b |ead Software Developer

Salah-Eddine ALABOUCH

> Al Engineer

SSSSSSSS

An automated security summary

A security overview...
...automatically created
...each time a PR is opened

symbioticseclab bot commented 1 minute ago

§ Symbiotic Security Scan Results

& Security Review Summary

I've identified 2 security issues in this PR that require attention:

Issues Found

: test.py (line 15)
* Severity Levels:
o 1ERROR (High Priority)
1 WARNING (Medium Priority)

Recommendation

The ERROR-level issue should be addressed before merging this PR, as it represents a significant security risk. The
WARNING-level issue should also be reviewed and resolved when possible.

Note: The security scanner detected issues but didn't provide detailed descriptions. Please run a more detailed security
analysis or manual code review to identify the specific vulnerabilities at line 15 in test.py .

This is an automated security review. Please address these findings and consider running additional security tests before
merging.

Help :

Severity Title Rule ID File

Securit: thon. lang.security.audit. formatted-sql-
WARNING i EY g J i /tmp/pr_12/head/test.py

Issue query.formatted-sql-query

5 T python.sqlalchemy.security.sqlalchemy-
ecuri
) execute-raw-query.sqlalchemy-execute-raw- /tmp/pr_12/head/test.py

query

Issue

« To request an Al-generated fix, comment: SYMBIOREMEDIATE <Rule ID> (e.g., SYMBIOREMEDIATE CWE-79)

* Available Commands:

SYMBIOREVIEW all - Post detailed reviews for all findings.

SYMBIOREVIEW <Rule ID> - Post a detailed review for a specific finding.
SYMBIOREMEDIATE all - Suggest fixes for all findings.

SYMBIOREMEDIATE <Rule ID> - Suggest a fix for a specific finding.

SYMBIOLEARN - As a response to a review comment for educational details of the issue.

® symbioticseclab bot reviewed 8 minutes ago View reviewed changes

test.py

Ask for a detailed review

Vulnérable & 1'injection SQL
query = f"SELECT % FROM users WHERE username = '{username}'"
cursor.execute(query)

] symbioticseclab bot 8 minutes ago

Vulnerability: python.lang.security.audit.formatted-sql-query.formatted-sql-query

Impact: Medium

Confidence: High

Description: SQL injection vulnerability detected due to string formatting in SQL query construction.
The username parameter is directly interpolated into the SQL query using an f-string, allowing
attackers to inject malicious SQL code. This can lead to unauthorized data access, modification,

or deletion of database contents.

Resolution advice: Replace the formatted string query with parameterized queries using placeholders.
Use cursor.execute() with parameter binding to safely handle user input.

Want to know more?

query = f"SELECT * FROM users WHERE username = '{username}'"
cursor.execute(query)

query = "SELECT % FROM users WHERE username = ?
cursor.execute(query, (username,))

Request a detailed review : o
Of a SpeCifiC Vulnera b”ity EdouardSymbioticSec 1 minute ago Author

@SymbioticsecLab If | use the ORM of Django instead of raw SQL, will | be protected ?

or all detected vulnerabilities °

symbioticseclab bot now

Django ORM and SQL Injection Protection
Yes, using Django's ORM will generally protect you from SQL injection vulnerabilities, but with some important
caveats.

(2 Safe Django ORM Usage

Django's ORM automatically uses parameterized queries when you use standard ORM methods:

Safe - Django ORM handles parameterization automatically
User.objects.filter(username=username)
User.objects.get(username=username)
User.objects.exclude(username=username)

These methods are equivalent to your parameterized query fix and are inherently safe.

! Unsafe Django ORM Usage

However, you can still introduce SQL injection vulnerabilities in Django if you:

1.Use extra() with unsafe string formatting:

Learn more about a vulnerability

Ask for a detailed
micro-training on a vulnerability to
avoid doing it again

EdouardSymbioticSec 1 minute ago Author

SYMBIOLEARN

(©)

symbioticseclab bot 1 minute ago

@ SymbioLearn Lesson for @EdouardSymbioticSec

@ Lesson: python.lang.security.audit.formatted-sql-query.formatted-sql-query

Great catch by our security scanner! This code contains a classic SQL injection vulnerability that's been a top
security risk for decades. Let's walk through what's happening and how to fix it properly.

The Vulnerability: A Closer Look

SQL Injection occurs when user input is directly concatenated or formatted into SQL queries without proper
sanitization. Looking at your code:

username = sys.argv[2]

Vulnérable a 1'injection SQL

query = f"SELECT * FROM users WHERE username = '{username}'"
cursor.execute(query)

The vulnerability is in this f-string: f"SELECT * FROM users WHERE username = '{username}'" . You're directly
embedding user input (sys.argv[2]) into the SQL query string. This means an attacker can manipulate the
username parameter to inject malicious SQL code that gets executed by your database.

Potential Impact & Attack Scenario

An attacker could exploit this by providing malicious input as the second command-line argument. For example:

python your_script.py some_command "admin' OR '1' — L(,:I

This would transform your query into:

SELECT % FROM users WHERE username = 'admin’' OR '1'='1' —' Q
The result? The attacker bypasses au cation and retrieves ALL users from your database! Worse scenarios
include:

« Data theft: '; DROP TABLE users; —- could delete your entire users table
« Data manipulation: Inserting fake records or modifying existing data

« Privilege escalation: Accessing admin accounts or sensitive information

The Secure Fix: Best Practices in Action

Here's how to fix your code using parameterized queries:

Impact: Medium

Confidence: High

Description: SQL injection vulnerability detected due to string formatting in SQL query construction.
The username parameter is directly interpolated into the SQL query using an f-string, allowing

. .
D I S C u S S W I t h 0 u r A I attackers to inject malicious SQL code. This can lead to unauthorized data access, modification,
or deletion of database contents.

Resolution advice: Replace the formatted string query with parameterized queries using placeholders.
Use cursor.execute() with parameter binding to safely handle user input.

query = f"SELECT % FROM users WHERE username = '{username}'"
cursor.execute(query)

query = "SELECT % FROM users WHERE username = ?"
cursor.execute(query, (username,))

(©)

EdouardSymbioticSec 1 minute ago Author

@SymbioticsecLab If | use the ORM of Django instead of raw SQL, will | be protected ?

(©)

Want to dig deeper?

symbioticseclab bot now
Django ORM and SQL Injection Protection

. b
A S k yo u r q u e Stl O n to O u r A | Yes, using Django's ORM will generally protect you from SQL injection vulnerabilities, but with some important

caveats.

directly by commenting the Gseommcnis
g e n e rated reVieW CO m m e nt. jango's automatically uses parameterized queries when you use standar methods:

Safe - Django ORM handles parameterization automatically
User.objects. filter(username=username)
User.objects.get(username=username)
User.objects.exclude(username=username)

These methods are equivalent to your parameterized query fix and are inherently safe.

! Unsafe Django ORM Usage

However, you can still introduce SQL injection vulnerabilities in Django if you:

1.Use extra() with unsafe string formatting:

VULNERABLE - Don't do this
User.objects.extra(where=[f"username = '{username}'"])

SAFE - Use parameters

User.objects.extra(where=["username = %s"], params=[username])

2.Use raw() queries with string formatting:

VULNERABLE - Same problem as your original code
User.objects. raw(f*SELECT % FROM users WHERE username = ‘{username}'")

symbioticseclab bot commented now

‘X SymbioRemediate Suggestion for @EdouardSymbioticSec

G mediati [
et a re e d I atl O n S u g g e St I O n This is a suggested fix for the vulnerability python.sqlalchemy.security.sqlalchemy-execute-raw-query.sqlalchemy—

execute-raw-query foundin test.py online 15:

OBJECTIVE 1: AUTOMATIC CODE REMEDIATION

Security fix: Replaced f-string SQL concatenation with parameterized query to prevent SQL injection fin}
cursor = conn.cursor()
cursor.execute("CREATE TABLE users (username TEXT, password TEXT)")
username = sys.argv[2]
Fixed SQL injection vulnerability using parameterized query
query SELECT * FROM users WHERE username =
cursor.execute(query, (username,))
print(cursor.fetchall())
conn.close()
elif len(sys.argv) > 1:

os.system(sys.argv[1])
else:

Want to dig deeper?

OBJECTIVE 2: PROJECT-WIDE IMPACT SUGGESTIONS

B e n efit O u r C Utti n g e d g e A I e - Immediate Security Review Required
re m e d i a ti O n WO r kfl OW to fix Based on this SQL injection vulnerability fix, | recommend conducting a comprehensive security audit across your project:
security issues within your PR

« Search for similar SQL injection patterns throughout your codebase:
f"SELECT % FROM {table} WHERE {column} = '{value}'"
query + variable concatenations

% 0000000000600600060000006006000600603060063006000030600630830000363006a080006036030600800060363006008000603 : .format() methods in SQL queries

% string formatting in SQL statements

2. Additional Security Concerns Identified

* Command Injection Risk: The code also contains os.system(sys.argv[1]) which is extremely dangerous and allows
arbitrary command execution

* Recommendation: Replace with subprocess.run() with proper input validation and sanitization
3. Database Security Best Practices

* Implement consistent parameterized queries across all database interactions
« Consider using SQLAIchemy ORM instead of raw SQL for better security and maintainability
* Add input validation for all user-provided data before database operations

4. Testing Requirements

* Add security tests to verify SQL injection protection

» Test edge cases with malicious input containing SQL metacharacters

Analyze insights in a dedicated portal

O
Q4 Symbiotic Issues . A Open - Impact:High - Confidence: High

Repository: RustAddict/test-repo
s File: api.py
4 issues Line(s): Lines 61-

Creator: user@symbio.security

Dangerous TestCAPI Ca SSYCHLAWARNING

Find all scanned repositories
and scan results in our portal '

Category: Security

Subcategory: Unknown

Dangerous TestCAPI Ca yyinerability Code:

return jsonify({"error": "No code provided"}), 400
Dangerous: user input is directly passed to run_
This allows arbitrary Python code execution.
try:
output = run_in_subinterp(code)
except Exception as e:
return jsonify({"error": str(e)}), 500

Security Vulnerability

return jsonify({"result": output})

‘& And if we win? &

Let's use earned credits to
launch our free tier and do
some co-marketing together

@ Thank you ©

