
QUBIC
SMARTGUARD +
VOTING CONTRACT
An all-in-one solution for Qubic smart contracts



PITCH DECK

Qubic SmartGuard + Governance Voting CLI

Qubic SmartGuard: AI audit, validation, and
documentation for Qubic contracts.

Governance Voting CLI: Advanced governance voting
contract, production-ready.

Hackathon Team: SmartGuard 3 Qubic Track Lablab.ai Hackathon 2025



Problem Statement

 

 

Complex deployment
 

Manual and error-prone audits
 

 

Security gaps
 

Lack of automated tools
 Theauditing ofsmartcontractsisa manual, time-

consuming process prone to human errors, leading 
to vulnerabilities.

Deployingproduction-qualitycontracts requires in-
depth expertise of the command-line interface
(CLI).

Existing solutionsoften lack enterprise-grade 
security and comprehensive documentation,
essential for trust.

Developers donot have accessto automated and 
accessible auditing tools to assist them in this 
critical process.



Our Innovative Solution

Smar tGuard

 

Voting Contract and CLI

 AnAI-powered platform for automated auditing,
validation, and documentation of Qubic contracts.

Anadvanced,production-readyvoting contract with 
comprehensive deployment tools for robust governance.

By combining SmartGuard and the Voting CLI, we offer an end-to-end platform for developing secure and professional 
Qubic smart contracts.



Key Features of SmartGuard

 

Advanced Security Audit

 

C++ Contract Analysis (QPI)

 

Editable Simulation Scenarios

 

Future RPC Integration

 

Detailed Documentation

 

Automated AI Comments

 Uploadand analyzeyourC++contracts for
immediate validation.

Testyourcontractsincustomizablesimulated
environments.

Receivecomprehensiveauditreports to identify
vulnerabilities.

Generateclearandconcisecodecomments for 
better readability.

Createfunctionalspecifications,flow diagrams, 
and test plans.

Prepareforreal-timeon-chain execution via RPC 
integration.



Technologies Powering Our Solution

 

 

C++ CLI

 

Groq LLM
High-speedAI inference(Llama and Deepseek r1
models ).

 

Python & Streamlit LangChain

 

Git / GitHub

 

Mermaid.js

 

Directcontract interaction.

Backend logic & intuitive UI. AI agent orchestration.

Visualizescontract flows.

Versioncontrol& collaboration.



AI SmartGuard Workflow
 

Generate functional specifications with Mermaid
diagrams, test plans, and interactive simulation
scenarios for enhanced insights.

Securely upload your Qubic C++ smart contract files
(QPI) via Streamlit .

ExperienceastreamlinedworkflowforQubicsmartcontracts,withseamless AI assistant interaction via CLI.

LangChain orchestrates Groq LLM to provide
automated comments, semantic validation, and
comprehensive security audits.

Comprehensive audit reports and test plans are
generated. Future RPC integration will enable direct
on-chain execution.

Submit Contract

Docs & Simulation

AI Analysis

Reports & Future



Smart Contract Workflow CLI

 

Bytecode Validation

 

C++ Contract Compilation

 

Voting Function Calls

 

Audit Analysis and Logging

 

Testnet/Mainnet Deployment

 

Examinedetailedreportsandlogsfor comprehensive monitoring.

Deployyourvalidatedcontractonthe Qubic test or main network.

Transformthesourcecodeintoan executable bytecode for the Qubic blockchain.

Interactdirectlywiththevoting contract functions via the command line.

Ensurethecomplianceand security of the generated bytecode before deployment.



Example of CLI Workflow

qubic-cli -contractdeploy

qubic-cli -contractcompile qubic-cli -contractvalidate

createProposal, registerVoter, castVote, getResults

Contract Compilation

Network Deployment Voting Operations

Bytecode Validation

Converts your C++ code into executable Qubic
bytecode.

Deploys your contract on the chosen Qubic network
(testnet/mainnet).

Interact with the contract to manage the voting
process.

Verifies the integrity and compliance of the bytecode.



Smart Contract Architecture

Key Data Structures

 

Core Functions

 Proposals:Details, status,results.

Votes: Secure and timestamped records.

Voters: Identities and reputation information.

initializeContract:Prepares the contract for usage.

createProposal: Submits a new idea for voting.

registerVoter: Allows eligible users to register.

castVote: Securely records a voter's choice.

getProposalResults: Retrieves the final results of a 
proposal.

closeProposal: Finalizes the voting process for a 
proposal.



System Integration
 

Developed in Python with an intuitive Streamlit user
interface. Focused on auditing, documentation, and
simulation to ensure quality.

Written in C++ and directly integrated into the Qubic
ecosystem. Handles compilation, deployment, and all
voting operations on the chain.

Oursolutionistheperfectunionoftwopowerfulcomponents, working in synergy for seamless Qubic development.

Smar tGuard

60%

Voting CLI

40%

Together, they form a complete platform for the development, deployment, and
management of Qubic smart contracts.



Thank You!
 We appreciate your time and interest in QubicSmartGuardandourVoting Contract solution. We are confident in its 

potential torevolutionizedecentralizedgovernance.


