Food-Travel-Ecommerce-Al-App

A simple e-commerce assistant with a FastAPI backend and a
Next.js frontend.

This project supports Python 3.10.

Backend Setup

We create and activate a virtual environment based on python3 -m venv venv and
source venv/bin/activate and we Install Python dependencies that include pip install -r
requirements.txt -r requirements-dev.txt.

In the next step, we create a virtual environment and we install ./setup_env.sh, copy
the example environment file, add our Twilio credentials, start the API server and load
the variables from the .env file: uvicorn backend.main:app --reload --env-file .env

The backend is be available at http://localhost:8000.

The Speech endpoint route accepts an audio file and returns JSON containing the
transcribed text and a data URL with spoken audio. Also, the notify route sends an SMS
using our Twilio credentials (provide a JSON payload with to and message fields).

import basegd
rt lopging # Added for base6d encoding
rom fastapi import FastAPI, UploadFile, File, HTTPExcC
from fastapi.responses import JSOMResponse
from fastapi.middleware.cors import CORSMiddleware

from pydantic import BaseModel

import re

from backend.grog_agent import ask_agemt, transcribe audio, text to_speech

from backend.tavily import search_with_answer as tavily search_with_answer

rom backend.location import get_coordinates
rom backend.profile_graph import extract_profile
backend.task_router import route_task

rom backend.notifier import send_sms

app = FastAPI()




FastAP| %2

default
Jagent Agent Endpaint
Jspeech Speech Endpoint
/notify Notfy Endpoint
Jsearch Tavily Szarch Endpeint

J/map_search Map Search Endpoint

Schemas

AgentRequest » object
Body_speech_endpoint_speech_post » sbject
HTTPValidationError » abject

MotifyRequest 3
SearchRequest » ohject

ValidationError 3 object

Frontend Setup

The frontend was tested with Node.js 20, reads NEXT_PUBLIC_API_URL to know where
the APl is running. We create a .env.local file and set this variable to the URL of your
backend (defaults to http://localhost:8000). It runs on http://localhost:3000.

We use result buttons: when the assistant replies with suggested results, each option
appears as a button. Clicking one of these buttons sends the text as the next prompt
automatically, appending the new interaction to the chat so you can continue the
conversation without typing.

The interface also has Color Settings on the home page to open the theme menu.
Picking one of the available themes (default, red, green, purple or dark) it changes the
color scheme.


http://localhost:8000/

E-Commerce Agent

Language

English v

E-Commerce Agent

Hi Veronica , what would you like to do?

Tour Cultural Activity




If the LLM response itself contains an enumerated or comma-separated list, these
items are extracted into a choices field and shown as buttons as well.

E-Commerce Agent

Answer: Hola Veronica! Nice to meet
you. I'd be happy to help you find

some cultural activities in Madrid.
Here are some options:

* Museo del Prado: One of the
world's greatest art museums, with
an extensive collection of European
art from the 12th to the 20th
century.

* Reina Sofia Museum: Home to
Picasso's Guernica and works by
Dali, Mirdé, and other modern Spanish
artists.

* Thyssen-Bornemisza Museum:
Completes the "Golden Triangle of
Art" with the Prado and Reina Sofia,
featuring art from the 13th to the
20th century.

* Royal Palace of Madrid: A must-
visit for history buffs, with guided
tours available.

*» Retiro Park: A beautiful green

————— T A lhAaneds AF A ~S e

Running Tests

The backend tests rely on packages from both requirements.txt and requirements-
dev.txt.:./setup_env.sh

The backend test suite is runned with pytest from the project root: pytest

Frontend tests are located inside the frontend folder and can be executed with: cd
frontend and npm test.



