

Comprehensive non-targeted chemical fingerprinting of coffee silverskin extracts with MRMS

Coffee silverskin is a major coffee bean roasting by-product, which is currently underutilized and mainly discarded as industrial waste. However, silverskin is a rich source of polyphenols and other bioactive ingredients, and thus a potential feedstock for pharmaceutical, cosmetics and food sectors.

Abstract

Coffee silverskin, a by-product of the coffee roasting process, contains a plethora of bioactive compounds, such as caffeine, lipids, chlorogenic acids, and melanoidins, which possess a considerable potential in several industrial applications. In this study, a comprehensive nontargeted chemical fingerprinting of solvent extracts of pelletized coffee silverskin residue was performed by using ultrahighresolution MRMS technology, giving access to the hundreds of chemical constituents, including organic acids, polyphenols, sugars, and nitrogen-containing heterocycles. Keywords: coffee, silverskin, polyphenol, MRMS, metabolomics

Authors: Omolara O. Mofikoya¹, Nazish Asghar¹, Marko Mäkinen¹, Janne Jänis¹, Aitor Barbero-López¹, Antti Haapala², Matthias Witt³; ¹University of Eastern Finland, Department of Chemistry, Joensuu, Finland; ²University of Eastern Finland, School of Forest Sciences, Joensuu, Finland; ³Bruker Daltonik GmbH, Bremen, Germany

Figure 1: Selected APPI spectra in positive ion mode of coffee silverskin extracts using different extraction solvents.

Introduction

Coffee and other caffeinated drinks are the most consumed beverages in the world. The highest consumption per capita occurs in Finland, where about 10 kg of roasted coffee beans are consumed per person a year. Coffee is enjoyed mainly due to its taste, habit and its stimulating effect, caused mainly by caffeine, while it contains no essential nutrients. Moderate coffee consumption has also been associated with the reduced risk of neurodegenerative diseases, like Parkinson's disease, type II diabetes, and some types of cancer [1]. Coffee silverskin (CS) is the thin outermost layer of the coffee bean and the only by-product obtained from the coffee roasting process. Over 10 million tons of coffee is roasted globally every year [2], leading to the estimated CS production of about 200,000 tons.

Despite the huge availability of this feedstock, its current utilization is very limited, and it is mostly used as a solid fuel or soil fertilizer. However, CS is a rich source of polyphenols, lipids, and other bioactive compounds, and thus its revalorization has gained more attention recently [3,4]. The most interesting compounds include chlorogenic acids (CGAs) and melanoidins, which could find use in pharmaceutical, cosmetics, food, and techno-chemical sectors [5-7]. Compounds from CS can be recovered by various methods such as hot water or solvent extraction. Due to the chemical complexity of CS extracts, rapid and sensitive analysis methods for their characterization are desired. In this work, we employed ultrahigh-resolution Magnetic Resonance Mass Spectrometry (MRMS) technology for comprehensive, non-targeted chemical fingerprinting of the solvent extracts of CS.

Materials and Methods

Solvent extraction

The coffee silverskin pellets, kindly provided by Meira roastery (Helsinki, Finland). were subjected to continuous Soxhlet extraction. The solvents used were chloroform, dichloromethane, hexane, toluene, acetonitrile, methanol, acetone, ethanol, and water (HPLC grade). Both, non-polar and polar solvents were used to assess their ability to extract different types of compounds from the silverskin pellets. Prior to the mass spectrometric analysis, the obtained extracts were further diluted with methanol (for negative-ion ESI) or a methanol/toluene mix (10:1, v/v) (for positive-ion APPI), to the approximate concentration of 50 - 100 µg/mL.

MS analysis

All mass spectrometric analyses were performed on a solarix 12T XR MRMS instrument (Bruker Daltonik GmbH, Bremen, Germany), equipped with a dynamically harmonized ICR cell (ParaCell). All samples were directly infused to an Apollo-II ESI and APPI ion source by using a syringe pump (flow rate of 6.7 µL/min for APPI and 2 µL/min for ESI). The ions were detected at the m/z range of 92 - 2000 with a mass resolving power of ~530,000 at m/z 300 (transient length 1.05 s). Two hundred single scans were co-added for each mass spectrum and processed in magnitude mode. The instrument was externally calibrated by sodium trifluoroacetate (NaTFA) clusters. Furthermore, internal mass recalibration was accomplished with a custom-made calibration list containing known analytes from different compound classes. For the elemental formula search (SmartFormula). the following parameters were used: mass error \leq 0.8 ppm; relative intensity \geq 0.1%;

signal-to-noise (S/N) ratio \geq 5.0; H/C ratio \leq 3; DBE \leq 80; elemental formula ${}^{1}H_{1-200} {}^{12}C_{1-100} {}^{16}O_{1-25} {}^{14}N_{1-5} {}^{32}S_{1-2}$.

Data processing and structural annotations

The mass spectra were processed using DataAnalysis 5.0 (Bruker Daltonik GmbH, Bremen, Germany). Further analysis and structural annotations were accomplished by using MetaboScape 5.0 (Bruker Daltonik GmbH, Bremen, Germany) with CompoundCrawler database search engine.

MS analysis

Ultrahigh-resolution MRMS represents an unparalleled analysis tool for non-targeted chemical fingerprinting of natural extracts and other complex mixtures, giving access to hundreds or even thousands of analytes in a single measurement. When combined with different ionization techniques such as electrospray ionization (ESI) or atmospheric pressure photoionization (APPI), both polar and non-polar analytes can be detected.

Based on the data, all CS extracts were highly complex with up to ~4600 and ~2200 spectral features detected with ESI negative ion mode and APPI positive ion mode, respectively. Figure 1 shows selected APPI spectra for three different solvents. The most abundant compounds detected with APPI in positive ion mode included different acids. di- and triterpenoids, sterols, phenolic acids, and nitrogen heterocycles (Figure 2). The most abundant compound detected with APPI was caffeine $(C_{0}H_{10}N_{4}O_{2})$, which was present in both non-polar and polar

Figure 3: Example of nitrogen-containing alkaloids found in coffee silverskin extracts: caffeine (left), trigonelline (right).

Bu	cket Table																			
						٦	<filt< th=""><th>er rule</th><th>\$></th><th>m/z n</th><th>ieas.</th><th>~</th><th>+</th><th>7</th><th></th><th></th><th></th><th></th><th></th><th></th></filt<>	er rule	\$>	m/z n	ieas.	~	+	7						
	m/z meas.	M meas.	lons	Name 🔺	Molecular For	Annotations	AQ		Boxplot		Chloroform	DCM	LCoffe	Toluene_E	t hEXANE_C	o Ethanol_O	of Methano	I_C Water_Co	offe aCETONE	_C.
1	330.21892	330.21947	± °	16-O-methylcafestol	C21H30O3	Mn SF CC	M													
2	399.36232	398.35505	± •	24-methylenecholesterol	C ₂₈ H ₄₆ O	Mn SF	м		ŀ											
3	153.05462	152.04734	<u>+</u> •	3',4'-dihydroxyacetophenone	C ₈ H ₈ O ₃	CC SF	м													
1	208.07307	208.07361	± °	3,4-dimethoxycinnamic acid	C11H12O4	CC SF	м													
5	139.07528	138.06800	+ D	3-ethylcatechol	C8H10O2	CC SF	м		нH											
5	159.06784	159.06838	<u>+</u> •	6-methoxyquinoline	C ₁₀ H ₉ NO	CC 55	м		-00-											
7	411.36212	410.35484	+ n	7-dehydrostigmasterol	C ₂₉ H ₄₆ O	Mn SF CC	M		•											
В	430.38057	430.38112	<u>+</u> •	alpha-tocopherol	C29H50O2	CC SF	м		•			1								
)	321.20610	320.19882	<u>+</u> •	atractyligenin	C19H28O4	Mn SF CC	M													
0	316.20336	316.20391	<u>+</u> •	cafestol	C20H28O3	CC SF	м		0											
1	554.43265	554.43320	± °	cafestol palmitate	C36H58O4	Mn SF CC	м		H											
2	181.04959	180.04232	± •	caffeic acid	C ₉ H ₈ O ₄	CC 55	м													
3	194.07986	194.08041	± ¤	caffeine	C8H10N4O2	CC 55	М		H											
4	111.04403	110.03675	± ¤	catechol	C6H6O2	CC 55	м													
5	291.23196	290.22469	+ D	coffeediol	C19H30O2	Mn_SF	M													
6	426.38551	426.38606	± •	cycloartenol	C ₃₀ H ₅₀ O	CC 55	м													
7	298.19269	298.19324	± º	dehydrocafestrol	C20H26O2	Mn SF CC	М		H											
8	296.17705	296.17760	± "	dehydrokahweol	C20H24O2	Mn SF CC	M		Æ.			T								
9	183.06516	182.05788	+ 0	dihydrocaffeic acid	C ₉ H ₁₀ O ₄	Mn SF CC	M		Ĩ			T -		-						
0	289.25260	288.24532	+ 0	ent-kaur-16-en-19-ol	C20H32O	CC 5F	м													
1	194.05737	194.05791	± °	ferulic acid	C10H10O4	CC SF	м													
2	314.18782	314.18836	± •	kahweol	C20H26O3	CC SF	м		ł			1								
3	552.41691	552.41746	+ 0	kahweol palmitate	C36H56O4	Mn SF CC	М									- F				
4	275.27339	274.26611	± •	kaurane	C20H34	CC 5F	м													
5	210.07477	210.07532	± •	liberine	C8H10N4O3	Mn SF CC	м									1				
6	124.03923	123.03196	+ •	nicotinic acid	C6H5NO2	(CC 55	м		•								1			
7	414.38559	414.38614	± °	sitosterol	C29H50O	(CC 5F)	М		•			1			1					
8	396.37506	396.37561	± •	stigmastan-3,5-diene	C29H48	Mn SF CC	M		HT •											
9	412.36999	412.37054	± •	stigmasterol	C29H48O	CC 55	М		1H			T .			T .					
0	181.07200	180.06473	± •	theophylline	C7H8N4O2	EE 233	м		ĥ			1				- F	- F			
	120.05402	127.04755	+ 0	trigonelline	C-H-NO-						-		-	-		1				

Figure 2: A table showing the most abundant compounds detected in the coffee silverskin extracts with APPI in positive ion mode and their relative abundance variation across different samples (different extraction solvents).

II BU							▼ <	filter rules>	r	n/z me	15 .	~	+	1							
	m/z meas.	M meas.	lons	Name	Molecular For	Annotations	AQ	E	Boxplot	I	Chlorofo.	DCM Ex	xtr He	xane E	Toluene E	Acetone A	cetoni	Ethanol E.	Methani	Water Ext	
1	191.05613	192.06341	÷	(-)-quinic acid	C7H12O6	CC SF	M	0													
2	515.11949	516.12677	+ o	1,3-dicaffeoylquinic acid	C25H24O12	CC SF	M	•										Γ	Г		
1	195.05239	196.06008	÷	1,3-dimethyluric acid	C7H8N4O3	CC 55	м														
1	529.13517	530.14244	±	1-caffeoyl-5-feruloylquinic acid	C26H26O12	CC SF	M	0													
5	151.04013	152.04741	* o	3',4'-dihydroxyacetophenone	C ₈ H ₈ O ₃	CC SF	M														
5	207.06629	208.07357	+ o	3,4-dimethoxycinnamic acid	C11H12O4	CC SF	M														
7	499.12460	500.13187	+ o	3-caffeoyl-4-p-coumaroylquinic	C25H24O11	Mn SF	M					1									
3	367.10343	368.11071	+ p	3-O-feruloyl-D-quinic acid	C17H20O9	CC SF	м	TH											1		
9	349.09302	350.10029	+ n	4-feruloyl-1,5-quinide	C17H18O8	Ma SF CC	M	1										[Ĩ.		
0	335.07732	336.08459	÷	5-[(E)-caffeoyl]shikimic acid	C16H16Os	CC 55	M	0			-										
1	149.04549	150.05278	÷	arabinose	C5H10O5	CC SF	M	1													
2	311.29553	312.30278	÷	arachidic acid	C20H40O2	CC SF	M	HI.	•												
3	319.19145	320.19873	* n	atractyligenin	C10H28O4	Ma SE CC	M	- III			í –	Î.					-	ĩ	T .		
4	315.19651	316.20379	÷	cafestol	C20H28O3	CC SF	M					T									
5	179.03482	180.04209	+ o	caffeic acid	CgHgO4	CC 55	м														
6	193.07312	194.08081	÷	caffeine	CaH10N4O2	CC SE	M														
7	289.07183	290.07911	+ o	catechin	C15H14O6	CC SF	M												1		
8	285.06165	286.06893	÷	catechol beta-D-glucuronide	C12H14O8	CC SF	M	18										1			
9	353.08725	354.09453	÷	chlorogenic acid	C16H18Oo	CC 55	M	Ĭ											1		
0	351.21757	352.22485	±	cofarol	ConHapOs	Massice	M												1		
1	163.03999	164.04727	+ n	coumaric acid	C ₀ H ₈ O ₃	CC SF	M												1		
2	179.05609	180.06329	÷	D-galactose	CeH12O6	CC SF	M	TH I													
3	181.07165	182.07893	+ o	D-mannitol	C6H14O6	CC SE	M														
4	181.05054	182.05782	* e	dihydrocaffeic acid	CoH1004	Mn SF CC	M														
5	195.06625	196.07353	±	dihydroferulic acid	C10H12O4		M														
6	193.05061	194.05789	± n	ferulic acid	CinHinO4	CC SE	M	H													
7	255,23293	256.24012	t ala	hexadecanoic acid	CieH22O2	CC SE	M	H	H ·												
8	369.08271	370.08998	+ n	isoferulic acid 3-O-glucuronide	C16H18O10	MA SE CC	M														
9	331.04596	332.05323	÷	laricitrin	C16H12O8	CC SE	M														
0	209.06801	210.07573	÷	liberine	CgH10N4O3	MAISFICC	M	HHO				1							1		
1	279.23295	280.24024	÷	linoleic acid	C1sH22O2		M	H	H												
2	250.07212	251.07939	t nl	N-ferulovlalvcine	C12H13NOs	CC SF	M	(H)										F			
2	201 24050	202 25505	+ 1	at the second	CHO			i ili	1000	0										-	

Figure 4: A table showing the most abundant compounds detected in the coffee silverskin extracts with ESI in negative ion mode and their relative abundance variation across different samples (different extraction solvents).

Figure 5: PCA analysis (scores plot) of the coffee silverskin extracts based on ESI data in negative ion mode. Non-polar and polar solvents are clearly separated in the scores plot while water stands out of the two groups.

solvents. The other nitrogen-containing heterocycles were 6-methoxyquinoline, liberine, theophylline and trigonelline, all naturally occurring alkaloids in coffee beans (Figure 3). The other abundant compounds included cafestol, kahweol, and their dehydro-forms, which are diterpenoids that have been associated with a variety of pharmacological effects of coffee. This confirms that CS is a rich source of valuable bioactive compounds. Since APPI does not efficiently ionize some of the more polar, aliphatic or alicyclic compounds, complementary data were acquired from the extracts by using ESI in negative ion mode. The most abundant compounds detected with ESI included different acids, carbohydrates, and their derivatives (Figure 4). Among fatty acids, linoleic (C18:2), palmitic (C16:0), oleic (C18:1), and arachidic (C20:0) acids were detected. A plethora of chlorogenic acids (i.e. quinic and caffeic acids and their esters) were also observed. Carbohydrates (e.g. galactose and arabinose) were more enriched in the polar solvents.

To assess the overall impact of different solvents on the chemical composition of extracts, twodimensional principal component analysis (PCA) of the ESI data was performed in MetaboScape. Figure 5 depicts the PCA scores plot, showing that non-polar as well as polar solvents are grouped and clearly separated from each other, while water stands out of the two solvent types, mainly due to higher content of nitrogen-containing analytes. Therefore, by choosing an appropriate solvent, specific types of compounds can be recovered from coffee silverskin for possible further applications.

Acknowledgements

Meira Ltd. (Helsinki, Finland) is thanked for providing the coffee silverskin sample for this study.

Conclusion

• Ultrahigh-resolution MRMS represents a powerful tool for nontargeted chemical fingerprinting of complex mixtures, exemplified here for coffee silverskin extracts. Very simple sample preparation protocols, unparalleled data acquisition speed, and confident assignment of chemical formulae for hundreds or even thousands of analytes in a single mass spectrum are the key analytical benefits of this technology.

You are looking for further Information? Check out the link or scan the QR code for more details.

www.bruker.com/solarix

References

- Grosso G, Godos J, Galvano F, Giovannucci EL (2017). Coffee, Caffeine, and Health Outcomes: An Umbrella Review. Annu. Rev. Nutr., 37, 131–56.
- [2] International Coffee Organization (www.ico.org)
- [3] Narita Y, Inouye K. (2014). Degradation Kinetics of Chlorogenic Acid at Various pH Values and Effects of Ascorbic Acid and Epigallocatechin Gallate on Its Stability under Alkaline Conditions. Food Res. Int., 61, 16-22.
- [4] Toschi TG, Cardenia V, Bogana G, Mandrioli M, Rodriguez-Estrada MT (2014). Coffee Silverskin: Characterization, Possible Uses, and Safety Aspects. J. Agric. Food Chem., 62, 10836–10844.
- [5] Bessada SMF, Alves RC, Oliveira MBPP (2018). Coffee Silverskin: A Review on Potential Cosmetic Applications. Cosmetics, 5, 5.
- [6] Tores de la Cruz S, Iriondo-DeHond A, Herrera T, Lopez-Tofiño Y, Galvez-Robleño C, Prodanov M, Valezquez-Escobar F, Abalo R, Dolores Del Castillo M (2019). An Assessment of the Bioactivity of Coffee Silverskin Melanoidins. Foods, 8, 68.
- [7] Barbero-López A, Monzó-Beltrán J, Virjamo V, Akkanen J, Haapala A (2020). Revalorization of Coffee Silverskin as a Potential Feedstock for Antifungal Chemicals in Wood Preservation. Int. Biodeterior Biodegradation, in press.

For Research Use Only. Not for Use in Clinical Diagnostic Procedures.

Bruker Daltonik GmbH

Bruker Scientific LLC

Bremen · Germany Phone +49 (0)421-2205-0 Billerica, MA · USA Phone +1 (978) 663-3660