Cross-continental, multisite round robin REIMS study for the evaluation of REIMS fundamentals and technology

Júlia Balog ^{1,2}, Pierre-Maxence Vaysse³, Tiffany Porta Siegel³, Martin Kaufmann⁴, Ala Amgheib², Adele Savage², Viktória Varga¹, András Marton¹, Steven Pringle⁵, John Rudan⁴, Ron M.A. Heeren³ and Zoltán Takáts² ¹Waters Research Center, Budapest, Hungary; ²Imperial College, London, United Kingdom, ³M4I, Maastricht, Netherlands; ⁴Queens University, Kingston, ON, Canada; ⁵Waters Corporation, Wilmslow, United Kingdom.

INTRODUCTION

- Rapid Evaporative Ionization Mass Spectrometry (REIMS) is an emerging technology based on the mass spectrometric analysis of aerosol generated during the thermal ablation of biological samples
- The technology is capable of the quasi real-time, in situ characterization of a wide variety of samples including tissues, microorganisms and food items
- Our long term goal is to introduce the REIMS technology into surgical environment around the world at routine level for real-time, in vivo margin assessment in cancer surgery
- In order to be successful, we need to understand the fundamentals of the method and the variation of signal acquired at different sites
- We report here the results of the first cross-site REIMS study, including repeatability, reproducibility and robustness

- isopropanol
- times per day
- samples were also used

• A total of 6 Xevo G2-XS instruments were used at 4 sites • All parameters were set and instrument status was checked according to the checklist shown on Figure 2.

instrument related

different signal suggesting that the differences are not

ON and Waters Research Center, Budapest with 1-1-1-3 instruments.

TO DOWNLOAD A COPY OF THIS POSTER, VISIT WWW.WATERS.COM/POSTERS

AIMS

- To evaluate the repeatability and reproducibility
- Instrument-to-instrument comparison within and cross-site
- Testing of robustness of the technology by using multiple instruments, multiple users at multiple locations and multiple time slots
- To gain more understanding of REIMS mechanism and identify key experimental parameters

Using Leucin-enkephalin, NIST reference meat homomgenate and pork liver shipped from the UK

- There were two separate batches of pork liver samples shipped from the UK
- The second batch never arrived to Canada, thus Queens used the first batch for all experiments
- NIST reference was purchased by all institutions separately
- The instrument parameters where changed between the two batches of experiments

Multisite Comparison of Instruments

• Our findings demonstrate, that the reproducibility, repeatability and robustness of the instruments are adequate throughout all four sites

Imperial College _ondon

Waters THE SCIENCE OF WHAT'S POSSIBLE.®

Maastricht University

RESULTS

725.51 749.51 750.52 750.52	66.54 767.53 771.56	794.56	820.57	834.57	ICL 861.56	885.	OF MS ES- 3.49e6 55 -886.55 L-888.57
720 740 760	4444444444444 780	44444 800	820	840	860	880	44/17-17-1 m/z
120 140 100	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	000	020	040	000	T	OF MS ES- 1.82e6
725.51 7	66.54				M4I	885	55
.50 727.53 750.52	770.57	794.57					886.55
ويتبالل ويلتج الرابي	790.54	796.58	820.57	834.57	861.55	885.46	888.57
720 740 760	780	800	820	840	860	880	900
7	66.54				WR	С	OF MS ES- 2.42e6
725.51 742.54 749.51	767.54	794.57				885	55
		795.57	818.76	840.74	861.55	875.77	887.56
720 740 760) 780	800	820	840	860	880	900
	CC CA					т	OF MS ES-
725.51 749.51	767.54				Que	ens	55
727.53 750.52	770.57	794.57					886.55
a billi - ballian -	773.53	/95.57	820.57	834.58	861.56	867.54	888.57

No fragmentation or dimer formation of the injected lockmass compound Leucinenkephalin was observed Fragmentation of the phospholipids could occur at the sampling point, however the sampling circumstances were fixed for all sites

Comparison of locally supplied samples and instruments

Calf liver, chicken liver, chicken breast, turkey breast

- Food grade meat was purchased at the local supermarket. Models were built at each site and used to classify samples from the other sites
- A total number of 487 sampling events, 2435 scans were selected (calf liver = 126(630), chicken breast = 105(525), chicken liver = 147(735). turkey breast = 109(545)) analysed on 6 instruments from 4 sites

100 255.23 281.25		699 50 7	WRC	instrument #1	TOF MS ES- 3.71e7
8 ⁸ 171.14 ^{253.22}	391.23 419.26 485.28	554.26.572.48 687.51	771.57 885.55	981.76_1004.76_1030.78	1167.72 m/z
200 300	400 500	600 700	800 900	1000 1100	TOF NO FO
100 281.25		699.50 7	25.51,744.55 WRC	instrument #2	3.12e7
255.23 205.20	391.22 419.25 480.31	572.48 642.49 697.48	773.58 885.55	981.76-1007.78-1030.78	
200 300	400 500	600 700	800 900	1000 1100	m/z
100-		699.50 7	25.51	ICL	TOF MS ES- 2.27e7
\$ 152.99 255.23 283.26	391.22 419.26 463.28	554.26 642.49 685.48	726.52 770.57 861.55 ⁸⁸⁵	55 _928.59 1004.76 116	7.721185.74
200 300	400 500	600 700	800 900	1000 1100	
100	419.25			M4I	TOF MS ES- 2.99e7
255 23279.23 303 23	391 22 420 26	699.497	25.51		
152.99 233.23 303.23	463.28	572.48 599.32 685.48	794.56861.55	⁵⁵ 928.59 1004.77	m/z
200 300	400 500	600 700	800 900	1000 1100	
100 255.23 281.25			WRC	instrument #3	TOF MS ES- 5.14e7
* 153.00 253.22	391.22 419.26 420.26 480.31	699.5 554.26.572.48 687.50	0 725.51 766.54 885.55	981.76 1004.76 1030.78	
200 300	400 500	600 700	800 900	1000 1100	my m/2
100-	419.26	699.50 7	^{25.51} 751.52	Queens	TOF MS ES- 2.32e7
× 152.99 255.23 283.26	417.24420.26	554.26 642.49 697.48	-770.56 885.55	88.57 1008 80, 1032 79 1063.79	1167 73
0- 1/	400 500	600 700	800 900	1000 1100	m/z
Fig. 15.	Full spe	ectra of o	calf liver	analysed	l at

4 sites with a total of 6 instruments.

Fig. 17. 3D PCA plot of calf and chicken liver, turkey and chicken breast purchased a local suppliers. The different shades of color represent each site.

Fig. 16. Phospholipid spectra of calf liver analysed at 4 sites using a total of 6 instruments

Fig. 18. 3D pseudo LDA plot of calf and chicken liver, turkey and chicken breast purchased at local suppliers. This model was used for classification.

	Correct	ICI	WRC main	ЛЛАТ	WRC	WRC	Queena	
Model training	Class. Rate		instrument	10141	instrument #2	instrument #3	Queens	
ICL	75.67%	-	64.7	100	50.0	50.0	75.0	
WRC	100%	100	-	100	-	-	100	
M4I	88.34%	99.1	73.3	-	50.0	92.9	100	
Queens	69.87%	83.1	59.0	77.2	50.0	50.0	-	
WRC instrument #1	97.12%	95.6	-	100	100	100	94.6	

Table. 2. Correct classification rate building the model on the data acquired by one site and classifying all data acquired on the other sites.

- The 4 different samples from local suppliers were not identical. Running cross-validations between sites resulted in 64-100% correct classification rate
- Interestingly WRC model performed at 100%, however the WRC spectra were mostly misclassified by other models. As at WRC 3 instruments were used, it is suggested that the variance covered by the classifier was greater compared to the other models
- We observed no significant fragmentation of species, however the ratio of fatty acid and phospholipid signals was different throughout the sites, suggesting an interference from the pre-analytical processing at each site