ULTRA-LOW LEVEL ANALYSIS OF ALDOSTERONE IN PLASMA USING THE XEVO TQ-XS FOR CLINICAL RESEARCH

Waters THE SCIENCE OF WHAT'S POSSIBLE.™

Dominic Foley, Gareth Hammond, Ben Dugas and Lisa J Calton Waters Corporation, Stamford Avenue, Wilmslow, UK.

METHODS

Materials

 Certified aldosterone reference material purchased from Merck (Poole, UK) was used to prepare calibrators MSG4000 Stripped Serum from Golden West Biologicals

Linearity, Analytical Sensitivity and Carryover

 Calibration was performed from 8 – 4162 pmol/L for aldosterone. Calibration lines were linear with r² > 0.995 (n=5) for all analytop.

	Analyte	Total Precision			Repeatability		
		Low	Mid	High	Low	Mid	High
	Aldosterone	4.4%	6.3%	2.7%	4.4%	6.0%	2.6%

(CA, USA).

• QCs were created using the certified solution and pooled plasma purchased from SeraLab (Haywards Heath, UK).

Methods

- 200µL serum samples were pre-treated with internal standard, zinc sulfate in methanol and water. Samples were mixed and centrifuged.
- Sample supernatant was transferred to a Waters[™] Oasis[™] MAX µElution plate, washed with 1% formic acid in 10% acetonitrile, then 1% ammonia in 10% acetonitrile. Analytes were eluted with 60%_(aq) acetonitrile. Water was added prior to injection.
- Sample preparation was automated using the Tecan Freedom Evo 100 Liquid Handler.
- Using a Waters ACQUITY UPLC[™] I-Class System, samples were injected onto a 2.1 x 100mm Waters CORTECS[™] C₁₈ column with a CORTECS C₁₈, VanGuard[™] pre-column using a methanol and 0.05mM ammonium fluoride gradient and analyzed with a Waters Xevo[™] TQ-XS detector in negative ESI, using Multiple Reaction Monitoring (Table 1).
- The scan window was 1.5 3 minutes with the LC flow diverted to waste at all other times.
- The analysis time per sample was approximately 4.3 minutes injection to injection.

Analyte	MRM Transition (m/z)	Cone Voltage (kv)	Collision Energy (eV)	
Aldosterone	359.3 > 189.2 (297.3, 331.3)	45	18 (15)	
Aldosterone- ² H ₃	363.3 > 190.2	45	18	

Table 1. MRM parameters for the analysis of aldosterone(Qualifier ion parameters)

for all analytes.

RESULTS

- The S/N ratios for the lowest calibrator at 8 pmol/L for spiked serum were >10:1 over five separate occasions. Aldosterone peaks were detected down to 3.3 pmol/L in plasma (Figure 1).
- No significant carryover was observed from high concentration samples above the calibration range into subsequent blank injections.

Matrix Effects

- Matrix effect investigations for aldosterone was performed using six individual serum samples (BioIVT, UK).
- Normalized matrix factor calculations, based on the analyte:internal standard response ratio demonstrated that the internal standards compensated for any ion suppression observed, with a mean matrix factor of 1.01 (0.94 –1.07) and RSD of 5.2%.

Precision

 Low, mid and high concentrations were 36, 286 and 2932 pmol/L for aldosterone with total precision and repeatability using the Tecan Freedom Evo 100 Liquid Handler ≤ 6.3% for aldosterone (Table 2).

Accuracy

- EQA samples were analyzed for aldosterone (n=15). The results were compared to the mass spectrometry mean for each EQA sample.
- Deming regression and Altman-Bland agreement was performed for each of the analytes (Table 3).
- Altman-Bland agreement demonstrates a mean method bias within ±5.6% for aldosterone (Figure 2).

Table 2. Total precision and repeatability for the aldosterone in plasma at three QC concentrations

Analyte	Deming equation	Proportional bias (p)	Constant Bias (p)	Mean Method Bias
Aldosterone	0.99x –2.31	0.263	0.695	+5.6%

Table 3. Deming regression and Altman-Bland analysis performed on analysed EQA samples for aldosterone, which were compared to the EQA MS mean values. P values <0.05 would indicate statistically significant bias

Figure 2. Altman-Bland agreement performed on analysed EQA samples for aldosterone, which were compared to the EQA MS mean

CONCLUSION

- A clinical research method to quantify aldosterone has been developed
- Through the use of offline automated Oasis MAX µElution sample preparation, an analytically sensitive UPLC-MS/MS method was developed using 200µL serum
- The method demonstrates excellent precision (≤6.5%) and bias (-3.3%)

For Research Use Only. Not for use in diagnostic procedures. TO DOWNLOAD A COPY OF THIS POSTER, VISIT WWW.WATERS.COM/POSTERS