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INTRODUCTION 

Dust analysis provides a means to assess the degree of 

exposure to humans in an indoor environment to various 

xenobiotic contaminant classes. Recent publications have 

demonstrated implementation of non-targeted acquisitions 

using high resolution mass spectrometry (HRMS) to 

comprehensively profile these compounds in dust [1-8], and 

one challenge confronted is improving the confidence in 

proposed compound identifications, particularly when 

authentic standards are not available. Here, we investigate 

the use of a liquid chromatography-quadrupole time-of-flight 

(QTof) MS combined with ion mobility spectrometry (IMS) to 

provide further gas-phase characterization of xenobiotic 

contaminants observed in two e-waste processing facility and 

composite household dust samples. Specifically, IMS was 

used here to obtain collision-cross section (CCS) values for 

all ions, which represent the two-dimensional area of an ion’s 

gas-phase conformation and is measured in units of Å
2
 [9]. 

CCS values were used as an identification point for numerous 

compounds in this study. Further investigation in the use of 

predictive modelling to support identifications in HRMS data-

independent acquisitions such as this was performed with two 

modern, easy-to-use CCS prediction model platforms. 
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METHODS 

SAMPLE DESCRIPTION: Dust samples were collected from two 
different e-waste processing facilities in Canada, described in [3] and 
[10], and the composite household dust sample was collected from 
various Canadian homes  and described in [11]. Samples were 
extracted through liquid extraction with dichloromethane and dried down 
under N2. Extracts were reconstituted with 1:1 methanol: water for LC-
MS analysis. 
 
LC CONDITIONS: 
LC System:  Waters ACQUITY I-Class (with isolator column) 
Column:   ACQUITY UPLC BEH C18 2.1 x 50 mm, 1.7 µm 
Column Temp:  65 ˚C 
Sample Temp: 4 ˚C 
Flow Rate:   0.450 mL/min. 
Mobile Phase A:  2 mM ammonium acetate in 98: water:methanol 
Mobile Phase B:  2 mM ammonium acetate in methanol 
Total Run Time: 8.5 min. 
Gradient: 90% A starting, then 90% A at 0.5 min. to 0% A at 5.10 min., 
held for 1.50 min. then return to 90% A at 6.70 min. for remainder of run 
time. 
 
IMS-MS CONDITIONS: 
Instrument :    Vion IMS QTof 
Ionization Mode:   ESI

+/- 
(separate acquisitions) 

Collision Energy (LE):  3 eV 
Collision Energy (HE ramp): 20-55 eV 
Scan Time:    0.25 sec 
Acquisition Range:   50-1000 m/z 
Drift Gas:    N2  
Capillary:   1.0 kV (positive) and 0.5 kV (negative) 
Source Temperature: 120°C 
Source Offset:  80 
Desolvation Temperature:  550°C 
Cone Gas Flow:  50 L/hr 
Desolvation Gas Flow: 1000 L/hr 
Lockmass:  Leucine Enkephalin (556.2766/554.2620m/z) 
Mass and CCS Calibrant:   Major Mix 
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RESULTS AND DISCUSSION 

CONCLUSIONS 

• 29 xenobiotic compounds were isolated and identified in industrial 
and domestic indoor dust samples and where possible confirmed 
with standards 

• CCS values were used as an additional confirmatory point for 
identifications 

• Assessment of diverse xenobiotic compound class ion mobility 
behavior shows evidence for multi-halogenated compounds 
trending to significantly lower CCS values than non-halogenated 
compounds of a similar m/z 

• Use of a recently developed CCS prediction model shows 
improved fidelity to experimental values of identified compounds 
in this study over previously developed model 

• CCS prediction presents a promising avenue for support of non-
targeted study identification proposals, with 60% of compounds 
identified in dust samples having relative CCS errors <2% from 
predicted values 
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Searching for likely xenobiotic compounds used a mix of targeted and non-targeted processing approaches. These were comprised of four tactics: 
 
A. Comparison to retention time (+/- 0.1 min.), collision cross section (CCS, +/- 2.0%), exact mass (mass error < +/- 5 ppm)) and expected product ions of compounds analyzed using authentic 

standards on the same chromatographic method as the sample analysis.  
B. Comparison to CCS (+/- 2.0%), exact mass (mass error < +/- 5 ppm) and expected product ions of >400 pesticides analyzed as authentic standards in ESI

+
. 

C. Isolation of exact mass/retention time pairs using PCA, followed by chemical compound database searching (KEGG, ChemSpiderman, PubChem, DSSTox, EPA Toxcast). Proposed identifica-
tions were within a +/-5ppm mass error tolerance and at least 1 proposed product ion structure.  

D. Isolation of exact mass/retention time pairs which had Cl/Br isotopic distribution patterns from full mass table. Chemical database searching and identification criteria as in “C” including isotopic 
fidelity matching. 

 
These methods resulted in 29 proposed identifications across the dust samples. Classes included organophosphorus compounds (OPs), brominated phenols, pesti-
cides, perfluoroalkyl substances (PFAS) and PPCPs, representing previously reported classes in indoor dust. Where available, solvent standards were purchased to 
confirm Group C and D identification proposals.  Shown in the figure above is the matching high definition (ion mobility) MS

E
 (HDMS

E
) spectrum and mobility trace of OP 

cresyl diphenyl phosphate as observed in the e-waste facility dust 1 (top) and 100ng/mL authentic standard (bottom). 

Assessment of two different machine-learning derived CCS prediction programs was performed on the com-
pound identifications where authentic standard confirmation was performed. The resulting linear regression 
model is displayed below, with the Development CCS prediction model having the closest fidelity (R

2
=0.977) to 

observed CCS values from authentic standards of the compounds identified in the dust. This model was then 
used to generate CCS values for all proposed identifications in dust samples where the relative percentage error 
was within 5.15% for predicted vs. experimental CCS, as shown in the adjacent figure. Overall, 68% of the 29 
compound identifications within the 2.0% relative error criteria typically employed for confirmation with authentic 
standards. It is postulated that increasing the number of compounds similar in class those outside the 2% error 
tolerance would improve the fidelity for this study, and current results show promise of CCS predictive modelling 
for compound identification support. 

1. IDENTIFICATION 2. CCS CHARACTERIZATION 

3. CCS PREDICTION ASSESSMENT 
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[Bis(2-hydroxyethyl)amino]methyl stearate 20 219.62 0.22 --

2,4,6-Tribromophenol 20 131.91 0.32 0.95

2,6-Dibromo-4-[2-(3-bromo-4-hydroxyphenyl)propan-2-yl]phenol 20 184.92 0.22 --

2-Ethylhexyl diphenyl phosphate (EDP, DPEHP) 20 200.57 0.21 -0.50

2-Ethylhexyl diphenyl phosphate (EDP, DPEHP)_ISF 24 153.28 0.17 -0.34

2-Isopropylphenyl diphenyl phosphate 24 182.81 0.18 -0.07

2-tert-Butylphenyl diphenyl phosphate 24 195.11 0.32 -0.41

3',5'-Dibromo-4'-hydroxyacetophenone 20 137.12 0.16 1.09

Tris(2-propyl phenyl) phosphate_CCS 211.6 20 211.60 0.24 --

Tris(2-propyl phenyl) phosphate_CCS 217.3 20 217.33 0.40

Acetominophen 4 131.45 0.31 0.80

Benzyl hydrogen [2-(4-biphenylyl)-2-hydroxyethyl]phosphonate 24 187.41 0.32 --

Caffeine 20 138.19 0.22 -0.01

Carbendazim 18 137.40 0.16 0.28

Cresyl diphenyl phosphate (CDP) 24 176.53 0.22 -0.31

Triphenyl phosophate 24 170.77 0.21 --

Diuron ([M-H]
-
) 4 147.18 0.08 --

Diuron ([M+H]
+
) 4 148.99 0.31 0.36

Imidacloprid 4 153.60 0.28 0.10

Perfluorobutanesulfonic acid 20 131.90 0.28 -0.42

Perfluorodecanesulfonic acid 16 185.05 0.35 -0.07

Perflurooctanesulfonic acid 24 164.72 0.29 -1.27

Tetrabromobisphenol A (TBBPA) 20 193.21 0.19 0.13

Tetrakis(2,6-dimethylphenyl) 1,3-phenylene bis(phosphate) 20 252.19 0.38 --

Tetrakis(2-chloroethyl)dichloroisopentyl diphosphate (V6) 24 211.69 0.20 -0.20

Tetraphenyl 1,3-phenylene bis(phosphate) 20 226.44 0.37 --

Thiabendazole 4 137.98 0.36 -0.17

Triphenylphosphine oxide 24 161.62 0.20 -0.06

tris(1,3-dichloro-2-propyl)phosphate (TCDPP, TDCP) 24 176.16 0.18 -0.17

Tris(1-chloro-2-propanyl) phosphate (TCPP) 24 161.71 0.18 -0.11

Tris(2-butoxyethyl) phosphate 24 199.71 0.29 0.69

Tris(2-chloroethyl) phosphate 24 150.16 0.23 -0.17
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Comparison of CCS values vs. m/z for the identifications showed a generally positive linear relationship, consistent with previous IMS studies of small molecules 
[12-14]. Uniquely observed in this data set was multiply halogenated (Cl, Br, F) compounds having significantly smaller CCS values than compounds without hal-
ogens with similar m/z (illustrated in the figure below). Although m/z is similar due to the heavier halogens present, the atom count difference indicates the struc-
turally more compact nature of these compounds, thus explaining their more rapid passage through the ion mobility drift cell, and hence lower CCS value, then 
the non-halogenated counterparts. Shown in the table below, repeatability of CCS values across injections (CCSobs) had a mean of 0.24% RSD, and comparisons 
to solvent standard CCS values where within the 2% relative error criteria ascribed for screening studies [13,15] and therefore were suitable for further assess-

ment with predictive CCS modelling. 

Single Vector Regression (SVR) 
based CCS prediction program [16] 

Development CCS prediction pro-
gram [17] 

Differences between models include: 
-Number of compounds in model cre-
ation training set (400 in SVR vs. 
3031 in Development model) 
-Number and type of molecular de-
scriptors. 
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