DESI AND/OR LA-REIMS? ADJACENT AUTOMATED AMBIENT TECHNIQUES FOR THE PRECISE IDENTIFICATION OF CANCER TISSUE

Authors: Gabriel Stefan Horkovics-Kovats^{1,2}, Richard Schäffer¹, Csaba Hajdu¹, Gitta Schlosser², Julia Balog Affiliations: ¹Waters Research Center Kft. Budapest, Hungary ²Eötvös Loránd University Budapest, Hungary

INTRODUCTION

Recently created Automated Desorption Electrospray Ionization (AutoDESI) and Laser assisted Rapid Evaporative Ionization Mass spectrometry (LA-REIMS) are ambient techniques requiring no specific sample preparation. The imaging setups created for both technologies enable metabolic step by step profiling of target tissue from microscope slides. AutoDESI (*Figure 1.*) uses an angulated charged solvent stream for sampling, while LA-REIMS (*Figure 2.*) allows sampling through laser ablation. In surgical environments, databases can already be generated by collecting samples with CO₂ LA-REIMS. To support surgical environment with high resolution and annotated images, the imaging technologies should also be compared with CO, LA-REIMS for comparability testing of the data bases.

AIMS

Investigate advantages and disadvantages of LA-REIMS Imaging/AutoDESI:

- Regarding comparability of imaging with surgical CO₂ LA-REIMS sampling
 Regarding sampling resolution, tissue handling, spectral difference
- (quality and content) and application possibilities

METHODS

AutoDESI and LA-REIMS for imaging and surgical CO2 LA-REIMS for ex vivo sampling as applied technologies with the following samples:

- Tumorous and healthy tissue on veterinary sample
- Fresh frozen tumorous veterinary sample for application test and spectrum comparison
- Deparaffinized FFPE tumorous human sample for application test and spectrum comparison
- Fresh frozen mouse brain sample for sampling resolution and method invasiveness comparison

Extracted solvent (AutoDESI) and generated aerosol (LA-REIMS) are introduced into a Xevo[™] G2-XS ToF MS (Waters Corporation) equipped corresponding DESI autoloader and REIMSTM source. Multivariate statistics including Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) was used for point-by-point pixel classification and model generation

RESULTS

1. Imaging method comparison with CO₂ LA-REIMS

REIMS (CO2), LA-REIMS Imaging and AutoDESI (Figure 3.) Denser accumulation of spectra for LA-

Significant separation of techniques and

healthy/tumorous tissue through LA-

REIMS, and greater variance for AutoDESI (Figure 3.)

Table 1. Classification of LA-REIMS Imaging data set of

Table 2. Classification of CO2 LA-REIMS sampled ex vivo data set of Figure 3 without

Figure 3			AutoDESI		
	AutoDESI	LA-REIMS (CO ₂)		LA-REIMS Imaging healthy	LA-REIMS Imaging tumour
LA-REIMS	0	90	LA-REIMS ex vivo healthy	37	14
Imaging	U	90	LA-REIMS ex vivo tumour	0	31

- · LA-REIMS Imaging data 100% classified into CO2 LA-REIMS group, so different LA-REIMS applications can be compared with each other (Table 1.): Consequently, better comparison to surgery environment of CO2 laser sampling compared to AutoDESI
- · Differentiation of healthy and diseased tissue resulted in 83% correct classification of CO2 LA-REIMS data on LA-REIMS Imaging database (Table 2.)
- · Further investigation of the differences of the two laser technologies for more precise comparability is necessary

2. Detailed imaging technology comparison (spectra, resolution, application)

Figure 4. Combined and lock massed spectra of 50 from mouse brain cortex sampled with AutoDESI (black) and LA-REIMS Imaging (Purple)

Figure 5. PC1 Loading plot of mouse brain cortex from Figure 4. showing most important peak differences between LA-REIMS and AutoDESI sampling

Identified peak list significant for LA-REIMS Imaging and AutoDESI sampling from Figure 5.:

LA-REIMS peaks:
647.45 : PA(32:0)
661.45 : LPA(34:0) and/or PA(34:7)
673.45 : PA(34:1)
687.45 : PS(30:1) and/or PA(35:1) and/or DG(42:10)
699.55 : PE(34:1)

701.55 : PE(34:0) and/or PA(36:1)
709.45 : PA(P-38:3) and/or PE(P-36:2)
721.45 : PE(36:4)
727.55 : PE(36:1)
735.45 : PI(P-28:1)
747.55 : PE(38:5) or PG(34:1)

Figure 1. AutoDESI

DESI autoloader

Heated transfer line

High performance sprayer

Auto measurement of up to 80 slides

section sampled on 50 um resolution (left side sampled e): Tissue

Figure 9. Fresh frozen, 10 µm thick, mouse brain npled on 50 µm resolution on the left and 25 µm re the right side: Sampling resolution test brain section sampled on 50 µm resolution or

â

Figure 2. Boxed LA-REIMS

- Optical parametric oscillator
- Self made optical path focusing
- Commercial motorized x-y-z stage Laser-safe box cover
- For Research Use Only. Not for use in diagnostic procedures

Comparative observations

- AutoDESI smoother due to sprayer spot size
- LA-REIMS has spot-byspot detail due to laser . spot size
- Overall higher intensities with AutoDESI (10*e5), magnitude lower for LA-REIMS
- Setup specific intensive peaks

Sampling of deparaffinized FFPE section not possible

for LA-REIMS (10*e3)

AutoDESI has light removal of tissue but still

enough remaining for resampling

resampling possible

Complete ablation of tissue for LA-REIMS, no

with AutoDESI Sampling of deparaffinized FFPE section possible with

LA-REIMS Very little phospholipids present with LA-REIMS Very low overall intensity

Ire 6. Fresh frozen, tumorous, 10 µm thick, veterinary a sampled on 50 µm resolution: **Tissue distinction test**

Figure 7. Deparaffinized FFPE, tumorous, 10 µm thick, human ection sampled on 50 µm resolution: deFFPE application test

- Slightly better resolution difference noticeable for AutoDESI on similar signal intensities
- LA-REIMS (focus spot size of ~48 µm): Oversampling occurs for 25 µm resolution
- Very low intensity on 25 µm for LA-REIMS

CONCLUSION

- LA-REIMS Imaging data can be compared with LA-REIMS CO₂ data, but further investigation is needed to ensure more precise comparability
- LA-REIMS spectra feature more abundant PEs with ammonia loss (e.g. 699.5 m/z) and AutoDESI spectra featuring more abundant PIs (e.g. 885.5 m/z)

AutoDESI peaks:

Autobest peaks: 774.55 : PE(P-40:6) 788.55 : PS(36:1) 834.55 : PS(40:6) 857.55 : PI(36:4)

885.55 : PI(38:4)

- AutoDESI is better for samples where a high signal strength and resampling is needed
- LA-REIMS Imaging allows visualization of deparaffinized FFPE samples

TO DOWNLOAD A COPY OF THIS POSTER, VISIT WWWWTERS.COM/POSTERS Xevo and REIMS are trademarks of Waters Technologies Corpor

PARED WITH THE PROFESSIONAL SUPPORT OF THE DOCTORAL STUDENT SCHOLARSHIP PROGRAM THE CO-OPERATIVE DOCTORAL PROGRAM OF THE MINISTRY OF INNOVATION AND TECHNOLOG FINANCED FROM THE NATIONAL RESEARCH, DEVELOPMENT AND INNOVATION FUND

188.6 m/z	382.8 m/z
A BANK	
1.67 mm	1.4 888
Figure 8. Fresh frozen, 1	10 µm thick, mouse brain