

Development of methodology for the analysis of IMPURITIES in ETHYL ACETATE APPLICATION NOTE AN 177

Introduction

Ethyl Acetate is the ester of ethanol and acetic acid. It is a colorless liquid with a characteristic sweet smell of fruit (pear), and it is manufactured on a large scale for use as a solvent due to its dilution properties.

It is widely used in food packaging industry, therefore it is important that this solvent undergoes rigorous quality control testing to ensure that unsafe levels of impurities are not present.

GC is the technique of choice for the determination of impurities in solvent.

In this work a fast, reliable and easy method for the determination of the impurities in Ethyl Acetate is illustrated.

Food Packaging

SYSTEM CONFIGURATION

Master GC Gas Chromatograph				
OVEN				
Temperature (°C)	Time (min)	Rate (°C/min)		
35	0	2		
40	0	7		
60	0	15		
180	1			
INJECTOR				
Temperature (°C)	250			
Flow (mL/min)	0.6			
Split	1:60			
COLUMN				
Lenght	Diameter (mm)	Film µm		
20	0.18	1		

Sample

A standard solution of 11 typical Ethyl acetate impurities was used to prepare 5 different calibration levels in the range 0.05%-0.45% v/v for each compound.

Table 1: Master GC Parameters

RESULTS

Figure 1: Chromatogram of standard solution 5% v/v for each compound

Figure 2: Linearity in the range 0.05-0.45% v/v

	Compound	R ²
1	2-propanol	0.9946
2	Acetone	0.9938
3	1-propanol	0.9942
4	Isobutanol	0.9966
5	THF	0.9942
6	2-Metoxyethanol	0.9949
7	isopropil acetate	0.9949
8	1-metoxy 2-propanol	0.9965
9	n-Propyl acetate	0.9898
10	4-Methyl-2-Pentanone	0.9964
11	2-Ethoxyethyl acetate	0.9972

www.dani-analitica.com

The contents of this publication are for reference and illustrative purposes only. Information, descriptions and specification are subjected to change without notice. DANI Analitica assumes no responsibility and will not be liable for any errors or omissions contained herein or for incidental, consequential damages or losses in connection with the furnishing, performance, or use of this material.

AN_177