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ABSTRACT
A mass spectrometry based chemical sensor consisting of 
a headspace autosampler directly coupled to a quadrupole 
mass spectrometer was used in three different food and 
fl avor applications; strawberry fl avors, whiskeys and soft 
drinks. This instrument integrates multivariate data analysis 
in which the mass spectra of the samples are used as fi n-
gerprints. Inconsistencies in raw materials were examined 
by analyzing fl avors. Possible adulteration was studied by 
analysis of two whiskies. Multivariate models were able to 
detect whiskeys aged for different periods of time. Diffe-
rences in similar product lines were studied using four soft 
drinks. Using this chemsensor differences were observed 
in one soft drink packaged in aluminum cans and plastic 
bottles.
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Figure 1. Gerstel ChemSensor 4440.

INTRODUCTION
Identifi cation of product adulteration, contamination or 
inconsistency in food and fl avor samples requires short 
analysis times. Chemical sensors are ideal for these 
types of applications because they provide real-time re-
sults. While analysis times are crucial, accuracy of the 
analysis should never be compromised. It is therefore 
desirable to use a reliable and stable technology that 
is robust to environmental changes such as humidity 
or temperature [1]. Quadrupole mass spectrometry is 
a robust technique that has been widely used in food 
and fl avor applications mostly coupled to a gas chro-
matograph. 

In this study headspace sampling without chroma-
tographic separation is performed using a quadrupole 
mass selective detector. The resulting composite mass 
spectrum of each sample is used to train the chemical 
sensor using multivariate pattern recognition tech-
niques. Unknown samples are easily compared to 
standards using integrated software that can be easily 
customized to refl ect pass or fail decisions.

In order to illustrate the potential of this technolo-
gy, three different applications will be explored. For 
quality control analysis a series of strawberry fl avors 
are examined [2]. Differences in these samples could 
refl ect inconsistencies in raw materials important to 
a manufacturer of a more complex product such as 
yoghurt. For identifi cation of adulteration, whiskeys 
aged different periods of times spiked with adulterants 
are investigated [3]. Differences in product lines were 
studied using soft drinks [4].

EXPERIMENTAL
Materials. Commercial strawberry fl avors used were 
obtained from Zentis, Germany. A lesser value whis-
key and whiskeys aged 4 and 10 years and soft drinks 
were purchased at a local store. Soft drink brands A 
and B were purchased in aluminum cans. Brand C was 
purchased in transparent plastic bottles (C-bottle) as 
well as aluminum cans (C-can).

Instrumentation. The chemsensor used was a Gerstel 
ChemSensor 4440 (Figure 1) that includes a headspace 
sampling unit (7694, Agilent Technologies) with a mass 
selective detector (5973N, Agilent Technologies). This 
instrument integrates chemometric software from Info-
metrix (Pirouette 3.02 and Instep 1.2). The instrument 
was used in the scan mode for the strawberry fl avors 
(35-150 amu) with 1.5-min runs. With the six-sample 
overlap-heating feature of the autosampler oven, samp-
les can be analyzed every 3 to 4 min. Therefore a tray 
of 44 samples can be analyzed in about 3 hours. The 
soft drinks were scanned from 46 to 150 amu with 0.75-
min runs. Experiments for the whiskey samples were 
1.00-min runs with a scan range of 48 to 170 amu. 

Headspace sampling. 1-ml aliquots of each different 
strawberry fl avor were placed into 10-mL vials, which 
were crimped and equilibrated for 15 minutes at 60 
°C before headspace sampling. Since the GERSTEL 
ChemSensor 4440 does not use a column for a sepa-
ration prior to the mass selective detector (MSD), the 
entire headspace of each sample is introduced into 
the MSD. 5-mL aliquots of soft drink samples and 
whiskeys were equilibrated 20 minutes at 80 °C and 
75 °C respectively. 
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RESULTS AND DISCUSSION
Direct transfer of headspace volatiles using the GERSTEL ChemSensor 4440A results in fast analysis times. For 
example, Figure 2 shows the total ion chromatogram (TIC) obtained in 0.75 minutes for two soft drinks samp-
les. Since there is no chromatographic separation, a single broad peak is normally obtained. The corresponding 
mass spectrum of each sample can then be used as a fi ngerprint. For example, Figure 2A shows the MS for the 
soft drink of Brand C from a plastic bottle. Comparison to the MS obtained for Brand C in the aluminum can 
(Figure 2B) indicates differences in the abundances of some ions such as 46, 69, 93, 119, etc.

Figure 2. TIC and MS for brand C of soft drink. (A) in plastic bottle and (B) in aluminum can obtained with 
Gerstel ChemSensor 4440.
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The mass spectrum obtained for each sample can also 
be represented as a line plot (Figure 3). Customized 
macros, especially designed for the GERSTEL Chem-
Sensor 4440A, create an ASCII fi le for each sample 
and a global, composite matrix for each sequence. 
Chemometrics data analysis is then performed on the 
composite matrix that contains the mass spectra of the 
samples. As seen in Figure 3, the line plot data can visu-
alize differences between samples as in ion abundances 
or the presence or absence of certain masses.
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Figure 3. Mass spectra from standard (A) produces a 
line plot (B) that can be overlaid with other samples 
(C). Special macros create the ASCII fi le (D) for each 
sample and compile each sequence into a global data 
matrix.

Figure 4 illustrates the four basic steps necessary to use 
the GERSTEL ChemSensor 4440. During the training 
mode, the headspace of standard samples is introduced 
into the MSD. The mass spectra of these standards 
become like “fi ngerprints” for future unknown com-
parisons. In the second step, multivariate models are 
created that take into account all the masses collected 
in the scan range set by the operator. In the predic-
tion mode, unknown samples are compared to the 
chemometric model. Last, fi nal answers are obtained 
for unknown samples that can easily be interpreted by 
line operators.

Figure 4. Steps used to obtain answers using the 
GERSTEL ChemSensor 4440.
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Reliable chemometric models include only stan-
dards representative of acceptable samples. Since 
random and systematic errors are normally part of 
every measurement, the raw data needs to be closely 
examined. Assuring the validity of the raw data is 
accomplished using exploratory algorithms, such as 
hierarchical cluster analysis (HCA) and principal com-
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Figure 5. Exploratory analysis of whiskeys samples. A) Hierarchical cluster analysis using Euclidean distance 
and incremental linkage. B) Projections of the mass spectra of whiskeys samples into the space of the fi rst three 
principal components.

ponent analysis (PCA). The goal of exploratory data 
analysis is to detect unusual samples (outliers) and to 
detect natural groupings in the data set. For example, 
Figure 5 shows the dendrogram obtained using HCA 
on the bourbon samples using Euclidean distance and 
incremental linkage.

Two clear clusters are formed but also an unusual 
sample from bourbon aged 4 years can be seen in the 
lower part of the dendrogram. A scores plot obtained 
using PCA on the same data set indicates the same 
unusual sample. A reliable model must exclude this 
unusual sample from any chemometric model. 

Once the raw data has been validated, classifi cation or 
regression models can be built. The GERSTEL Chem-
Sensor 4440A offers two classifi cation algorithms: soft 
independent modeling of class analogy (SIMCA) and 
K-nearest neighbors (KNN). Re gres si on models inclu-
de principal component regression (PCR), partial least 
squares (PLS) and classical least squares (CLS).
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Figure 6.  Projection of the fl avors mass spectra into the space of the fi rst three principal components. 1&2=straw-
berry, 3=raspberry, 4= pear and 5= passion fruit.

An example of a class projection plot for a SIMCA model is shown in Figure 6. 

Factor2

Factor1
Factor3

3

5

1
2

4

For this type of analysis four different commercial 
fl avors were collected from different suppliers. In-
consistencies in the same type of fl avor from dif fe rent 
suppliers were detected using a classifi cation model. 
SIMCA develops principal component models for each 
category of the training set. The bounding ellipses form 
a 95% confi dence interval for the distribution of the-
se categories. In this case, the projection of the mass 
spectra of the four fl avors indicates good clustering 
between samples without overlap. Another indication 
of a good SIMCA model is the interclass distances 
between samples (Table 1). 

Table 1. SIMCA interclass distances.

This measurement indicates how well the classes are 
separated from each other. As a good rule of thumb, 
interclass distances greater than 3 are considered well 
separated. For the fl avor samples these distances indi-
cate good separation between samples.

CS1&2@2 CS3@2 CS4@1 CS5@2

CS1&2 0.00 10.02 94.02 81.38

CS3 10.02 0.00 81.49 72.54

CS4 94.02 81.49 0.00 197.07

CS5 81.38 72.54 197.07 0.00
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Figure 7. Prediction (red) of strawberry/raspberry fl avor mixtures vs. a PLS model (blue).

A PLS regression model was also created for fl avor 
samples. 

Figure 7 shows the prediction vs. the known con-
centration. Zero stands for pure strawberry and 1000 
for pure raspberry fl avor (Table 2). The two samples 
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Table 2. Ratio of strawberry and raspberry fl avors used 
to create a PLS model.

Table 3. Ratio of strawberry and raspberry fl avors used 
to predict against the PLS model.

annotated 350 are classifi ed as pure raspberry fl avors 
(Table 3). For these samples addition of strawberry 
fl avor (650 μL) was accidentally forgotten. Slight 
discrepancies in the prediction of the 210 μL samples 
suggest slight error in their preparation. 

Raspberry [µL] Strawberry [µL]

0 1000

100 900

190 810

250 750

275 725

500 500

700 300

900 100

1000 0

Raspberry [µL] Strawberry [µL]

82 918

170 830

210 790

350 0

600 400

800 200

950 50
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Detection of adulterated bourbons is shown in Figure 8. 
In this plot, the mass spectra of spiked bourbons were 
projected into the space of the standard samples (Figure 
5). The ellipses in the plot do not represent statistical 

information and are provided for visual identifi cation 
of clusters only. It is clear that a PCA plot can easily 
detect differences in the mass spectra of the adulterated 
samples. 
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Figure 8. Projection of 98% Bourbon A with 2% Bourbon B in the space of the fi rst three principal compon-

Projection of the mass spectra of the four soft drinks 
into the space of three and two (Figure 9) principal 
components shows good clustering between replicas. 
Since over 90% of the variance was captured within 
the fi rst 3 PCs, we can be confi dent that differences in 
the samples scores are differences in the soft drinks 
headspace. The fi rst PC (horizontal axis in Figure 9B) 

explains the difference between brand C in the plastic 
bottle and the rest of the samples. This indicates that 
the headspace of brand C in the bottle is very different 
than the headspace from the other sodas. The second 
PC (vertical axis of Figure 9B) indicates differences 
between brands B to A and to C-can.
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CONCLUSION
The fast and accurate classifi cation of samples using 
an instrument that integrates multivariate statistics 
with mass spectrometry technology is now possible. 
The GERSTEL ChemSensor 4440A has proven to 
be capable of detecting differences in the quality of 
incoming fl avors. 

Using PCA adulterated bourbons were detected in 
the low percentage range as well as differences in the 
chemical composition of soft drinks headspace. These 
results are also in agreement with cluster analysis. 
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Figure 9. Projection of the sodas mass spectra into the space of the fi rst three (A) and two (B) principal com-
ponents.
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