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MOBILITY Q-TOF LC/MS
The Mea of Confidence

Applications Highlights

The Agilent 6560 lon Mobility Q-TOF LC/MS system is the first commercially
available uniform field ion mobility system. When coupled with the Agilent Infinity
[ UHPLC system, it provides a new dimension of separation power combining

the selectivity of liquid chromatography, ion mobility, and mass spectrometry
techniques.

Laboratories can accelerate research and gain greater confidence in compound
identification with the additional dimension of mobility separation and collision
cross section, as well as the structural information provided by ion mobility
measurements. This instrument simultaneously provides high sensitivity

and accurate collision cross section measurements. This document provides
an overview of the technology and examples of real-world applications to
demonstrate its capabilities.

What is lon Mobility?

Principles of ion mobility separation

In a classical uniform field drift tube, the electric field within the drift cell moves
ions through the device while the drag force acts against the electrical force that
moves the ions, due to the collisions of these ions with the stationary buffer gas
molecules. The drag force experienced by the ions depends on their collision cross
sections (a function of size and shape), electrical charge, and mass. Multiple
charged ions move through the buffer gas more effectively than single charged
ions, because they experience a greater force due to the electric field. lons with
larger cross sections are slowed more easily by collisions with the buffer gas

in the drift tube. The drag force resulting from collisions of ions with buffer gas
molecules acts against their acceleration. Thus, an equilibrium state is quickly
reached, and the ions start moving with constant velocity (V), proportional to the
applied electric field (E). The proportionality constant (K) is the gas phase mobility
of an ion. This process can be expressed in the equation: V = KE.
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Mobility is a function of an ion’s
interaction with the buffer gas,

its mass, and its electrical charge.
Furthermore, mobility depends on the
gas temperature and the mass of the
buffer gas molecules.
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+ L is the length of the drift cell
* t,is the corrected drift time

» Eis the electric field across the drift
cell

* Pis the pressure of the drift cell

+ Tis the temperature of the buffer
gas

Why lon Mobility?

Achieve greater analytical
detail for complex samples

The 6560 system was developed with
the collaboration of scientists from

a number of academic institutions
and government laboratories. In
multiple studies, the instrument has
demonstrated the ability to reveal
significantly greater analytical detail
for complex samples, compared to
high resolution mass spectrometry
technology alone.

Researchers have reported that while
high resolution mass spectrometry has
become the analytical cornerstone for
proteomics, metabolomics, and other
research applications requiring the
analysis of highly complex samples,
there has also been significant interest
in the use of ultra-fast orthogonal
techniques to provide added
dimensions of separation.
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Figure 1. Schematic of an Agilent uniform field drift tube coupled to a quadrupole time-of-flight mass
spectrometer using a hexapole ion guide. The Q-TOF MS has a mass resolution of over 40,000, and five orders of
magnitude dynamic range in Q-TOF mode of operation.

Finding and confirming minor
components

The Agilent 6560 ion mobility system
can provide researchers with greater
analytical detail for the following

* Readily detect low femtogram
challenges:

analytes in complex matrices using
. . electrodynamic funnel technology.
Resolving structural isomers

Confidently identify compounds
using All lons MS/MS.

* Probe the molecular structure .
and conformation of peptides and
proteins using high-resolution ion

mobility separation. Preserving protein conformations

+ Easily study gas phase peptide and

Directly determine molecular size protein structures.

(from collision cross sections)
without reference standards or

L * Effectively minimize ion heating
calibration tables.

effects to maintain molecular
. . conformations.
Increasing peak capacity
+ Effectively resolve individual
components in complex mixtures
with the combined power of UHPLC,
ion mobility, and mass spectrometry.

* QObtain optimal ion mobility
separation with double-grid trapping
technology.



Agilent lon Mobility:
higher quality MS/MS spectra
at trace levels

The Agilent 6560 lon Mobility Q-TOF
LC/MS system enables direct
collision cross section (CCS or Q)
measurements without calibration
standards. It operates with uniform
low field conditions, allowing the drift
time information for ions to be used
to determine collision cross section
measurements. With the Agilent
exclusive iFunnel technology, this
instrument dramatically increases

the ion sampling into the mass
spectrometer, and results in higher
quality MS/MS spectra at trace levels.
For more details on this technology,
read Agilent Technical Overview
5991-3244EN.

Realize significant gains in ion
mobility performance

The 6560 delivers an optimized uniform
drift field mobility cell and interface to
a high resolution Q-TOF instrument,
providing a significant gain in ion
mobility performance. The use of ion
funnel technology pioneered by Agilent
for both triple quadrupole and Q-TOF
instruments over the past 3 years has
been incorporated into the IM-QTOF
system. This has resulted in combined
ion mobility separation and mass
resolution with high sensitivity.

Applications in this document
demonstrate that the instrument
delivers:

» Greater separation of lipids and
glyco-peptides

* More accurate collision cross
section measurements, enabling
more confident characterization
of structural conformations and
isomeric compounds

* Greater numbers of trace level
peptides in complex matrices

» Preservation of structural fidelity of
metallo-proteins in solutions

To maximize the analytical utility

of this system, Agilent has also
developed software tools for the
visualization of ion mobility data.
Agilent MassHunter Software is
designed to allow researchers to
interrogate mobility/mass domain
data, and easily determine collisional
cross section values with high
precision and accuracy. Agilent also
provides advanced browsing capability
and feature finding tools to take
advantage of the mobility data.

On the following pages, we’ll share
applications from collaborators using
the Agilent 6560 for a variety of
analyses. The examples are grouped
into four categories, as discussed, to
demonstrate the key capabilities of the
system:

1. Resolving structural isomers

2. Increased peak capacity and
specificity

3. Find and confirm minor
components

4. Preserve protein conformations




Resolve Structural Isomers

Application examples

Separation of isobaric pesticides
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This example shows the combined separation power of UHPLC, ion mobility, and mass resolution. Two pesticides, differing in
mass by less than 0.2 millidaltons, require overall separation power of approximately 2,000,000x to resolve them. B) shows the
theoretical plot of the two compounds. C) and D) show clear IMS drift separation of the two compounds (blue and red), which
are separated by 1.144 milliseconds in drift time. Even at a concentration difference of 10:1 between the two compounds, the
drift resolution is sufficient to separate the two isobaric compounds without the use of UHPLC.



Resolve Structural Isomers Examples

Separation of isomers: citrate and isocitrate
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Citrate and isocitrate are isomers that are very similar in physical properties and structure. This presents challenges in their
bio-analytical characterization. The Agilent 6560 lon Mobility Q-TOF LC/MS shows clear resolution between these isomers.



Resolve Structural Isomers Examples

Separation of methylmalonic acid (MIMA) and succinic acid (SA)
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This is another example showing the ion mobility separation of the isomers of MMA, which is the vitamin B12 deficiency
marker. In human plasma, its isomer (SA) is approximately 20 to 100x higher in concentration than MMA. These isomers are
very difficult to separate by HPLC due to their polar properties. Our data demonstrate that the 6560 can resolve these isomers
clearly, and the result can be used for accurate quantitation.



Resolve Structural Isomers Examples

Resolving structural sugar isomers C,H.,0..

Raffinose

Resolving two isobaric tri-saccharides
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This example demonstrates how ion mobility can be used to resolve two different isobaric tri-saccharides with the same
exact mass. These isomeric structural differences cannot be resolved using an traditional premium high resolution mass
spectrometry system.



Resolve Structural Isomers Examples

IM Q-TOF Analysis on the silymarin family
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Silymarin, the active extract from plants, contains a mixture of flavonolignans consisting of silibinin, isosilibinin, silicristin,
silidianin, and others. The most active compound in silymarin is silibinin. It has been extensively used in patients with liver
disease. lon mobility can be used to characterize these silymarin isomers. In this study, various isomers of silymarin are
separated, and each of their unique collision cross-section values are determined (data not shown).



Resolve Structural Isomers Examples
Carbohydrates analysis by IM-MS$S
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(Profs. John McLean and Jody May, Vanderbilt Univ.)

A mixture of lacto-N-difucohexaose 1/1l isomers, which differ by the location of the fuctose group, is discovered in a complex
sample mixture using the 6560 IM-Q-TOF. Upon individually analyzing the standards, the observation of two species of human
milk oligosaccharide isomers is confirmed.



Resolve Structural Isomers Examples

GC-APCI/IMS-Q-TOF analysis of ASTM compound mixture
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In this study, we use the GC-APCl interface coupled with ion mobility to analyze the ASTM standard compound mixture. For
example, at the GC peak of 4.3 minutes, more than three separated compounds with many associated isomers in the mass
range of 110 to 125 Da were found. Therefore, the Agilent 6560 provides higher peak capacity to successfully resolve the

different isomers.
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Increased Peak Capacity/Specificity

Application examples

lon mobility provides greater specificity
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Another value of ion mobility is to effectively clean up background chemical noise from a crude bacterial extract. This mobility
heat map shows hundreds of components in the sample with overlapping compounds at nearly every m/z value. In the
highlighted polygon region of the heat map, see the integrated mass spectrum that has too many ions to provide confident
compound identification. The bottom graphic shows the mobility-filtered mass spectrum, which eliminates many of the
overlapping chemical background ions. This enables fast and confident compound identification.
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Increased Peak Capacity/Specificity Examples

lon mobility provides greater specificity

RNAseB Native glycans anaysis  Enable the extraction of ion series of interest - a group of glycans from matrix for further study. (Prof. Cathy Costello, Boston University)
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In this example, Professor Cathy Costello at Boston University uses an Agilent 6560 lon Mobility Q-TOF LC/MS system to
selectively isolate a group of RNaseB glycopeptides from the background matrix. A selected region from an LC chromatogram
(blue) is displayed in the IMS-MS heat map (insert). One region of distinct mass differences (white box), as shown by

the trend line, is clearly distinguishable as a trendline with increasing number of monosaccharides in the glycopeptide
compositions. The signal from these glycopeptide ions can be selected in the mobility trace and separated from other ions
present in the spectrum, for further study.
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Increased Peak Capacity/Specificity Examples

lon mobility simplifies complex spectra
RNAseB glycopeptides NLTK- Man5 through 9
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In this example, ion mobility is used to simplify complex glycopeptide spectra. A) RNaseB glycopeptides on a custom
HILIC-C18 HPLC-chip on the 6560 shows all of the combined ions corresponding to compounds eluting in the selected
retention time window. B) RNaseB glycopeptides on HILIC-C18 chip on the 6560 with IMS separation shows a simplified
mobility spectrum for the different glycoforms of a single glycopeptide. The peaks with a distinct delta of 162 correspond to
increasing number of mannose units in the high-mannose N-linked glycopeptide NLTK, as labeled.
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Increased Peak Capacity/Specificity Examples

Lipid analysis: Mixture of L-a-phosphatidylethanolamine (PE) lipids
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In this example, a class of lipids, the phosphatidylethanolamines, is separated by ion mobility. Professor John McLean's group
at Vanderbilt University quickly identifies over 200 different lipids and oligomers that fall on a specific trend line. Another
interesting discovery is made while evaluating the data within the main trend of the lipids; they observe a secondary trend
consisting of differing degrees of unsaturation.
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Increased Peak Capacity/Specificity Examples

lon mobility of polymeric ink dispersants
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In this example, ion mobility is used to identify different hydrocarbon ion series in polymeric ink dispersants. The trend-lines
illustrating the various charge-state hydrocarbon ion series are clearly resolved. In addition, the ion mobility specificity can
significantly reduce the background matrix effect.
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Increased Peak Capacity/Specificity Examples

lon mobility of polymeric ink dispersants — hydrocarbon molecules
Resolving overlapping charge-state isotopes by ion mobility
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In this example, ion mobility is used to resolve overlapping charge-state isotopes that were unresolved by mass resolution
only. This information is used to compare and confirm the quality level of the various ink products.
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Increased Peak Capacity/Specificity Examples
lon mobility of diesel (hydrocarbons) sample
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In this example, ion mobility is used to identify different hydrocarbon ion series in a diesel sample. The middle panel shows

how ion mobility enables the extraction of ion series of interest for further study. The lower panel shows how ion mobility
significantly reduces the background noise.
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Find and Confirm Minor Components

Application examples
lon mobility provides greater detection for proteomics
Protein digest, Dr. Erin Baker, PNNL /.-
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In this example, ion mobility is used to enhance the identification of tryptic peptides in mouse (A) and human blood plasma,
which is useful for analyzing disease states. The inset graphic (B) shows a zoomed-in region of the 3-D plot where 10 peptides
were identified easily with IMS in 0.5 seconds of the 15-minute LC run (red circles). By comparison, the same sample was run
with a 100-minute LC gradient, using a high-resolution MS instrument, which yields only three identifications at the same
region (indicated by red asterisks). In summary, the 6560 detects > 3x the peptides > bx faster.
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Find and Confirm Minor Components Examples

IMS-MS for discovery proteomics: transmembrane spanning peptides of HelLa digest
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In this sample, we are able to identify multiple potential isoforms of transmembrane-spanning peptides using ion mobility.
Using Agilent All lons MS/MS and an MS/MS library from our Spectrum Mill proteomics software, we use Skyline software
from the MacCoss Group at the University of Washington to match some transmembrane-spanning peptides with known
helical structures. In this way, we are able to determine the relative quantitation ratio between an helical form (condensed,

lower dt) and a denatured form (higher dt).
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Find and Confirm Minor Components Examples

Sensitivity: detection limit of spiked compound in urine
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This example shows a comparison of detection limits between the Q-TOF and the IM Q-TOF modes of the system for a
spiked compound (biological marker) in urine. Although very similar limit of detection (LOD) sensitivity is observed between
these data acquisition modes, superior signal-to-noise (S/N) data using the IM-Q-TOF mode are obtained. Improvement in
quantitative results are achieved due to the much lower background noise level.

20



Preserve Protein Conformations Examples

IM Comparison on Cytochrom C (+8): (uniform drift tube versus travelling wave)
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The minimal ion heating effect from the Agilent 6560 lon Mobility Q-TOF LC/MS system is critical for maintaining a native
protein conformation. By altering the trap RF voltages, we can change the protein conformation from its native state (S1) to
various degrees of denatured states (S2—S5). By comparison with an alternative travelling wave IM system, the Agilent drift
tube IM system requires a much lower energy, minimizing the ion heating effect that causes the denaturation of the protein
molecules.

21



Preserve Protein Conformations Examples

lon mobility Q-TOF on protein isoform analysis
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A protein sample (CRY34AB) under native and denaturating conditions is analyzed using ion mobility. Using just the IM

information, it appears that there are possibly three isoforms, which are clearly separated. The IM results also confirm that

the different isoforms generate different charge envelopes, indicating various protein folding structures, consistent with

time-consuming X-ray crystallography.
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Preserve Protein Conformations Examples

Resolving isoforms of 1gG-2
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)
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The 1gG-2 molecule has two different conformations (isoforms A and B) under native conditions. However, normal LC/MS

conditions, with a high content of organic solvent and 0.1% formic acid, will destroy the native structure. Only one denaturated
protein conformation can then be detected.
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Preserve Protein Conformations Examples

IM-Q-TOF Analysis of native IgG-2
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Two possible conformations detected

5,000 5,500 6,000 6,500 7.000
Mass-to-charge (m/2)

Under native conditions (100 mM ammonium acetate), the IgG-2 charge envelope will shift to higher m/z (5,000—7,000 range).

Two protein conformations were clearly detected. Isoform A is the true native structure, and isoform B represents the 1gG-2
with possible mismatch in disulfide bonds.
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Preserve Protein Conformations Examples

IM-Q-TOF Analysis of native IgG-1
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Two protein conformations are detected in the native IgG-1 sample using the 6560 system.
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Preserve Protein Conformations Examples

IM-Q-TOF Comparison of IgG-1 and 1gG-2
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1gG-2 (22+ charge state) has more of the B form

In this example, ion mobility is used to determine the relative amount of isoforms A and B in the IgG-1 and IgG-2 sample.
In a side-by-side comparison, IgG-1 posts a slightly higher percentage of isoform A (native) than B at its 22+ charge state
molecule. Conversely, a higher percentage of isoform B is detected in the IgG-2 sample.
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lon Mobility Adds A
New Dimension to Your
Research

The Agilent 6560 lon Mobility Q-TOF
LC/MS is the first commercial
instrument that enables researchers to
address truly fundamental questions
about structure, function, and the
workings of complex biological
systems with real confidence and
ease. Combining the orthogonal
separation techniques of liquid
chromatography, mass measurement
and ion mobility tremendously
increases peak capacity, giving you the
ability to more effectively characterize
a variety of molecules.
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New Features of
MassHunter Software with
lon Mobility Allow You To
Go Deeper into Your Data:

* Novel Swarm Autotune tunes the
mass spec in one quarter of the
time

+ 4-D feature finding in IM-MS
Browser

+ Single field CCS calculation
+ Differential profiling using Mass
Profiler, including statistical analysis

and PCA plots

Learn more at www.agilent.com/
chem/masshunter
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Learn more
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Contact an Agilent Representative
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