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Introduction
Post-translational modifications (PTMs) on proteins such as monoclonal antibodies 
(mAbs) are critical quality attributes (CQAs) that define the drug efficacy and 
safety. Characterization of PTMs is a difficult task that has been accelerated by 
advancements in analytical techniques. In the biopharma industry, peptide mapping 
is a routinely used method to confirm protein identity. It involves enzymatic 
digestion to produce peptide fragments, followed by liquid chromatography (LC) 
separation, detection, and identification of peptides. Peptide mapping can be used 
to identify single amino acid changes as well as PTMs when coupled with mass 
spectrometry (MS) detection. LC/MS is the preferred technique for mapping PTMs. 
However, due to the complexity of protein digest, the separation of peptide maps 
is a challenging task. High-resolution and reliable peptide mapping separations are 
essential for confident identification of PTMs. The current LC/MS methods with 
MS-friendly formic acid (FA) ion-pairing agent provides increased signal intensity 
compared to other modifiers. The drawback with FA is broader, tailing peaks with 
many C18 stationary phases leading to coelution of peptide pairs. Characterization 
of PTMs requires the high-resolution LC separation of modified and unmodified 
peptides from a complex tryptic digest. The peptide retention and MS signals can be 
affected by the choice of reversed-phase LC columns and mobile phase ion‑pairing 
agents, respectively. Thus, correct LC column choice is critical for enhanced 
separation of PTM-containing peptides.
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Previously, we demonstrated improved peptide separation 
using an Agilent AdvanceBio Peptide Plus column [1]. 
The column features a positively charged surface and a 
C18 stationary phase, providing high-efficiency separation 
of peptides with narrow peak shapes. In this study, we 
evaluated the performance of the AdvanceBio Peptide Plus 
column for the separation of PTM-containing peptides. 
Peptide mapping of a therapeutic mAb was performed using 
this novel charge hybrid/C18 hybrid superficially porous 
column coupled to an Agilent 6545XT AdvanceBio LC/Q-TOF 
system. The superior performance of the AdvanceBio Peptide 
Plus column delivered high-efficiency peptide map separation. 
This high‑efficiency separation with high mass accuracy, 
generated reliable mAb peptide maps with high sequence 
coverage.

Materials
Trastuzumab was bought from a local pharmacy, and stored 
according to manufacturer’s instructions. DL‑Dithiothreitol 
(DTT), iodoacetamide (IAA), formic acid (FA), and 
LC/MS grade solvents were bought from Sigma‑Aldrich. 
High‑quality sequence grade trypsin was obtained from 
Agilent Technologies, Inc.

Trypsin digestion
Before the digestion of the mAb with trypsin, the disulfide 
bonds were reduced (DTT) and alkylated (IAA) under 
denaturing conditions (guanidine-HCl). This pretreatment 
ensured complete mAb denaturation, solubilization, and 
efficient access of the protease to the target substrate. After 
reduction and the alkylation step, the pH of the solution 
was adjusted to pH 7-8, and trypsin digestion (20:1, protein 
to protease w/w) was performed overnight, incubating at 
37 °C. The samples were either immediately analyzed through 
LC/MS, or stored at –80 °C until use. Relative percentage 
modification was calculated using Equation 1.

LC conditions
Parameter Agilent 1290 Infinity II LC
Column: Agilent AdvanceBio Peptide Plus  

2.1 × 150 mm, 2.7 µm, 120 Å (675950-902)
Injection volume: 1 µL (1 µg/µL)
Sample thermostat: 5 °C
Mobile phase A: 0.1% FA in water
Mobile phase B: 0.1% FA in ACN
Gradient: At 0 minutes → 3% B 

At 1 minutes → 3% B 
At 31 minutes → 40% B 
At 33 minutes → 95% B 
At 34 minutes → 95% B 
At 34.1 minutes → 3% B

Stop time: 34.1 minutes
Post time: 5 minutes
Column temperature: 55 °C
Flow rate: 0.5 mL/min 

MS conditions

Parameter
Agilent 6545XT AdvanceBio  
LC/Q-TOF

Ion mode: Positive ion mode, dual AJS ESI 
(profile)

Drying gas temperature: 325 °C
Drying gas flow: 13 L/min 
Sheath gas temperature: 275 °C
Sheath gas flow: 12 L/min
Nebulizer: 35 psi
Capillary voltage: 4,000 V
Fragmentor voltage: 175 V
Skimmer voltage: 65 V
Oct RF Vpp: 750 V

Acquisition parameters MS mode
Data were acquired in extended dynamic range
MS mass range: 100–1,700 m/z
MS/MS mass range: 50–1,700 m/z
MS scan rate (spectra/second): 8
MS/MS scan rate (spectra/second): 3
Ramped collision energy Charge state	 Slope	 Offset

2	 3.1	 1
3 and >3	 3.6	 –4.8

Data analysis Agilent BioConfirm software B.08.00

Relative % modification = × 100

Equation 1.

(∑Area of modified peptide ions)

(∑Area of modified peptide ions) + (∑Area of unmodified peptide ions)
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Instrumentation

LC system
Agilent 1290 Infinity II LC system including:

•	 Agilent 1290 Infinity II high speed pump (G7120A)

•	 Agilent 1290 Infinity II multicolumn thermostat (G7116B) 

•	 Agilent 1290 Infinity II multisampler (G7167B)

MS system
Agilent 6545XT AdvanceBio LC/Q-TOF

Figure 1. A) Overlaid extracted compound chromatograms for the identified peptides using an Agilent AdvanceBio Peptide Plus 
column. B) Sequence coverage (99.26%) map of the heavy and light chains by Agilent Bioconfirm analysis. Matched peptides are 
marked in green.
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Results and Discussion

Peptide mapping
The tryptic digest of the mAb was analyzed by LC/MS. 
Figure 1A shows the identified peptide chromatogram 
obtained with AdvanceBio Peptide Plus column. All peptides 
were detected before 23 minutes with a good resolution 
between the peaks. Using Molecular Feature Extraction (MFE) 
and the BioConfirm Sequence editor, peptide masses from 
the LC/MS run were matched with the theoretical digest at 
a 5 ppm error with preferred modifications included in the 
antibody sequence. Results of BioConfirm analysis showed 
99.26% sequence coverage. The enhanced performance of 
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the PTM‑containing peptides. In the following sections, we 
evaluated the performance of the AdvanceBio Peptide Plus 
column for the separation and identification of critical PTMs 
such as oxidation, deamidation, and glycosylation.

Oxidation
Methionine (Met, M) oxidation is a common PTM of mAbs. 
The rate and extent of oxidation depends on the process 
and storage conditions. The DLTMISR peptide in the heavy 
chain region is most susceptible to oxidation. Figure 2A 
shows the separation of oxidized and nonoxidized DLTMISR 
peptide. Met-oxidation reduces the hydrophobicity of the 
peptide, and results in earlier elution. The peak at 16 minutes 
corresponds to the oxidized form, completely resolved from 
the native peptide. The peak at 19 minutes suggests that 
the DLTMISR peptide was not completely oxidized. The 
separation power of the column obtained between both forms 
suffices for calculating the relative % of oxidation, which is 
1.6%. Figure 2B shows representative MS/MS spectra for 
DLTMISR peptide in both modified and unmodified forms. The 
comparison of y4 and y5 ion masses shows an increase in 
mass of approximately 16 Da in modified peptide, suggesting 
that oxidation of Met occurred. 

the AdvanceBio Peptide Plus column with high resolution 
and efficiency separation power along with high accuracy 
MS enabled the identification of most of the mAb tryptic 
peptides. Figure 1B shows a snapshot of the BioConfirm 
window for the detailed sequence coverages of heavy and 
light chains. The robustness of the method was evaluated by 
five consecutive repeated injections of the mAb tryptic digest 
(1 μg/injection). The sequence coverage map for each run is 
shown in Table 1. The results demonstrate highly reproducible 
sequence coverage for each run. 

Replicates Sequence coverage (%)
Replicate 1 99.26
Replicate 2 98.89
Replicate 3 98.35
Replicate 4 99.10
Replicate 5 97.29

Table 1. Sequence coverage map reproducibility.

Figure 2A. Overlaid extracted compound chromatograms showing the separation of nonoxidized and 
oxidized DLTMISR peptide using an Agilent AdvanceBio Peptide Plus column.
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The greater challenge of tryptic mAb digest analysis is 
the complexity of the sample. PTM-containing peptides 
represent the minority of the tryptic mixture and are often 
masked by more dominant peptide signals. Thus, separation 
of this complex digest is crucial for the identification of all 
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Figure 2B. MS/MS spectra between nonoxidized (upper panel) and oxidized (bottom panel) DLTMISR peptide.
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Deamidation
Deamidation is the most frequent modification of proteins, 
and is a significant concern in manufacturing mAb 
biopharmaceuticals. Deamidation of asparagine (Asn, N) 
residues introduces a negative charge onto the protein 
resulting in the conversion of Asn into acidic isomers aspartic 
acid (Asp, D) and isoaspartic acid (isoAsp). Glutamine (Gln, Q) 
residues can also undergo deamidation to yield glutamic acid 

(Glu, E) but at a much slower rate than Asn. Deamidation 
results in a +0.98 Da shift, which can be identified using MS. 
However, it is a significant challenge for MS to distinguish 
the isomeric deamidation products. The structural difference 
between isoAsp and Asp residues in peptides changes 
the retention time in reversed-phase separation, and this 
retention time shift can be used to assign the peptide 
modifications. 
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from the native form, demonstrating the high resolving power 
of the column. In the case of NTAYLQMNSLR peptide, the 
relative % of deamidation varied from 15.9 to 0.21%. Figure 4B 
shows the representative MS/MS spectra for deamidated and 
nondeamidated NTAYLQMNSLR peptide. 

As an example, Figure 3 shows the separation of deamidated 
and nondeamidated forms of two representative peptide pairs. 
The NTAYLQMNSLR peptide exhibited a varying degree of 
deamidation at multiple sites. The AdvanceBio Peptide Plus 
column was able to separate all of the deamidated forms 
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Figure 3A. Overlaid extracted compound chromatograms showing the separation of nondeamidated 
and deamidated peptides using an Agilent AdvanceBio Peptide Plus column. Modified sites are 
marked in red.
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Figure 3B. MS/MS spectra between nondeamidated peptide and deamidated NTAYLQMNSLR peptide.
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Glycosylation 
Glycosylation is an important quality control parameter for 
the characterization of mAbs. Glycosylation yields a mixture 
of glycoforms sharing the same peptide backbone with 
different glycan structures. N-linked glycosylation occurs 
predominantly at the NXT/S motif of the peptide sequence. 
A combination of different a-fucosylated or fucosylated 
complex glycans represents the complexity of glycosylation 
heterogeneity. It is important to isolate these glycoforms to 
understand the structure/function relationship. Figure 4A 
shows the separation of glycosylated and nonglycosylated 
EEEQYNSTR peptides using the AdvanceBio Peptide 
Plus column. MS analysis identified multiple glycoforms 
(G0, G1F, G0F, and G2F) of the EEEQYNSTR peptide that 
were well resolved from the native peptide. As expected, 
the glycopeptides usually have little retention under 
reversed-phase conditions, and eluted close together. The 
quantification was performed using a relative sum percentage 
based on EIC peak area. The overall distribution of each 
glycosylated species was found to be: G0 (6.1%), G1F (47%), 
G0F (39%), and G2F (7.3%). Figure 4B shows the BioConfirm 
results for the matched glycopeptide with <5 ppm mass 
accuracy. 
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Figure 4A. Extracted ion chromatograms of m/z ratio 
matching to glycosylated and nonglycosylated EEEQYNSTR  
peptide.

Figure 4B. Agilent BioConfirm window showing the glycosylated and nonglycosylated EEEQYNSTR peptide details.
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Conclusions
•	 This application note demonstrates robust and reliable 

peptide mapping using an Agilent AdvanceBio Peptide 
Plus column.

•	 High-resolution and high-efficiency separation of mAb 
peptide map provided >99% sequence coverage.

•	 The AdvanceBio Peptide Plus column generated well 
resolved peptide peaks, enabling significant improvement 
for peptide mapping separation.

•	 Precise characterization of PTMs was achieved using an 
AdvanceBio Peptide Plus column and the Agilent Accurate 
Mass 6545XT AdvanceBio LC/Q-TOF.
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