

Rapid Microbore Metabolic Profiling (RAMMP) with Ion Mobility for the Lipidomic Investigation of Plasma from Breast Cancer Patients

Adam M. King,¹ Lee A. Gethings,¹ and Robert S. Plumb² ¹Waters Corporation, Wilmslow, UK; ²Waters Corporation, Milford, MA, USA

APPLICATION BENEFITS

- High throughput
- Efficient instrument usage
- Complete workflow
- High sensitivity

WATERS SOLUTIONS

Progenesis[™] QI Software

SYNAPT[™] G2-Si HDMS

ACQUITY[™] UPLC[™] I-Class System

ACQUITY BEH[™]C₈ Chemistry

KEYWORDS

Metabolomics, large cohort analysis, lipidomics, LC-MS, ion mobility, HDMS^E

INTRODUCTION

The metabolic and lipidomic profiling of biofluids and tissues has been proven to provide new insights into disease mechanism and progression.¹ Early pilot studies with small sample batches not only demonstrated the capability of the "omics" approach but also revealed the issues arising from small cohort studies, in terms of misleading results due to a lack of population, gender, and age coverage.² Large scale metabolic phenotyping studies require the ability to perform accurate and reproducible analysis of large sample cohorts and can often require several batches of analysis to complete.

The analyses of larger cohorts, for example 5000 samples and upwards, require either a large instrument facility or faster methodology.³ Typical LC-MS profiling methods have sample cycle times of 10–20 minutes, thus a continuous analysis based on conventional UPLC for a study cohort of 1000 samples would require several days of instrumentation time. The benefits of rapid LC analysis combined with microbore LC columns for large batch analysis was demonstrated by Wilson et al. for the analysis of a pre-clinical safety assessment study.⁴ The number of overall detected features with RAMMP can be compromised when compared with UPLC. However, combining the RAMMP methodology with data independent acquisition (DIA) strategies involving an ion mobility (IM) schema results in both high peak capacity and ultimately larger numbers of detected features being reported.

EXPERIMENTAL

Sample description

A pooled sample was prepared by combining 10 µL of all samples (breast cancer patients and healthy controls) which were subsequently stored at -20°C until use. Prior to analysis, each sample was subject to precipitation using the ratio of 1:4 with isopropanol (IPA). The sample was then vortex mixed and centrifuged at 13,000 rpm in a microfuge for five minutes. The resulting supernatant layer was removed and transferred to an autosampler vial for analysis.

MS conditions

Method conditions

LC conditions	
---------------	--

LC COnditions		WIS COnditions	
LC system:	ACQUITY UPLC I-Class	MS system:	Synapt G2-Si
Column:	ACQUITY BEH C8	Ionization mode:	ESI+
	1.0 × 50 mm	Acquisition range:	50–1200 <i>m/z</i>
Column temp.:	55 °C	Capillary voltage:	3.0 kV
Sample temp.:	10 °C	Collision energy:	Low energy 5eV, high energy 25eV
Injection volume:	0.2 µL	Cone voltage:	30 V
Flow rate:	250 μL/min		
Mobile phase A:	(50:25:25) H ₂ 0:IPA:MeCN w/5 mM ammonium acetate and 0.05% acetic acid	Data management MS software: Informatics:	t MassLynx™ Progenesis QI
Mobile phase B:	(50:50) IPA:MeCN w/5 mM ammonium acetate and 0.05% acetic acid		

Gradient:

	<u>Solvent</u>	<u>Solvent</u>
<u>Time</u>	<u>composition</u>	<u>composition</u>
<u>(min)</u>	<u>(%A)</u>	<u>(%B)</u>
0.05	90	30
2.8	30	90
3.0	0.1	99.9
3.15	0.1	99.9
3.7	90	30

RESULTS AND DISCUSSION

The lipidomic analysis of samples arising from large cohorts requires increased analytical throughput. Simply reducing the LC analysis time however, would result in a loss of chromatographic peak capacity. To address these concerns, the separation was geometrically scaled from a 2.1 × 100 mm ACQUITY BEH C₈ Column to a narrow bore 1.0 \times 50 mm ACQUITY BEH C₈ Column, with a mobile phase flow rate of 250 $\mu L/min$ and an injection volume of 0.2 $\mu L.$ This approach ensures that the number of column volumes defining the gradient was kept approximately constant between the two separations, resulting in the chromatographic analysis time being reduced from 15 to 3 minutes. The chromatographic performance of the RAMMP lipid methodology was evaluated using the Avanti Lipid differential ion mobility mix. The resulting data displayed in Figure 1, shows that the system delivered a high quality separation that was capable of separating standards in the test mix within the 3.7 minute analysis time.

Figure 2 is an example LC-MS chromatogram representing the extracted lipid QC sample, comparing conventional UPLC and RAMMP lipid methods. Total ion current (TIC) chromatograms demonstrate that the chromatographic profile of the lipid analysis was conserved when transferring from UPLC to RAMMP, maintaining lipid class separation for free fatty acids (FFA), glycerophospholipids and glycerolipids. The reproducibility of RAMMP was evaluated by comparing the chromatographic profile of the QC samples throughout the analysis of the plasma batch. The overlaid chromatograms for four QCs representing the beginning, middle, and end of the analytical batch are displayed in Figure 3. The data demonstrates the reproducibility of the RAMMP Lipid LC-MS methodology and that the quality of the separation is not deleteriously affected by the analysis of multiple plasma samples.

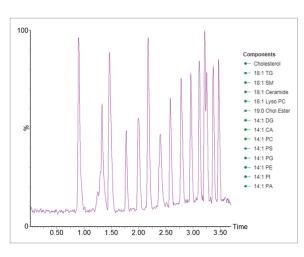


Figure 1. Chromatographic analysis of the Avanti lipid differential ion mobility lipid mix using the RAMMP lipid methodology.

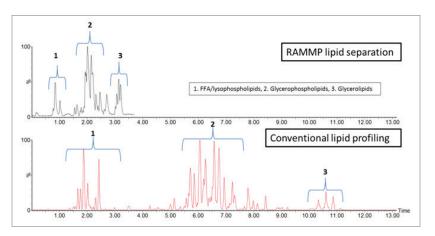


Figure 2. Comparative chromatograms for components of the lipid classes of free fatty acids (FFA), glycerophospholipids and glycerolipids using (a) RAMMP lipid method (b) conventional lipid method and respectively.

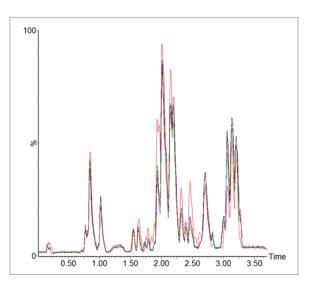
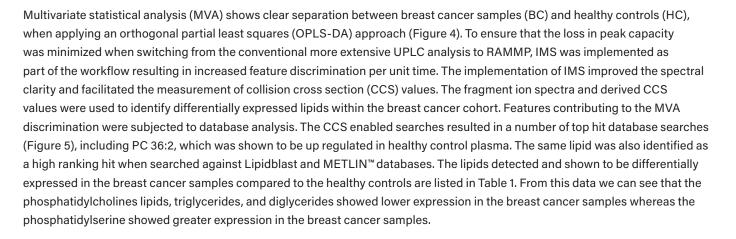



Figure 3. Overlaid extracted ion (BPI) chromatogram of 4 QC from the beginning, middle, and end of the batch.

[APPLICATION NOTE]

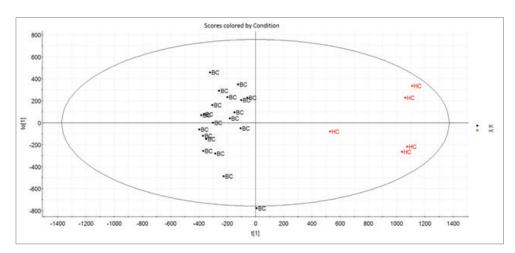


Figure 4. OPLS-DA plot differentiating healthy controls (HC) from breast cancer (BC) subjects.

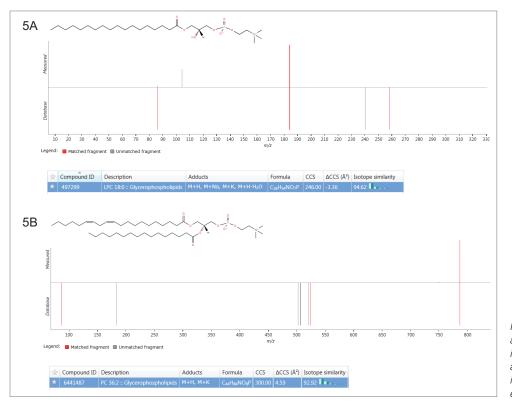


Figure 5. LPC 18:0 (A) and PC 36:2 (B) are example top scoring, tentative lipid identifications, which incorporate CCS as an identification parameter. PC 36:2 in particular, is shown to be under expressed in breast cancer subjects.

[APPLICATION NOTE]

Lipid identification	Neutral mass (Da)	m/z	Retention time (min)	CCS (Å2)	∆CCS (Å2)	Chromatographic peak width (min)	Anova (p)	q Value	Max Fold Change	Minimum CV%
TG(52:3)	856.75	874.79	3.14	334.1	-	0.20	5.5E-05	0.00166	1.5	6.03
TG(52:4)	-	872.77	3.06	331.4	-	0.23	1.0E-04	0.00201	1.8	4.85
TG(54:5)	880.75	898.78	3.07	337.6	-	0.18	1.5E-04	0.00237	2.6	5.53
PS (40:4)	839.57	822.56	1.62	304.4	-	0.30	2.1E-04	0.00274	2.0	4.38
TG(54:3)	-	902.82	3.22	341.1	-	0.24	3.4E-04	0.00386	2.0	5.54
DG(34:1)	-	577.52	3.2	267.1	-	0.18	3.7E-04	0.00404	1.8	2.97
TG(50:1)	832.75	850.79	3.19	332.5	-	0.16	3.9E-04	0.00408	1.7	5.15
PS(O-36:2)	773.56	774.56	1.55	295.8	-	0.31	5.0E-04	0.00452	1.9	3.16
PS(O-38:3)	799.57	782.57	1.62	299.7	-	0.28	6.5E-04	0.00529	1.8	3.09
PS(36:1)	789.55	790.56	1.54	298.7	-	0.41	2.3E-03	0.01119	2.9	2.21
PC(36:4)	781.56	782.57	2.01	306.6	-	0.28	6.6E-03	0.02300	1.5	5.15
PC (38:4)	809.59	810.60	2.19	312.2	7.2	0.37	8.3E-03	0.02592	1.6	4.06
PC (36:2)	785.60	786.60	2.19	304.6	4.6	0.20	1.9E-02	0.04109	1.3	4.69
PS (38:2)	815.57	816.57	1.63	306.3	-	0.41	2.2E-02	0.04428	1.5	4.56
PC(34:2)	757.57	758.57	2.02	296.9	-	0.24	2.7E-02	0.04926	1.3	4.84

Table 1. Summary of lipids which show differential expression in breast cancer samples. Over and under expressed lipids are shown as light blue and blue rows respectively.

CONCLUSIONS

- A rapid lipid profiling method has been successfully developed and applied for the investigation of lipids originating from human plasma derived from breast cancer and control samples.
- Reducing the analysis time from 15 to 3.7 minutes using a RAMMP approach has shown that retention and peak shape of lipids is maintained and the same statistically relevant features are identified, while increasing throughput and improving batch to batch robustness.
- Acquiring LC-MS data using a DIA-IMS workflow has shown increased peak capacity, specificity, and spectral clarity, which ultimately provided improved confidence for the identified compounds.

References

- 1. Kohno S, Keenan AL, Ntambi JM, Miyazaki M. Lipidomic INSIGHT into cardiovascular diseases. *Biochem Biophys Res Commun.* 2018 Apr 14.
- 2. Xia J, Wishart DS. Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis. *Curr Protoc Bioinformatics*, 2016 55:14.10.1–14.
- Lewis MR, Pearce JT, Spagou K, Green M, Dona AC, Yuen AH, David M, Berry DJ, Chappell K, Horneffer-van der Sluis V, Shaw R, Lovestone S, Elliott P, Shockcor J, Lindon JC, Cloarec O, Takats Z, Holmes E, Nicholson JK. Development and Application of Ultra-Performance Liquid Chromatography-TOF MS for Precision Large Scale Urinary Metabolic Phenotyping. *Anal Chem.* 2016 88(18):9004–13.
- Gray N, Adesina-Georgiadis K, Chekmeneva E, Plumb RS, Wilson ID, Nicholson JK. Development of a Rapid Microbore Metabolic Profiling Ultraperformance Liquid Chromatography-Mass Spectrometry Approach for High-Throughput Phenotyping Studies. *Anal Chem.*2016;88(11):5742–5.

Waters THE SCIENCE OF WHAT'S POSSIBLE.™

Waters, The Science of What's Possible, ACQUITY, UPLC, MassLynx, Progenesis, BEH Technology, and SYNAPT are trademarks of Waters Corporation. All other trademarks are the property of their respective owners.

Waters Corporation

34 Maple Street Milford, MA 01757 U.S.A. T: 1 508 478 2000 F: 1 508 872 1990 www.waters.com