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ABSTRACT
Detection of adulteration, contamination or inconsistencies 
in food and fl avor samples should be accurate and fast. Che-
mical sensors are ideal for these types of applications be-
cause they provide fast measurements. While analysis times 
are crucial, accuracy and precision of the analysis should 
never be compromised. It is therefore desirable to use a re-
liable and stable technology that is robust to environmental 
changes such as humidity or temperature. Quadrupole mass 
spectrometry is a robust technique that has been widely used 
in food and fl avor applications. 

In this study, mass spectral fi ngerprints of orange juice 
and wine samples were obtained by direct transfer of their 
headspace into a mass spectrometer without chromato-
graphic separation. For the beer samples a GERSTEL 
ChemSensor System that includes a GC was used. Stan-
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dard samples were used to train the chemical sensor 
with acceptable mass spectral profi les. Adulteration of 
wine samples was modeled with two different types of 
wines; contamination was detected by spiking orange 
juice with diacetyl and inconsistencies in products was 
modeled by analyzing beer samples freshly opened and 
aged 3 and 6 days.

Detection of contamination, adulteration and pro-
duct inconsistencies was easily determined using che-
mometric models. In particular, principal component 
analysis (PCA) easily detected anomalies by projection 
of the mass spectral fi ngerprints into the space of the 
fi rst three or two principal components. Adulteration 
of the wine standards was detected in the percentage 
range while diacetyl concentrations in orange juice 
were detected at the low ppm range. Slight differences 
between beer samples freshly opened and aged 3 and 
6 days were also detected and identifi ed.
 
INTRODUCTION
Identifi cation of product adulteration, contamination 
or inconsistency in food samples greatly benefi ts when 
the total analysis times are short. This includes sample 
preparation and instrument time. Chemical sensors are 
ideal for these types of applications because they pro-
vide fast results with minimal sample preparation. For 
example, a robust chemical sensor is obtained when 
well-known mass spectrometry technology is coupled 
with multivariate data analysis.

Mass spectrometry is a robust technology that is un-
affected by moisture in the sample, ambient humidity, 
or ambient temperature fl uctuations. It is also immune 
to sensor poisoning. Ions associated with dominant 
sample components, such as ethanol in wine, can be 
ignored and ions that model only the critical factors 
that differentiate samples are used. Also, ions present 
in an unusual sample that are not part of a standard 
sample can be detected.

The use and popularity of multivariate analysis has 
increased due to the availability of fast computers with 
virtually unlimited memory coupled with instruments 
such as a mass spectrometer that generate megabytes 
of data quickly. The advances in computer and instru-
mental technology result in complex data sets where 
useful information needs to be extracted. For example, 
a normal mass spectrum could consist of over 250 m/z 
fragments. These m/z ions carry information that could 
be used as a fi ngerprint for a certain compound. In order 
to easily compare different fi ngerprints a model with 
fewer dimensions, less than 250, is needed. 

In this study, headspace (HS) volatiles from wine and 
orange juice are introduced without chromatographic 
separation to a quadrupole mass selective detector 
(MSD) using a GERSTEL Headspace ChemSensor 
(Figure 1A). Also, volatiles from beer samples con-
centrated in a SPME fi ber are introduced to a GERS-
TEL ChemSensor System (Figure 1B). The resulting 
composite mass spectrum of each sample is used to 
train the chemical sensor using multivariate pattern 
recognition techniques. Unknown samples are easily 
compared to standards using integrated multivariate 
analysis software that can be easily customized to 
refl ect pass or fail decisions.

Figure 1a. Gerstel ChemSensor.

Figure 1b. Gerstel ChemSensor System.



EXPERIMENTAL
A: Wine. Merlot and Cabernet Sauvignon wine samples 
from the same winery were purchased at a local store. 
Pure samples along with three different blends were 
prepared according to Table 1. The goal of this expe-
riment was to create models that could predict if an 
unknown was a pure wine (either merlot or cabernet) 
or a blend. 

orange juice at 10, 50, 100, 500 and 2000 ppm levels. 
The goal of this experiment was to detect diacetyl in 
an orange juice matrix.
C: Beer. Five different German Pilsner beer samples 
were purchased in Mülheim an der Ruhr, Germany. All 
samples were purchased in glass bottles, the Koenig 
beer was also purchased in the can form. SPME extrac-
tions were carried out using a 75 μm Carboxen/PDMS 
fi ber (CAR/PDMS). Headspace SPME extractions 
were carried out for 15 min at 45 ºC and the fi ber was 
desorbed for 3 min at 220 ºC. The objective of these 
experiments was to discriminate between the different 
beer samples and to detect differences in chemical com-
position in beers aged 3 and 6 days.

RESULTS AND DISCUSSION
A: Wine. The mass spectral fi ngerprint of the two dif-
ferent wines was obtained and it is shown in Figure 
2. It can be seen that the profi les are pretty similar but 
there are some subtle differences in some ion ratios 
(e.g. 61, 92).
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B: Orange juice. Orange juice samples were purchased 
at a local store. Diacetyl standard was obtained from 
Sigma-Aldrich (Allentown, PA). Solutions of diacetyl 
in water at 10,000 and 2,000 ppm were used to spike 

Figure 2. TIC and MS for A) merlot and B) cabernet wine obtained using the Gerstel Headspace ChemSensor.

Table 1. Levels used for wine mixtures.
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Exploratory analysis was carried out using principal 
component analysis (PCA) and hierarchical cluster 
analysis. These analyses indicate the feasibility of the 
data for possible classifi cation or regression analysis. 
The projection of the samples into the space of the 
fi rst three principal components is shown in Figure 

3. A cascading model was created for these types of 
samples in which the fi rst model (KNN) classifi ed the 
samples as either pure or as a blend, if the samples 
were classifi ed as a blend then a PLS model was used 
to predict the percentage of blending.

The output for a testing data set (not used in model 
creation) using the cascading models is shown in Table 
2. It can be seen that the predictions are 100% accurate 
when the model predicts as Cabernet or Merlot. For 
the blended samples we decided to examine the stan-

dard error of calibration (SEC, 4.01) obtained with an 
3-factor PLS model and the r cal (0.996). Both diag-
nostic values indicate that the PLS model (Figure 4) 
could be used in the prediction of blending.

Figure 3. Projection of the wine solutions into the space of the fi rst three principal components.
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Table 2. Predictions for a wine testing data set using a cascading model.

Figure 4. Y-Fit for a PLS 3 factor regression model for the wine mixtures.
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Figure 6. Projections of the orange juice mass spectra into the space of the fi rst two principal components.  

B: Orange juice. The mass spectra of each of the 
orange juice samples were examined using the Data 
Analysis program of ChemStation software (Agilent 
Technologies). The presence and identifi cation of di-
acetyl at the 100 ppm concentration was corroborated 

by subtracting the mass spectrum of a spiked sample 
minus the spectrum of the non-spiked sample. Figure 
5 shows how it is possible to detect with ChemStation 
Data Analysis software the presence of diacetyl.
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A PCA model was created to determine if the presence 
of diacetyl was possible. As seen in Figure 6, PCA 
scores for the orange juice samples indicate that the fi rst 

PC (horizontal axis in Figure 6) describes the difference 
between samples containing marker (positive scores on 
the fi rst PC) and no marker (negative scores). 

Figure 5. Mass spectra of orange juice. A) OJ with 100ppm diacetyl; B) pure OJ; C) subtraction of pure OJ 
from OJ with diacetyl; D) diacetyl standard.
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Figure 7. GC-MS total ion chromatograms of the different beer types.

C: Beer. The beer samples were analyzed using a 
GERSTEL ChemSensor System. This confi guration 
allows switching between rapid screening and compre-
hensive GC/MS analysis depending if a short transfer 

line or a capillary column is on-line. Figure 7 shows 
six TICs obtained using this confi guration in the SPME 
mode. Visual inspection of these fi ve TICs reveals few 
differences between these six types of beers.
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Figure 8. PCA scores plot (4 factors) of the 6 beers fi ngerprint mass spectra.

Since visual separation of the samples using TIC is 
diffi cult, the mass spectral fi ngerprint was used to 
develop chemometric models. Figure 8 shows the 
projection of the mass fi ngerprints into the space of 
the fi rst three principal components. The total variance 
captured within the fi rst three principal components 
was over 98%, this implies that differences in the 

samples projections are due to differences in the che-
mical composition obtained with SPME sampling. Five 
different clusters are evident in the scores plot (Figure 
8), beer sampled from the can and bottle appears to 
cluster together. A separate model was created for this 
type of beer (inset of Figure 8) in which separation was 
obtained using 3 PCs.

Change in composition as the beer aged was easily 
detected using the GERSTEL ChemSensor system. 
Figure 9 shows the projection of the fresh and aged 
Warsteiner beer into the space of the fi rst two prin-
cipal components. Examination of the corresponding 

loadings for these PCs reveals key ions responsible for 
the different projections. Using these ions as a guide, 
extracted ion chromatograms were inspected using 
ChemStation Data Analysis software.
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Table 3 shows the compounds that decrease over time 
as the Warsteiner beer was aged. Ions with high loa-
dings for the fi rst PCs are highlighted. It appears that 
the fi rst principal component in this case is explaining 
the difference between the content of the compounds 

Figure 9. Projections of the mass spectral fi ngerprints of Warsteiner aged beers into the space of the fi rst two 
principal components.

RT [min] Compound CAS # Ions
1.00 Ethyl acetate 141-79-6 43, 61, 70, 88

3.11 1-Butanol-3-methyl acetate 123-92-2 43, 55, 70, 61

5.05 Ethyl caproate 123-66-0 60, 71, 88, 99

9.71 Octanoic acid ethyl ester 106-32-1 88, 101, 127, 57

from Table 3 in the different aged samples. Since the 
GERSTEL ChemSensor System includes a GC, detec-
tion of the specifi c compound is easily done when a ca-
pillary column with slow temperature ramp is used.

Table 3. Compounds that decrease overtime as the Warsteiner beer was aged. Ions highlighted have high loa-
dings in the fi rst principal component.

CONCLUSIONS
The fast and accurate classifi cation of samples using an 
instrument that integrates multivariate statistics with 
mass spectrometry technology is now possible. The 
GERSTEL Headspace ChemSensor and GERSTEL 
ChemSensor System have both been proven to be 
capable of detecting differences in the composition of 
three beverages: wine, orange juice and beer. 

For the wine samples, it has been shown that it is 
possible to develop cascading models that can predict 
wine samples as pure or blends using the GERSTEL 
Headspace ChemSensor. The blending percentage was 
also possible to predict with a PLS model.

For the orange juice study, these preliminary re-

sults indicate the possibility of using a mass spectral 
based chemical sensor to predict the level of diacetyl. 
More research with more markers and more levels is 
necessary. Also, the possibility of using the Chemical 
sensor in the single ion-monitoring mode (SIM) could 
improve the sensitivity below 10 ppm.

Finally, it has been shown that visual comparison of 
total ion chromatograms of beer samples was cumber-
some. Comparison of chemical composition is more 
objective and faster using a GERSTEL ChemSensor 
System with multivariate analysis.
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